
 
 

ECE 499/599 Data Compression/Information Theory 
Spring 06 

 
Dr. Thinh Nguyen 

 
Homework 3 

Due 05/04/06 at the beginning of the class 
 
 

Problem 1:  For an alphabet A = {a1, a2, a3} with probabilities P(a1) = 0.6, P(a2) = 0.3, and 
P(a3) = 0.1.   (3pts) 

 
(a) Design a 3-bit Tunstall code for this alphabet. 
(b) Find the redundancy (code rate – entropy rate). 
 
 

(a) Tunstall coding for the alphabet A = {a1, a2, a3} with P(a1) = 0.6, P(a2) = 0.3, and  
P(a3) = 0.1. 
Choose m = 3, 
 

Sequences Probability Codeword 
a2 0.3 000 
a3 0.1 001 
a1a2 0.18 010 
a1a3 0.06 011 
a1a1a1 0.216 100 
a1a1a2 0.108 101 
a1a1a3 0.036 110 

 
(b)  

Code Rate = 
5306.1

3*0.036+3*0.108+3*0.216+2*0.06+2*0.18+1*0.1+1*0.3
3

=
 

Entropy Rate = 2955.1log0.1)*0.1+log0.3*0.3+log0.6*(0.6- =  
Redundancy = 1.5306-1.2955 = 0.2351 

 
Problem 2:  Suppose you saw this one game in which, a guy repeatedly tosses a fair coin (at least 
he claims that it is a fair coin, and hence with probability P(head) = 1/2) until either (a) the 
outcome is head or (b) the number of consecutive tail outcomes reaches 4.  (8pts) 

 
(a) Code these outcomes using Golomb code with m = 4.  What is average code rate?  (note 

that the uncoded outcomes have the forms: 1, 01, 001, 0001, 0000, with 1 representing 
head and 0 representing tail.) 

(Assume bit “1” represents head and “0” for tail. Then: 
 

Sequences Probability Codeword



0000 1/16 1 
0001 1/16 011 
001 1/8 010 
01 1/4 001 
1 1/2 000 

 

Average code rate = ( ) 533.1
15
23

1*2/12*4/13*8/14*16/14*16/1
3*1/21/41/81/161*1/16

==
++++

++++  

 
(b) Being a very observant person, you notice that the guy is actually cheating his audiences 
by using a biased coin, in which the probability of head P(head) is not 1/2.    Using m = 4, can 
you derive the equation for the average Golomb code rate as a function of P(head)? 
 
With P(head) = p and P(tail) = 1-p, thus: 
 

Sequences Probability Codeword
0000 (1-p)4 1 
0001 p (1-p)3 011 
001 p(1-p)2 010 
01 p(1-p) 001 
1 p 000 
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(c)  If you are going to code these outcomes using runlength code, what is the average code 
rate as a function of probability P(head), assuming you always code the run-lengths of tails using 
2-bit fixed-lengh code?  
 
With P(head) = p and P(tail) = 1-p 
Code the run-length of 0’s using 2-bit run-length coding: 
  

Sequences Probability Codeword 
0000 (1-p)4 1101 



0001 p(1-p)3 1100 
001 p(1-p)2 10 
01 p(1-p) 01 
1 p 00 
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Problem 3:  Do problem 7 in chapter 4.  This problem refers to integer arithmetic coding with 
scaling.  Show steps by steps during encoding and decoding. (8pts)  
 
 
(a) 
Let: 
 1n : the number of times that symbol a occurs 

 2n : the number of times that symbol b occurs 

 3n : the number of times that symbol c occurs 

 And, ii nnnC +++= ...21  

Then, 
100;75;37;0

25;38;37

3210

321

====
===

CCCC
nnn

 

Thus, the total interval range has to be greater than 400. 
So the required word length is: m = 9 
 
(b) Using m = 9, encode the input sequence abacabb 
 

Step Symbol L, R R-
L+1 

C Output
Bit 

Initial  

111111111511
0000000000

0

0

==
==

R
L

 
512 0  

1 a 
0000000000

100
051201 ==⎥⎦
⎥

⎢⎣
⎢ ×

+=L  

0101111001881
100

3751201 ==−⎥⎦
⎥

⎢⎣
⎢ ×

+=R  

Fall in lower half , output bit 0 and shift left: 
0000000001 =L  

3771011110011 ==R  

189 
 
 
 
 
 
378 

0 
 
 
 
 
 
 

 
 
 
 
 

0 

2 b 
010001011139

100
37378

12 ==⎥⎦
⎥

⎢⎣
⎢ ×

+= LL  
144 
 

0 
 

 



1000110102821
100

75378
12 ==−⎥⎦

⎥
⎢⎣
⎢ ×

+= LR  

Fall in middle, update C and shift left: 
L2 = 000010110 = 22 
R2 = 100110101 = 309 

 
 
 
 
288 

 
 
 
 

1 

3 a L3 = 000010110 =22 
R3 = 001111111 = 127 

Fall in lower half , output bit 0 and (C = 1) bit 1, 
then shift left: 

L3 = 000101100 = 44 
R3 = 011111111 = 255 

Fall in lower half , output bit 0 and shift left: 
L3 = 001011000 = 88 
R3 = 111111111 = 511 

106 
 
 
 
212 
 
 
424 

1 
 
 

0 

 
 

01 
 
 
 

0 

4 c L4 = 110010110 = 406 
R4 = 111111111 = 511 

Fall in upper half , output bit 1 and shift left: 
L4 = 100101100 = 300 
R4 = 111111111 = 511 

Fall in upper half , output bit 1 and shift left: 
L4 = 001011000 = 88 
R4 = 111111111 = 511 

106 
 
 
212 
 
 
424 

 
 
 

 
 

1 
 
 

1 

5 a L5 = 001011000 = 88 
R5 = 011110011 = 243 

Fall in lower half , output bit 0 and shift left: 
L5 = 010110000 = 176 
R5 = 111100111 = 487 

156 
 
 
312 

  
 

0 

6 b L6 = 100100011 = 291 
R6 = 110011001 = 409 

Fall in upper half, output bit 1 and shift left: 
L6 = 001000110 = 70 
R6 = 100110011 = 307 

119 
 
 
238 

  
 

1 

7 b L7 = 010011110 = 158 
R7 = 011110111 = 247 

Fall in lower half, output bit 0 and shift left: 
L7 = 100111100 = 316 
R7 = 111101111 = 495 

Fall in upper half, output bit 1 and shift left: 
L7 = 001111000 = 120 
R7 = 111011111 = 479 

90 
 
 
180 
 
 
360 

  
 

0 
 
 

1 

 



To this point, we generate the output binary sequence 0 0 1 0 1 1 0 1 0 1. We want to terminate 
the encoding at this point, so we send the current tag (that is L7 = 001111000). Thus the final 
transmitted sequence is 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 
 
(c) Decoding sequence 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 

• Using the same word length with the encoder, we form tag T: 
  T = 001011010 = 90 
We initialize the upper and lower limit as: 

 
111111111511

0000000000

0

0

==
==

R
L

 

Then we compute: 

 
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

=17 

Since 0<17<37, we decode symbol a 
• Update the upper and lower limit as: 

R = 010111100 = 188 
L = 000000000 =  0 

Fall in the lower half, shift left: 
L = 000000000 =   0 
R = 101111001 = 377 
T = 010110101 = 181 

Compute: 

  
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

=    48 

Since 37< 48 < 75, we decode symbol b 
• Update the upper and lower limit as: 

R = 100011010 = 282 
L = 010001011 = 139 

Fall in the middle, shift left and complement the MSB bit: 
L = 000010110 =   22 
R = 100110101 = 309 

  T = 001101010 = 106 
Compute: 

  
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

=    29 

Since 0 < 29 < 37, we decode symbol a 
• Update the upper and lower limit as: 

R = 001111111 = 127 
L = 000010110 = 22 

Fall in the lower half, shift left: 



L = 000101100 =   44 
R = 011111111 = 255 
T = 011010100 = 212 

Fall in the lower half, shift left: 
L = 001011000 =   88 
R = 111111111 = 511 

  T = 110101001 = 425 
Compute: 

  
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 79 

Since 75 < 79 < 100, we decode symbol c 
• Update the upper and lower limit as: 

R = 111111111 = 511 
L = 110010110 = 406 

Fall in the upper half, shift left: 
L = 100101100 =  300 
R = 111111111 = 511 
T = 101010011 = 339 

Fall in the upper half, shift left: 
L = 001011000 = 88 
R = 111111111 = 511 
T = 010100111 = 167 

Compute: 

  
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 18 

Since 0 < 18 < 37, we decode symbol a 
• Update the upper and lower limit as: 

R = 011110011 = 243 
  L = 001011000 = 88 

Fall in the lower half, shift left: 
L = 010110000 = 176 
R = 111100111 = 487 

  T = 101001111 = 335 
Compute: 

  
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 51 

Since 37 < 51 < 75, we decode symbol b 
• Update the upper and lower limit as: 

R = 110011001 = 409 
  L = 100100011 = 291 

Fall in the upper half, shift left: 



L = 001000110 = 70 
  R = 100110011 = 307 

T = 010011110 = 158 
Compute: 

  
( )

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 37 

Since 37 <= 37 < 75, we decode symbol b 
Thus, the decode sequence is a b a c a b b 

 
 
 
Problem 4: (bonus) Show that the remainder bits in Golomb code can be viewed as a prefix 
code (1pt). 
 

 
 
 
The proof is based on the fact that if we can construct a tree that represents the code for the 
remainder then we prove that the code is a prefix code.  
 
Note that a leaf of a full binary tree of L level is basically the traditional binary encoding using L 
bits.  Suppose floor[log(m)] = k and therefore ceil(log(m)] = k + 1. 
 
Clearly, 2^k <= m <= 2^(k+1).  Now 2^(k+1) – m  <= 2^k.   So, we can remove all the children 
belonging to 2^(k+1) – m nodes out of 2^k at the k level of the tree from left to right.   So the tree 
now is unbalanced with the left side is shorter than right side.  You can see that the leaf nodes of 
the shorter branches are precisely the k-bit binary coding for the first 2^(k+1) – m values in the 
the remainder.  The number of leaf nodes remains in the (k+1) level is now 2^(k+1) – 2(2^(k+1) – 
m) = 2m-2^(k+1)  
The number of values remains in the remainder is r – 2^(k+1) + m which is smaller than 2m-
2^(k+1) since r < m.  Hence we can assign the rest of the values in the remainder with the codes 
represented by the leaf nodes in the k+1 level.  This is precisely the binary representation of r 
+2^{k+1} – m. 

 
    

m = 5 
r = 6 

Removing leaf 
nodes  8-5 = 3 



 
 


