Embedded Zerotree Wavelet EZW

Thinh Nguyen

Outline

- Introduction
- Concept of EZW
- Algorithm
- Examples

Introduction

Embedded Image coding using Zerotrees of Wavelet coefficients by J. M. Shapiro.

Uses "parent-child" dependencies between subband coefficients at the same spatial location.

Bit-plane coding: enables an embedded bitstream wrt distortion

Concepts of EZW

- (1) a discrete wavelet transform or hierarchical subband decomposition,
- (2) prediction of the absence of significant information across scales by exploiting the self-similarity inherent in images,
- (3) entropy-coded successiveapproximation quantization, and
- (4) universal lossless data compression which is achieved via adaptive arithmetic coding

FIGURE 14.15 A 10-band wavelet decomposition.

How does it work?

Scanning a zerotree

Terminology

- sp: Given a threshold T, if a given coefficient has a magnitude greater than T, it is called a significant coefficient at level T
- sn: negative significant
- **zr**: If the magnitude of the coefficient is less than T (it is insignificant), and all its descendants have magnitudes less than T, then the coefficient is called a **zerotree root**.
- iz: it might happen that the coefficient itself is less than T but some of its descendants have a value greater than T. Such a coefficient is called an *isolated zero*.

Algorithm Chart:

EZW Example (1): seven-level decomposition shown below to demonstrate the various steps of EZW

26	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

Initial threshold

$$T_0 = 2^{\lfloor \log_2 26 \rfloor} = 16$$

8 bits from bit budget

EZW Example (1): seven-level decomposition shown below to demonstrate the various steps of EZW

□ 26 > 16 → sp 6 < 16 → descendants < 16 \rightarrow Zr \Box -7 < 16 \rightarrow descendants < 16 \rightarrow Zr \Box 7 < 16 \rightarrow descendants < 16 \rightarrow Zr Iabels to be transmitted sp zr zr zr

26	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

Initial threshold

$$T_0 = 2^{\lfloor \log_2 26 \rfloor} = 16$$

8 bits from bit budget

L $S = \{26\}$

The significant coefficient reconstructed value

1.5To = 24

reconstructed bands

24	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

- **L** $S = \{26\}$
- The significant coefficient
 1.5To = 24
- reconstructed bands

- Using a 2-level quantizer with reconstruction levels ±To/4, correction term of 4
- Reconstruction

$$24 + 4 = 28$$

 Transmitting the correction term costs a single bit.

28	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

24	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

D $T1 = \frac{1}{2} * T0 = \frac{1}{2} * 16 = 8$ \Box 6 < 8 \rightarrow descendants > 8 \rightarrow iz □ -7 < 8 → descendants < 8 \rightarrow zr \Box 7 < 8 \rightarrow descendants < 8 \rightarrow zr **1**3 no descendants $> 8 \rightarrow sp$ **1** 10 no descendants $> 8 \rightarrow sp$ **G** no descendants $< 8 \rightarrow iz$ **4** no descendants $< 8 \rightarrow iz$

*	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

T1 = ½ * T0 = ½ * 16 = 8
6 < 8 →
descendants > 8 → iz
-7 < 8 →
descendants < 8 → zr
7 < 8 →
descendants < 8 → zr
13 no descendants > 8 → sp
10 no descendants > 8 → sp
6 no descendants < 8 → iz

4 no descendants $< 8 \rightarrow iz$

*	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

- labels to be transmitted iz zr zr sp sp iz iz
- Requires 14 bits
- Total bits = 9 + 14 = 23

- The significant coefficient
 1.5T1 = 1.5 * 8 = 12
 Ls = {26, 13, 10}
- reconstructed bands

28	0	12	12
0	0	0	0
0	0	0	0
0	0	0	0

The significant coefficient

 1.5T1 = 1.5 * 8 = 12
 Ls = {26, 13, 10}
 reconstructed bands

28	0	12	12
0	0	0	0
0	0	0	0
0	0	0	0

with a 2-level'quantizer with reconstruction levels $\pm T1 / 4 = \pm 2$

- □ 26 28 = -2 *Correction term* = 2
- □ 13 12 = 1 *Correction term* = 2

- Each correction requires a single bit, the total bits 23 + 3 = 26.
- Reconstruction

$T_2 = \frac{1}{2} * T_1 = \frac{1}{2} * 8$
= 4
6 > 4 → sp
-7 > 4 → sn
7 > 4 → sp
6 > 4 → sp
4 = 4 → sp
4 = 4 → sp
-4 = 4 → sn
2, -2 are coded as iz
$4 = 4 \rightarrow sp$
-3, -2, 0 are iz

*	6	*	*
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

$T_2 = \frac{1}{2}$	*	<i>T</i> 1	—	1/2	* 8	3
= 4						

 $\Box \quad 6 > 4 \rightarrow sp$

$$\Box \quad 4 = 4 \rightarrow sp$$

$$\Box |-4| = 4 \rightarrow sn$$

$$\Box 4 = 4 \rightarrow sp$$

-3, -2, 0 are iz

*	6	*	*
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

sp sn sp sp sp sp sn iz iz sp iz iz iz

Requires 26 bits

Total bits = 26 + 26 = 52

*	6	*	*
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

- The significant coefficient 1.5T2 = 1.5 * 4 = 6
- $Ls = \{ 26, 13, 10, 6, -7, 7, 6, 4, 4, -4, 4 \}$
- reconstructed bands

*	6	*	*
-6	6	6	6
6	-6	6	-3
2	-2	-2	0

26	6	14	10
-6	6	6	6
6	-6	6	0
0	0	0	0

27	7	13	11
-7	7	7	5
5	-5	5	0
0	0	0	0