

ECE 499/599 Data Compression/Information Theory
Spring 06

Dr. Thinh Nguyen

Homework 3

Due 05/04/06 at the beginning of the class

Problem 1: For an alphabet A = {a1, a2, a3} with probabilities P(a1) = 0.6, P(a2) = 0.3, and
P(a3) = 0.1. (3pts)

(a) Design a 3-bit Tunstall code for this alphabet.
(b) Find the redundancy (code rate – entropy rate).

(a) Tunstall coding for the alphabet A = {a1, a2, a3} with P(a1) = 0.6, P(a2) = 0.3, and
P(a3) = 0.1.
Choose m = 3,

Sequences Probability Codeword
a2 0.3 000
a3 0.1 001
a1a2 0.18 010
a1a3 0.06 011
a1a1a1 0.216 100
a1a1a2 0.108 101
a1a1a3 0.036 110

(b)

Code Rate =
5306.1

3*0.036+3*0.108+3*0.216+2*0.06+2*0.18+1*0.1+1*0.3
3

=

Entropy Rate = 2955.1log0.1)*0.1+log0.3*0.3+log0.6*(0.6- =
Redundancy = 1.5306-1.2955 = 0.2351

Problem 2: Suppose you saw this one game in which, a guy repeatedly tosses a fair coin (at least
he claims that it is a fair coin, and hence with probability P(head) = 1/2) until either (a) the
outcome is head or (b) the number of consecutive tail outcomes reaches 4. (8pts)

(a) Code these outcomes using Golomb code with m = 4. What is average code rate? (note

that the uncoded outcomes have the forms: 1, 01, 001, 0001, 0000, with 1 representing
head and 0 representing tail.)

(Assume bit “1” represents head and “0” for tail. Then:

Sequences Probability Codeword

0000 1/16 1
0001 1/16 011
001 1/8 010
01 1/4 001
1 1/2 000

Average code rate = () 533.1
15
23

1*2/12*4/13*8/14*16/14*16/1
3*1/21/41/81/161*1/16

==
++++

++++

(b) Being a very observant person, you notice that the guy is actually cheating his audiences
by using a biased coin, in which the probability of head P(head) is not 1/2. Using m = 4, can
you derive the equation for the average Golomb code rate as a function of P(head)?

With P(head) = p and P(tail) = 1-p, thus:

Sequences Probability Codeword
0000 (1-p)4 1
0001 p (1-p)3 011
001 p(1-p)2 010
01 p(1-p) 001
1 p 000

() () ()
() () ()

()()
() () ()

() () () pppppppp
p

pppppppp
pp

pppppppp
pppppppp

+−+−+−+−
−−

=

+−+−+−+−
−−+−

=

+−+−+−+−
+−+−+−+−

=

121314)1(4
)1(23

121314)1(4
113)1(

121314)1(4
3131313)1(ratecodeAverage

234

4

234

44

234

234

(c) If you are going to code these outcomes using runlength code, what is the average code
rate as a function of probability P(head), assuming you always code the run-lengths of tails using
2-bit fixed-lengh code?

With P(head) = p and P(tail) = 1-p
Code the run-length of 0’s using 2-bit run-length coding:

Sequences Probability Codeword
0000 (1-p)4 1101

0001 p(1-p)3 1100
001 p(1-p)2 10
01 p(1-p) 01
1 p 00

() () ()
() () () pppppppp

pppppppp
+−+−+−+−
+−+−+−+−

=
121314)1(4

2121214)1(4 ratecodeAverage 234

234

Problem 3: Do problem 7 in chapter 4. This problem refers to integer arithmetic coding with
scaling. Show steps by steps during encoding and decoding. (8pts)

(a)
Let:
 1n : the number of times that symbol a occurs

 2n : the number of times that symbol b occurs

 3n : the number of times that symbol c occurs

 And, ii nnnC +++= ...21

Then,
100;75;37;0

25;38;37

3210

321

====
===

CCCC
nnn

Thus, the total interval range has to be greater than 400.
So the required word length is: m = 9

(b) Using m = 9, encode the input sequence abacabb

Step Symbol L, R R-
L+1

C Output
Bit

Initial

111111111511
0000000000

0

0

==
==

R
L

512 0

1 a
0000000000

100
051201 ==⎥⎦
⎥

⎢⎣
⎢ ×

+=L

0101111001881
100

3751201 ==−⎥⎦
⎥

⎢⎣
⎢ ×

+=R

Fall in lower half , output bit 0 and shift left:
0000000001 =L

3771011110011 ==R

189

378

0

0

2 b
010001011139

100
37378

12 ==⎥⎦
⎥

⎢⎣
⎢ ×

+= LL
144

0

1000110102821
100

75378
12 ==−⎥⎦

⎥
⎢⎣
⎢ ×

+= LR

Fall in middle, update C and shift left:
L2 = 000010110 = 22
R2 = 100110101 = 309

288

1

3 a L3 = 000010110 =22
R3 = 001111111 = 127

Fall in lower half , output bit 0 and (C = 1) bit 1,
then shift left:

L3 = 000101100 = 44
R3 = 011111111 = 255

Fall in lower half , output bit 0 and shift left:
L3 = 001011000 = 88
R3 = 111111111 = 511

106

212

424

1

0

01

0

4 c L4 = 110010110 = 406
R4 = 111111111 = 511

Fall in upper half , output bit 1 and shift left:
L4 = 100101100 = 300
R4 = 111111111 = 511

Fall in upper half , output bit 1 and shift left:
L4 = 001011000 = 88
R4 = 111111111 = 511

106

212

424

1

1

5 a L5 = 001011000 = 88
R5 = 011110011 = 243

Fall in lower half , output bit 0 and shift left:
L5 = 010110000 = 176
R5 = 111100111 = 487

156

312

0

6 b L6 = 100100011 = 291
R6 = 110011001 = 409

Fall in upper half, output bit 1 and shift left:
L6 = 001000110 = 70
R6 = 100110011 = 307

119

238

1

7 b L7 = 010011110 = 158
R7 = 011110111 = 247

Fall in lower half, output bit 0 and shift left:
L7 = 100111100 = 316
R7 = 111101111 = 495

Fall in upper half, output bit 1 and shift left:
L7 = 001111000 = 120
R7 = 111011111 = 479

90

180

360

0

1

To this point, we generate the output binary sequence 0 0 1 0 1 1 0 1 0 1. We want to terminate
the encoding at this point, so we send the current tag (that is L7 = 001111000). Thus the final
transmitted sequence is 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0

(c) Decoding sequence 0 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0

• Using the same word length with the encoder, we form tag T:
 T = 001011010 = 90
We initialize the upper and lower limit as:

111111111511

0000000000

0

0

==
==

R
L

Then we compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

=17

Since 0<17<37, we decode symbol a
• Update the upper and lower limit as:

R = 010111100 = 188
L = 000000000 = 0

Fall in the lower half, shift left:
L = 000000000 = 0
R = 101111001 = 377
T = 010110101 = 181

Compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

= 48

Since 37< 48 < 75, we decode symbol b
• Update the upper and lower limit as:

R = 100011010 = 282
L = 010001011 = 139

Fall in the middle, shift left and complement the MSB bit:
L = 000010110 = 22
R = 100110101 = 309

 T = 001101010 = 106
Compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

= 29

Since 0 < 29 < 37, we decode symbol a
• Update the upper and lower limit as:

R = 001111111 = 127
L = 000010110 = 22

Fall in the lower half, shift left:

L = 000101100 = 44
R = 011111111 = 255
T = 011010100 = 212

Fall in the lower half, shift left:
L = 001011000 = 88
R = 111111111 = 511

 T = 110101001 = 425
Compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 79

Since 75 < 79 < 100, we decode symbol c
• Update the upper and lower limit as:

R = 111111111 = 511
L = 110010110 = 406

Fall in the upper half, shift left:
L = 100101100 = 300
R = 111111111 = 511
T = 101010011 = 339

Fall in the upper half, shift left:
L = 001011000 = 88
R = 111111111 = 511
T = 010100111 = 167

Compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 18

Since 0 < 18 < 37, we decode symbol a
• Update the upper and lower limit as:

R = 011110011 = 243
 L = 001011000 = 88

Fall in the lower half, shift left:
L = 010110000 = 176
R = 111100111 = 487

 T = 101001111 = 335
Compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 51

Since 37 < 51 < 75, we decode symbol b
• Update the upper and lower limit as:

R = 110011001 = 409
 L = 100100011 = 291

Fall in the upper half, shift left:

L = 001000110 = 70
 R = 100110011 = 307

T = 010011110 = 158
Compute:

()

⎥⎦
⎥

⎢⎣
⎢

+−
−×+−

1
11

LR
TotalLT

 = 37

Since 37 <= 37 < 75, we decode symbol b
Thus, the decode sequence is a b a c a b b

Problem 4: (bonus) Show that the remainder bits in Golomb code can be viewed as a prefix
code (1pt).

The proof is based on the fact that if we can construct a tree that represents the code for the
remainder then we prove that the code is a prefix code.

Note that a leaf of a full binary tree of L level is basically the traditional binary encoding using L
bits. Suppose floor[log(m)] = k and therefore ceil(log(m)] = k + 1.

Clearly, 2^k <= m <= 2^(k+1). Now 2^(k+1) – m <= 2^k. So, we can remove all the children
belonging to 2^(k+1) – m nodes out of 2^k at the k level of the tree from left to right. So the tree
now is unbalanced with the left side is shorter than right side. You can see that the leaf nodes of
the shorter branches are precisely the k-bit binary coding for the first 2^(k+1) – m values in the
the remainder. The number of leaf nodes remains in the (k+1) level is now 2^(k+1) – 2(2^(k+1) –
m) = 2m-2^(k+1)
The number of values remains in the remainder is r – 2^(k+1) + m which is smaller than 2m-
2^(k+1) since r < m. Hence we can assign the rest of the values in the remainder with the codes
represented by the leaf nodes in the k+1 level. This is precisely the binary representation of r
+2^{k+1} – m.

m = 5
r = 6

Removing leaf
nodes 8-5 = 3

