ECE 499/599 Data Compression/Information Theory Spring 06

Dr. Thinh Nguyen

Homework 1 Solution

Due 04/18/06 at the beginning of the class

Problem 1:

a) 2 bits.
b) 1.75 bits.
c) 1.739818 bits.

Problem 2: Do problem 4 in chapter 2 of the textbook.
First show that $f(x)=-x \log x-(a-x) \log (a-x)$ is maximum for $x=a / 2$, then use this fact to prove whether $\mathrm{H}(\mathrm{Q})$ is greater or smaller than $\mathrm{H}(\mathrm{P})$. This can be done by taking first derivative to estabilish a local extreme point at a/2. Then, taking the second derivative showing f ' $(a / 2)>0$, hence $f(a / 2)$ is maximum. We then proceed as follows.

$$
\begin{aligned}
H_{Q}-H_{P} & =-\sum_{i=1}^{m} q_{i} \log _{2} q_{i}+\sum_{i=1}^{m} p_{i} \log _{2} p_{i} \\
& =-q_{j-1} \log _{2} q_{j-1}-q_{j} \log _{2} q_{j}+p_{j-1} \log _{2} p_{j-1}+p_{j} \log _{2} p_{j}
\end{aligned}
$$

Given a function

$$
f_{a}(x)=-x \log x-(a-x) \log (a-x)
$$

we can easily show that $f_{a}(x)$ is maximum for $x=\frac{a}{2}$ Let

$$
p_{j-1}+p_{j}=c
$$

then

$$
q_{j-1}=q_{j}=\frac{c}{2}
$$

Then

$$
\begin{aligned}
H_{Q}-H_{P} & =-\frac{c}{2} \log _{2} \frac{c}{2}-\frac{c}{2} \log _{2} \frac{c}{2}+p_{j} \log _{2} p_{j}+\left(c-p_{j}\right) \log _{2}\left(c-p_{j}\right) \\
& =f_{c}\left(\frac{c}{2}\right)-f_{c}\left(p_{j}\right) \\
& \geq 0
\end{aligned}
$$

Therefore $H_{Q} \geq H_{P}$.

Another neat proof:

We know the highest entropy is obtained when all the probabilities are equal to each other. In this case, we only need to consider the amount of information of $\{\mathrm{qj}-1, \mathrm{qj}\}$ and $\{\mathrm{pj}-1, \mathrm{pj}\}$ since the probabilities of other symbols are identical for p and q . Since $\mathrm{qj}-1=$ qj, $\{\mathrm{qj}-1, \mathrm{qj}\}$ must be maximum. Since entropy is additive (with statistical weight) , we have $\mathrm{H}(\mathrm{Q})>\mathrm{H}(\mathrm{P})$.

Note: I will give bonus points for anyone who comes up with elegant proof like one above.

Problem 3: For a certain exam, 75% of the participating students in the exam pass, 25% do not pass. Of the students who have passed, 10% own a car. Of the students who have failed, 50% own a car.
a) How much information does one receive if one is told the result of a student's exam?

There are four possible situations, passing, not passing, owning a car, not owning a car, are denoted by s, s', c and c', repsectively. When the result of an exam is announced, this delivers an amount of information
$H($ result $)=-p(s) \log p(s)-p\left(s^{\prime}\right) \log p\left(s^{\prime}\right)=-(3 / 4) \log (3 / 4)-(1 / 4) \log (1 / 4)=0.81$ bit
b) How much information is contained in the announcement of a student who has passed that he does or does not have a car?

If a student, who has passed, announces whether or not he has a car, then there are two possibilities c and c' with the given probabilities. Thus,
$\mathrm{H}($ car owner $/$ passed $)=-\mathrm{p}(\mathrm{c} \mid \mathrm{s}) \log [\mathrm{p}(\mathrm{c} \mid \mathrm{s})]-\mathrm{p}\left(\mathrm{c}^{\prime} \mid \mathrm{s}\right) \log \left[\mathrm{p}\left(\mathrm{c}^{\prime} \mid \mathrm{s}\right)\right]=$
$-(1 / 10) \log (1 / 10)-(9 / 10) \log (9 / 10)=0.47$ bits
c) How much uncertainty remains concerning the car ownership of a student if he announces the result of his exam?

There are four possibilities in total. The corresponding probabilities are
$p(s, c)=(3 / 4)(1 / 10)=3 / 40$
$\mathrm{p}\left(\mathrm{s}, \mathrm{c}^{\prime}\right)=(3 / 4)(9 / 10)=27 / 40$
$p\left(s^{\prime}, c\right)=(1 / 4)(1 / 2)=1 / 8$
$p\left(s^{\prime}, c^{\prime}\right)=(1 / 4)(1 / 2)=1 / 8$
The amount of information that is delivered by announcing the result of the exam as well as possible car ownership is then
$H($ car ownership, result $)=(-3 / 40) \log (3 / 40)-(27 / 40) \log (27 / 40)-2(1 / 8) \log (1 / 8)=$ 1.41 bits

The remaining uncertainty about car ownership, if the result of the exam is given, is then
$\mathrm{H}($ car ownership/result $)=\mathrm{H}($ char ownership, result $)-\mathrm{H}($ result $)=1.41-.81=0.6$ bits.

One can also obtain this result by calculating the conditional amount of information directly as per the definition for the conditional amount of information.

