
2: Application Layer 1

Chapter 2
Application Layer

2: Application Layer 2

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP
2.4 Socket
programming with TCP
2.5 Socket
programming with UDP

2.6 DNS
2.7 P2P file sharing

2: Application Layer 3

Chapter 2: Application Layer
Our goals:

conceptual,
implementation
aspects of network
application protocols

transport-layer
service models
client-server
paradigm
peer-to-peer
paradigm

learn about protocols
by examining popular
application-level
protocols

HTTP
FTP
SMTP / POP3 / IMAP
DNS

programming network
applications

socket API

2: Application Layer 4

Some network apps

E-mail
Web
Instant messaging
Remote login
P2P file sharing
Multi-user network
games
Streaming stored
video clips

Internet telephone
Real-time video
conference
Massive parallel
computing

2: Application Layer 5

Creating a network app
Write programs that

run on different end
systems and
communicate over a
network.
e.g., Web: Web server
software communicates
with browser software

No software written for
devices in network core

Network core devices do
not function at app layer
This design allows for
rapid app development

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 6

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
2.7 Socket programming
with TCP
2.8 Socket programming
with UDP
2.9 Building a Web
server

2: Application Layer 7

Application architectures

Client-server
Peer-to-peer (P2P)
Hybrid of client-server and P2P

2: Application Layer 8

Client-server archicture
server:

always-on host
permanent IP address
server farms for scaling

clients:
communicate with

server
may be intermittently
connected
may have dynamic IP
addresses
do not communicate
directly with each other

2: Application Layer 9

Pure P2P architecture

no always on server
arbitrary end systems
directly communicate
peers are intermittently
connected and change IP
addresses
example: Gnutella

Highly scalable

But difficult to manage

2: Application Layer 10

Hybrid of client-server and P2P

Napster
File transfer P2P
File search centralized:

• Peers register content at central server
• Peers query same central server to locate content

Instant messaging
Chatting between two users is P2P
Presence detection/location centralized:

• User registers its IP address with central server
when it comes online

• User contacts central server to find IP addresses of
buddies

2: Application Layer 11

Processes communicating

Process: program running
within a host.
within same host, two
processes communicate
using inter-process
communication (defined
by OS).
processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer 12

Sockets

process sends/receives
messages to/from its
socket
socket analogous to door

sending process shoves
message out door
sending process relies on
transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

2: Application Layer 13

Addressing processes
For a process to
receive messages, it
must have an identifier
A host has a unique32-
bit IP address
Q: does the IP address
of the host on which
the process runs
suffice for identifying
the process?
Answer: No, many
processes can be
running on same host

Identifier includes
both the IP address
and port numbers
associated with the
process on the host.
Example port numbers:

HTTP server: 80
Mail server: 25

More on this later

2: Application Layer 14

App-layer protocol defines

Types of messages
exchanged, eg, request
& response messages
Syntax of message
types: what fields in
messages & how fields
are delineated
Semantics of the
fields, ie, meaning of
information in fields
Rules for when and
how processes send &
respond to messages

Public-domain protocols:
defined in RFCs
allows for
interoperability
eg, HTTP, SMTP

Proprietary protocols:
eg, KaZaA

2: Application Layer 15

What transport service does an app need?

Data loss
some apps (e.g., audio) can
tolerate some loss
other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer

Timing
some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”
other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 16

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 17

Internet transport protocols services

TCP service:
connection-oriented: setup
required between client and
server processes
reliable transport between
sending and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: throttle
sender when network
overloaded
does not provide: timing,
minimum bandwidth
guarantees

UDP service:
unreliable data transfer
between sending and
receiving process
does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

Q: why bother? Why is
there a UDP?

2: Application Layer 18

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

www.ietf.org

Internet engineering task force

2: Application Layer 19

Chapter 2: Application layer

2.1 Principles of
network applications

app architectures
app requirements

2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP

2.4 Socket programming
with TCP
2.5 Socket programming
with UDP
2.6 DNS
2.7 P2P file sharing

2: Application Layer 20

Web and HTTP

First some jargon
Web page consists of objects
Object can be HTML file, JPEG image, Java
applet, audio file,…
Web page consists of base HTML-file which
includes several referenced objects
Each object is addressable by a URL
Example URL:
www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 21

HTTP overview

HTTP: hypertext
transfer protocol
Web’s application layer
protocol
client/server model

client: browser that
requests, receives,
“displays” Web objects
server: Web server
sends objects in
response to requests

HTTP 1.0: RFC 1945
HTTP 1.1: RFC 2068

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

2: Application Layer 22

HTTP overview (continued)

Uses TCP:
client initiates TCP
connection (creates socket)
to server, port 80
server accepts TCP
connection from client
HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)
TCP connection closed

HTTP is “stateless”
server maintains no
information about
past client requests

Protocols that maintain
“state” are complex!
past history (state) must
be maintained
if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

2: Application Layer 23

HTTP connections

Nonpersistent HTTP
At most one object is
sent over a TCP
connection.
HTTP/1.0 uses
nonpersistent HTTP

Persistent HTTP
Multiple objects can
be sent over single
TCP connection
between client and
server.
HTTP/1.1 uses
persistent connections
in default mode

2: Application Layer 24

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

2: Application Layer 25

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 26

Response time modeling
Definition of RTT: time to

send a small packet to
travel from client to
server and back.

Response time:
one RTT to initiate TCP
connection
one RTT for HTTP
request and first few
bytes of HTTP response
to return
file transmission time

total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

2: Application Layer 27

Persistent HTTP

Nonpersistent HTTP issues:
requires 2 RTTs per object
OS must work and allocate
host resources for each TCP
connection
but browsers often open
parallel TCP connections to
fetch referenced objects

Persistent HTTP
server leaves connection
open after sending response
subsequent HTTP messages
between same client/server
are sent over connection

Persistent without pipelining:
client issues new request
only when previous
response has been received
one RTT for each
referenced object

Persistent with pipelining:
default in HTTP/1.1
client sends requests as
soon as it encounters a
referenced object
as little as one RTT for all
the referenced objects

2: Application Layer 28

HTTP request message

two types of HTTP messages: request, response
HTTP request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 29

HTTP request message: general format

2: Application Layer 30

Uploading form input

Post method:
Web page often
includes form input
Input is uploaded to
server in entity body

URL method:
Uses GET method
Input is uploaded in
URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 31

Method types

HTTP/1.0
GET
POST
HEAD

asks server to leave
requested object out of
response

HTTP/1.1
GET, POST, HEAD
PUT

uploads file in entity
body to path specified
in URL field

DELETE
deletes file specified in
the URL field

2: Application Layer 32

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

2: Application Layer 33

HTTP response status codes

200 OK
request succeeded, requested object later in this message

301 Moved Permanently
requested object moved, new location specified later in
this message (Location:)

400 Bad Request
request message not understood by server

404 Not Found
requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 34

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at web.engr.orst.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet web.engr.orst.edu

2. Type in a GET HTTP request:
GET /~thinhq/index.html HTTP/1.1
Host: kingsalmon.eecs.orst.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 35

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line in

the HTTP response
message

2) cookie header line in
HTTP request message

3) cookie file kept on
user’s host and managed
by user’s browser

4) back-end database at
Web site

Example:
Susan access Internet
always from same PC
She visits a specific e-
commerce site for first
time
When initial HTTP
requests arrives at site,
site creates a unique ID
and creates an entry in
backend database for
ID

2: Application Layer 36

Cookies: keeping “state” (cont.)

client server
usual http request msg
usual http response +
Set-cookie: 1678

usual http request msg
cookie: 1678

usual http response msg

usual http request msg
cookie: 1678

usual http response msg

cookie-
specific
action

cookie-
spectific

action

server
creates ID

1678 for user

entry in backend

database

access

acc
ess

Cookie file

amazon: 1678
ebay: 8734

Cookie file

ebay: 8734

Cookie file

amazon: 1678
ebay: 8734

one week later:

2: Application Layer 37

Cookies (continued)
What cookies can bring:

authorization
shopping carts
recommendations
user session state
(Web e-mail)

Cookies and privacy:
cookies permit sites to
learn a lot about you
you may supply name
and e-mail to sites
search engines use
redirection & cookies
to learn yet more
advertising companies
obtain info across
sites

aside

2: Application Layer 38

Web caches (proxy server)

user sets browser: Web
accesses via cache
browser sends all HTTP
requests to cache

object in cache: cache
returns object
else cache requests
object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

2: Application Layer 39

More about Web caching

Cache acts as both client
and server
Typically cache is installed
by ISP (university,
company, residential ISP)

Why Web caching?
Reduce response time for
client request.
Reduce traffic on an
institution’s access link.
Internet dense with caches
enables “poor” content
providers to effectively
deliver content (but so
does P2P file sharing)

2: Application Layer 40

Caching example
Assumptions

average object size = 100,000
bits
avg. request rate from
institution’s browsers to origin
servers = 15/sec
delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
utilization on LAN = 15%
utilization on access link = 100%
total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 41

Caching example (cont)
Possible solution

increase bandwidth of access
link to, say, 10 Mbps

Consequences
utilization on LAN = 15%
utilization on access link = 15%
Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

2: Application Layer 42

Caching example (cont)

Install cache
suppose hit rate is .4

Consequence
40% requests will be
satisfied almost immediately
60% requests satisfied by
origin server
utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec)
total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs
.4*(.01) secs < 1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 43

Conditional GET

Goal: don’t send object if
cache has up-to-date cached
version
cache: specify date of
cached copy in HTTP request
If-modified-since:

<date>

server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

cache server
HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

Push (webserver pushes the modified
content to the web cache)

Improvement???

2: Application Layer 44

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP
2.4 Socket
programming with TCP
2.5 Socket
programming with UDP

2.6 DNS
2.7 P2P file sharing

2: Application Layer 45

Electronic Mail

Three major components:
user agents
mail servers
simple mail transfer
protocol: SMTP

User Agent
a.k.a. “mail reader”
composing, editing, reading
mail messages
e.g., Eudora, Outlook, elm,
Netscape Messenger
outgoing, incoming messages
stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 46

Electronic Mail: mail servers

Mail Servers
mailbox contains incoming
messages for user
message queue of outgoing
(to be sent) mail messages
SMTP protocol between mail
servers to send email
messages

client: sending mail
server
“server”: receiving mail
server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 47

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from client
to server, port 25
direct transfer: sending server to receiving server
three phases of transfer

handshaking (greeting)
transfer of messages
closure

command/response interaction
commands: ASCII text
response: status code and phrase

messages must be in 7-bit ASCII

2: Application Layer 48

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 49

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

2: Application Layer 50

Try SMTP interaction for yourself:

telnet servername 25
telnet mail.ece.orst.edu 25

see 220 reply from server
enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

2: Application Layer 51

SMTP: final words

SMTP uses persistent
connections
SMTP requires message
(header & body) to be in 7-
bit ASCII
SMTP server uses
CRLF.CRLF to determine
end of message

Comparison with HTTP:
HTTP: pull
SMTP: push

both have ASCII
command/response
interaction, status codes

HTTP: each object
encapsulated in its own
response msg
SMTP: multiple objects
sent in multipart msg

2: Application Layer 52

Mail message format (not covered in
lecture – read by yourself)

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:
header lines, e.g.,

To:
From:
Subject:

different from SMTP
commands!

body
the “message”, ASCII
characters only

header

body

blank
line

2: Application Layer 53

Message format: multimedia extensions

MIME: multimedia mail extension, RFC 2045, 2056
additional lines in msg header declare MIME content
type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

2: Application Layer 54

Mail access protocols

SMTP: delivery/storage to receiver’s server
Mail access protocol: retrieval from server

POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

HTTP: Hotmail , Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 55

POP3 protocol (not covered in lecture – read by
yourself)

authorization phase
client commands:

user: declare username
pass: password

server responses
+OK

-ERR

transaction phase, client:
list: list message numbers
retr: retrieve message by
number
dele: delete
quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 56

POP3 (more) and IMAP (not covered in
lecture – read by yourself)

More about POP3
Previous example uses
“download and delete”
mode.
Bob cannot re-read e-
mail if he changes
client
“Download-and-keep”:
copies of messages on
different clients
POP3 is stateless
across sessions

IMAP
Keep all messages in
one place: the server
Allows user to
organize messages in
folders
IMAP keeps user state
across sessions:

names of folders and
mappings between
message IDs and folder
name

2: Application Layer 57

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP
2.4 Socket
programming with TCP
2.5 Socket
programming with UDP

2.6 DNS
2.7 P2P file sharing

2: Application Layer 58

Socket programming

Socket API
introduced in BSD4.1 UNIX,
1981
explicitly created, used,
released by apps
client/server paradigm
two types of transport
service via socket API:

unreliable datagram
reliable, byte stream-
oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 59

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2: Application Layer 60

Socket programming with TCP
Client must contact server

server process must first
be running
server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:
creating client-local TCP
socket
specifying IP address, port
number of server process
When client creates
socket: client TCP
establishes connection to
server TCP

When contacted by client,
server TCP creates new
socket for server process to
communicate with client

allows server to talk with
multiple clients
source port numbers
used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 61

Stream jargon

A stream is a sequence of
characters that flow into
or out of a process.
An input stream is
attached to some input
source for the process, eg,
keyboard or socket.
An output stream is
attached to an output
source, eg, monitor or
socket.

2: Application Layer 62

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

2: Application Layer 63

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2: Application Layer 64

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 65

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 66

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2: Application Layer 67

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2: Application Layer 68

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP
2.4 Socket
programming with TCP
2.6 Socket
programming with UDP

2.7 DNS
2.8 P2P file sharing

2: Application Layer 69

Socket programming with UDP

UDP: no “connection” between
client and server
no handshaking
sender explicitly attaches
IP address and port of
destination to each packet
server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 70

Client/server socket interaction: UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request from
serverSocket

write reply to
serverSocket
specifying client
host address,
port number

2: Application Layer 71

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (TCP sent
“byte stream”)

Input: receives
packet (TCP
received “byte
stream”)

Client
process

client UDP
socket

2: Application Layer 72

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

2: Application Layer 73

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

2: Application Layer 74

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 75

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 76

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP
2.4 Socket
programming with TCP
2.5 Socket
programming with UDP

2.6 DNS
2.7 P2P file sharing

2: Application Layer 77

DNS: Domain Name System

People: many identifiers:
SSN, name, passport #

Internet hosts, routers:
IP address (32 bit) -
used for addressing
datagrams
“name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:
distributed database
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

note: core Internet
function, implemented as
application-layer protocol
complexity at network’s
“edge”

2: Application Layer 78

DNS
Why not centralize DNS?

single point of failure
traffic volume
distant centralized
database
maintenance

doesn’t scale!

DNS services
Hostname to IP
address translation
Host aliasing

Canonical and alias
names

Mail server aliasing
Load distribution

Replicated Web
servers: set of IP
addresses for one
canonical name

2: Application Layer 79

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
Client queries a root server to find com DNS
server
Client queries com DNS server to get amazon.com
DNS server
Client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 80

DNS: Root name servers
contacted by local name server that can not resolve name
root name server:

contacts authoritative name server if name mapping not known
gets mapping
returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 17 other locations)

i Autonomica, Stockholm (plus 3
other locations)

k RIPE London (also Amsterdam,
Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

2: Application Layer 81

TLD and Authoritative Servers

Top-level domain (TLD) servers: responsible
for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.

Network solutions maintains servers for com TLD
Educause for edu TLD

Authoritative DNS servers: organization’s
DNS servers, providing authoritative
hostname to IP mappings for organization’s
servers (e.g., Web and mail).

Can be maintained by organization or service
provider

2: Application Layer 82

Local Name Server

Does not strictly belong to hierarchy
Each ISP (residential ISP, company,
university) has one.

Also called “default name server”
When a host makes a DNS query, query is
sent to its local DNS server

Acts as a proxy, forwards query into hierarchy.

2: Application Layer 83

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

Example

Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

2: Application Layer 84

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serve

3

Recursive queries
recursive query:

puts burden of name
resolution on
contacted name
server
heavy load?

iterated query:
contacted server
replies with name of
server to contact
“I don’t know this
name, but ask this
server”

2: Application Layer 85

DNS: caching and updating records

once (any) name server learns mapping, it caches
mapping

cache entries timeout (disappear) after some
time
TLD servers typically cached in local name
servers

• Thus root name servers not often visited
update/notify mechanisms under design by IETF

RFC 2136
http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 86

DNS records
DNS: distributed db storing resource records (RR)

Type=NS
name is domain (e.g.
foo.com)
value is authoritative
name server for this
domain

RR format: (name, value, type, ttl)

Type=A
name is hostname
value is IP address

Type=CNAME
name is alias name for some
“cannonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

value is cannonical name

Type=MX
value is name of mailserver
associated with name

2: Application Layer 87

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
identification: 16 bit #
for query, reply to query
uses same #
flags:

query or reply
recursion desired
recursion available
reply is authoritative

2: Application Layer 88

DNS protocol, messages

Name, type fields
for a query

RRs in reponse
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 89

Inserting records into DNS

Example: just created startup “Utopia”
Register name networkuptopia.com at a registrar
(e.g., Network Solutions)

Need to provide registrar with names and IP addresses of
your authoritative name server (primary and secondary)
Registrar inserts two RRs into the com TLD server:

(utopia.com, dns1. utopia.com, NS)
(dns1.utopia.com, 212.212.22.1, A)

Put in authoritative server Type A record for
www.networkuptopia.com and Type MX record for
networkutopia.com

2: Application Layer 90

How do people get the IP address
of your Web site?

requesting host
nome.ece.orst.edu

root DNS server

local DNS server
dns.orst.edu

1

2
3

4

5

6
authoritative DNS server

dns1.utopia.com

78

ns1.networkssolution.com

Asks www.utopia.com

Reply ns1. networksolutions.com

Ask www.utopia.com

Ask *.com

Ask *.utopia.com

Reply dns1.utopia.com

Reply IP address of
www.utopia.com

9 Web server

(utopia.com, dns1.utopia.com, NS)

(dns1.utopia.com, 212.212.22.1, A)

Entry in networksolutions.com

2: Application Layer 91

Chapter 2: Application layer

2.1 Principles of
network applications
2.2 Web and HTTP
2.3 Electronic Mail

SMTP, POP3, IMAP
2.4 Socket
programming with TCP
2.5 Socket
programming with UDP

2.6 DNS
2.7 P2P file sharing

2: Application Layer 92

P2P file sharing

Example
Alice runs P2P client
application on her
notebook computer
Intermittently
connects to Internet;
gets new IP address
for each connection
Asks for “Hey Jude”
Application displays
other peers that have
copy of Hey Jude.

Alice chooses one of
the peers, Bob.
File is copied from
Bob’s PC to Alice’s
notebook: HTTP
While Alice downloads,
other users uploading
from Alice.
Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!

2: Application Layer 93

P2P: centralized directory

original “Napster” design
1) when peer connects, it

informs central server:
IP address
content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2: Application Layer 94

P2P: problems with centralized directory

Single point of failure
Performance
bottleneck
Copyright
infringement

(Kazaa located in Pacific
island nation of
Vanuatu)

file transfer is
decentralized, but
locating content is
highly centralized!

2: Application Layer 95

Query flooding: Gnutella

fully distributed
no central server

public domain protocol
many Gnutella clients
implementing protocol

overlay network: graph
edge between peer X
and Y if there’s a TCP
connection
all active peers and
edges is overlay net
Edge is not a physical
link
Given peer will
typically be connected
with < 10 overlay
neighbors

2: Application Layer 96

History of Gnutella

Justin Frankel

Tom Pepper

+

Gnullsoft

NullSoft

Gnutella, GNU GPL, 0.56 (Feb 2000)

AOL
Gnutella IRC
#gnutella

gnutella.nerdherd.net

Open Source
Developers

(Bryan Mayland)

Gnutella
Spec

2: Application Layer 97

What is Gnutella?
Gnutella is a protocol

for distributed search

• peer-to-peer comms
• decentralized model
• No third party lookup

?

?

?

Two stages :

1. Join Network … later
2. Use Network

1. Discover other peers
2. Search other peers

overlay network: graph
edge between peer X and Y if
there’s a TCP connection
all active peers and edges is
overlay net
Edge is not a physical link
Given peer will typically be
connected with < 10 overlay
neighbors

2: Application Layer 98

The Jargon

Horizon: how many hops a
packet can go before it dies
(default setting is 7 in Gnutella)

Hops: a hop is a
pass through an
intermediate node

Servent: A Gnutella node.

1 Hop

2 Hops

Each servent is both a
client and a server

2: Application Layer 99

Gnutella Descriptor

5 Descriptor Types

- Gnutella messages that are passed around the Gnutella network

•Ping: used to actively discover hosts on the network. A servent receiving a Ping descriptor
is expected to respond with one or more Pong descriptors.

•Pong: the response to a Ping.

(Each Pong packet contains a Globally Unique Identifier (GUID) plus address of servent
and information regarding the amount of data it is making available to the network)

•Query: the primary mechanism for searching the distributed network. A servent receiving
a Query descriptor will respond with a QueryHit if a match is found against its local data
set.

•QueryHit: the response to a Query: contains IP address, GUID and search results

•Push: allows downloading from firewalled servents

2: Application Layer 100

Gnutella Scenario
Step 0: Join the network
Step 1: Determining who is on the network

• "Ping" packet is used to announce your presence on the network.
• Other peers respond with a "Pong" packet.
• Also forwards your Ping to other connected peers
• A Pong packet also contains:

• an IP address
• port number
• amount of data that peers is sharing
• Pong packets come back via same route

Step 2: Searching
• Gnutella is a protocol for distributed search.
• Gnutella "Query" ask other peers if they have the file you desire (and have
an acceptably fast network connection).
• A Query packet might ask, "Do you have any content that matches the string
‘Homer"?
• Peers check to see if they have matches & respond (if they have any
matches) & send packet to connected peers
• Continues for TTL

Step 3: Downloading
• Peers respond with a “QueryHit” (contains contact info)
• File transfers use direct connection using HTTP protocol’s GET method
• When there is a firewall a "Push" packet is used – reroutes via Push path

2: Application Layer 101

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTPQuery message

sent over existing TCP
connections

peers forward
Query message

QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2: Application Layer 102

Gnutella: Peer joining

1. Joining peer X must find some other peer in
Gnutella network: use list of candidate peers

2. X sequentially attempts to make TCP with peers
on list until connection setup with Y

3. X sends Ping message to Y; Y forwards Ping
message.

4. All peers receiving Ping message respond with
Pong message

5. X receives many Pong messages. It can then
setup additional TCP connections

2: Application Layer 103

Searching a Gnutella Network: From one Node

2: Application Layer 104

Searching a Gnutella Network: All nodes

2: Application Layer 105

Descriptor
Header

Gnutella Descriptors

0 22

•Ping: to actively discover hosts on the network.

•Pong: the response to a Ping (includes the GUID address of a connected servent and
information regarding the amount of data it is making available to the network)

•Query: search mechanism

•QueryHit: the response to a Query (containing GUID and file info)

•Push: mechanism for firewalled servents

Descriptor
Payload

Variable, 0…Max

Descriptor Types

23

2: Application Layer 106

Descriptor ID

Gnutella Descriptor Header
Payload

Descriptor TTL Hops Payload
Length

0 1716 18 19 22

• Descriptor ID: a unique identifier for the descriptor on the network (16-byte string)

• Payload Descriptor: 0x00 = Ping: 0x01 = Pong: 0x40 = Push: 0x80 = Query: 0x81 =
QueryHit

• TTL: Time To Live or Horizon. Each servent decrements the TTL before passing it on -
when TTL = 0, it is no longer forwarded.

• Hops: counts the number of hops the descriptor has traveled i.e. hops = TTL(0) when
TTL expires

Payload Length: next descriptor header is located exactly Payload Length bytes from
end descriptor header

2: Application Layer 107

Gnutella Payload 1 – Ping Descriptor

• Ping descriptors:

• no associated payload

• = zero length

• A Ping is simply represented by a Descriptor Header whose:

• Payload_ Length field is 0x00000000.

• Payload_Descriptor field = 0x00

2: Application Layer 108

Port

Gnutella Payload 2 - Pong

IP Address Number of
files Shared

Number Of
Kilobytes Shared

0 62 10 13

• Port: port which responding host can accept incoming connections.

• IP Address: IP address of the responding host (big-endian)

• Number of Files Shared: number of files responding host is sharing on the
network

• Number of Kilobytes Shared: kilobytes of data responding host is sharing on
the network.

2: Application Layer 109

Gnutella Payload 3 - Query

• Minimum Speed: minimum speed (in kb/second) of servents that should respond
to this message.

• A Servent receiving a Query descriptor with a minimum speed field of n
kb/s should only respond with a QueryHit if it is able to communicate at a
speed >= n kb/s

• Search Criteria: A nul (i.e. 0x00) terminated search string - maximum length is
bound by Payload_Length field of the descriptor header.

• e.g. “myFavouriteSong.mp3”

Minimum
Speed

0

Search
Criteria

….2

2: Application Layer 110

Number
Of Hits

Gnutella Payload 4 - QueryHit
Port IP Address Speed Result

Set

0 31 7 11 N+16

• Servent Identifier: servent network ID (16-byte string), typically function of
servent’s network address - instrumental in the operation of the Push Descriptor ….

Servent
Identifier

N

File Index File Size File Name

0 84 Nul Nul

• Number of Hits: number of query hits in the result set

• Port: port which the responding host can accept incoming connections

• IP Address: IP address of the responding host (big-endian)

• Speed: speed (in kb/second) of the responding host

• Result Set: set of Number_of_Hits responses to the corresponding Query with the
following structure:

• File Index: ID of file matching the corresponding
query - assigned by the responding host
• File Size: size (bytes) of this file
• File Name: name of the file (double-nul (i.e. 0x0000)
terminated)

2: Application Layer 111

Servent
Identifier

Gnutella Payload 5 - Push

File Index IP Address Port

0 2016 24 25

• Servent Identifier: target servent network ID (16-byte string)
requested to push file (with given index File_Index)

• File Index: ID of the file to be pushed from the target servent

• IP Address: IP address of target host which file should be pushed
(big-endian forma)

• Port: port on target host which file should be pushed

2: Application Layer 112

Exploiting heterogeneity: KaZaA

Each peer is either a
group leader or assigned
to a group leader.

TCP connection between
peer and its group leader.
TCP connections between
some pairs of group
leaders.

Group leader tracks the
content in all its
children.

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 113

KaZaA: Querying

Each file has a hash and a descriptor
Client sends keyword query to its group
leader
Group leader responds with matches:

For each match: metadata, hash, IP address
If group leader forwards query to other
group leaders, they respond with matches
Client then selects files for downloading

HTTP requests using hash as identifier sent to
peers holding desired file

2: Application Layer 114

Kazaa tricks

Limitations on simultaneous uploads
Request queuing
Incentive priorities
Parallel downloading

2: Application Layer 115

Chapter 2: Summary

Application architectures
client-server
P2P
hybrid

application service
requirements:

reliability, bandwidth,
delay

Internet transport
service model

connection-oriented,
reliable: TCP
unreliable, datagrams: UDP

Our study of network apps now complete!
specific protocols:

HTTP
SMTP, POP, IMAP
DNS

socket programming

2: Application Layer 116

Chapter 2: Summary

typical request/reply
message exchange:

client requests info or
service
server responds with
data, status code

message formats:
headers: fields giving
info about data
data: info being
communicated

Most importantly: learned about protocols

control vs. data msgs
in-band, out-of-band

centralized vs. decentralized
stateless vs. stateful
reliable vs. unreliable msg
transfer
“complexity at network
edge”

