Embedded Zerotree Wavelet EZW

Thinh Nguyen

Outline

- Introduction
- Concept of EZW
- Algorithm
- Examples

Introduction

- Embedded Image coding using Zerotrees of Wavelet coefficients by J. M. Shapiro.
- Uses "parent-child" dependencies between subband coefficients at the same spatial location.
- Bit-plane coding: enables an embedded bitstream wrt distortion

Concepts of EZW

- (1) a discrete wavelet transform or hierarchical subband decomposition,
\square (2) prediction of the absence of significant information across scales by exploiting the self-similarity inherent in images,
\square (3) entropy-coded successiveapproximation quantization, and
\square (4) universal lossless data compression which is achieved via adaptive arithmetic coding

FIGURE 14.16 Data structure used in the EZW coder.

How does it work?

Scanning a zerotree

Terminology

- sp: Given a threshold T, if a given coefficient has a magnitude greater than T, it is called a significant coefficient at level T
\square sn: negative signigicant
- zr: If the magnitude of the coefficient is less than T (it is insignificant), and all its descendants have magnitudes less than T, then the coefficient is called a zerotree root.
- iz: it might happen that the coefficient itself is less than T but some of its descendants have a value greater than T. Such a coefficient is called an isolated zero.

Algorithm Chart:

EZW Example (1): seven-level decomposition shown below to demonstrate the various steps of EZW

26	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

- Initial threshold

$$
T_{0}=2^{\left\lfloor\log _{2} 26\right\rfloor}=16
$$

- 8 bits from bit budget

EZW Example (1): seven-level decomposition shown below to

 demonstrate the various steps of EZW- $26>16 \rightarrow \mathrm{sp}$
- $6<16 \rightarrow$
descendants $<16 \rightarrow \mathrm{zr}$
ㅁ $-7<16 \rightarrow$
descendants $<16 \rightarrow \mathrm{zr}$
- $7<16 \rightarrow$
descendants $<16 \rightarrow$ zr
- labels to be transmitted sp zr zr zr

26	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

- Initial threshold

$$
T_{0}=2^{\left\lfloor\log _{2} 26\right\rfloor}=16
$$

- 8 bits from bit budget

EZW Example (1): Subordinate Pass

ㅁ $\mathrm{Ls}=\{26\}$

- The significant coefficient reconstructed value
$1.5 \mathrm{To}=24$
- reconstructed bands

24	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

EZW Example (1): Subordinate Pass

ㅁ $L s=\{26\}$

- The significant coefficient

$$
1.5 \mathrm{To}=24
$$

- reconstructed bands

24	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

口 Difference 26-24

- Using a 2-level quantizer with reconstruction levels $\pm \mathrm{To} / 4$, correction term of 4
- Reconstruction

$$
24+4=28
$$

- Transmitting the correction term costs a single bit.

28	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

EZW Example (1):

ロ $\mathrm{Tl}=1 / 2 * \mathrm{~T} 0=1 / 2 * 16=8$

- $6<8 \rightarrow$
descendants $>8 \rightarrow$ iz
- $-7<8 \rightarrow$
descendants $<8 \rightarrow$ Zr
口 $7<8 \rightarrow$
descendants $<8 \rightarrow$ Zr

$*$	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

- 13 no descendants $>8 \rightarrow \mathrm{sp}$
- 10 no descendants $>8 \rightarrow \mathrm{sp}$

ㅁ 6 no descendants $<8 \rightarrow \mathrm{iz}$

- 4 no descendants $<8 \rightarrow \mathrm{iz}$

EZW Example (1):

ㅁ $\mathrm{Tl}=1 / 2 * \mathrm{~T} 0=1 / 2 * 16=8$

- $6<8 \rightarrow$
descendants $>8 \rightarrow \mathrm{iz}$
- $-7<8 \rightarrow$
descendants $<8 \rightarrow \mathrm{Zr}$
- $7<8 \rightarrow$
descendants $<8 \rightarrow$ zr
- 13 no descendants $>8 \rightarrow \mathrm{sp}$
- 10 no descendants $>8 \rightarrow \mathrm{sp}$
- 6 no descendants $<8 \rightarrow \mathrm{iz}$
- 4 no descendants $<8 \rightarrow$ iz

$*$	6	13	10
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

- labels to be transmitted
iz zr zr sp sp iz iz
- Requires 14 bits
- Total bits $=9+14=$ 23

EZWW Example (1): Subordinate Pass

- The significant coefficient
$1.5 \mathrm{~T} 1=1.5 * 8=12$
ㅁ $\mathrm{Ls}=\{26,13,10\}$
- reconstructed bands

28	0	12	12
0	0	0	0
0	0	0	0
0	0	0	0

EZW Example (1): Subordinate Pass

- The significant coefficient $1.5 \mathrm{~T} 1=1.5 * 8=12$
ㅁ $L s=\{26,13,10\}$
- reconstructed bands

28	0	12	12
0	0	0	0
0	0	0	0
0	0	0	0

with a 2-level'quantizer with reconstruction levels \pm T1 / $4= \pm$ 2
ㅁ $26-28=-2$ Correction term =2

- $13-12=1$ Correction term $=2$
- $10-12=-2$ Correction term $=-2$
- Each correction requires a single bit, the total bits $23+3=26$.
- Reconstruction

26	0	14	10
0	0	0	0
0	0	0	0
0	0	0	0

EZW Example (1):

$$
\begin{array}{ll}
\square & T 2=1 / 2 * T 1=1 / 2 * 8 \\
& =4 \\
\square & 6>4 \rightarrow \mathrm{sp} \\
\square & |-7|>4 \rightarrow \mathrm{sn} \\
\square & 7>4 \rightarrow \mathrm{sp} \\
\square & 6>4 \rightarrow \mathrm{sp} \\
\square & 4=4 \rightarrow \mathrm{sp} \\
\square & 4=4 \rightarrow \text { sp } \\
\square & |-4|=4 \rightarrow \text { sn } \\
\square & 2,-2 \text { are coded as iz } \\
\square & 4=4 \rightarrow \text { sp } \\
\square & -3,-2,0 \text { are iz }
\end{array}
$$

$*$	6	$*$	$*$
-7	7	6	4
4	-4	4	-3
2	-2	-2	0

EZW Example (1):

```
- \(\mathrm{T}_{2}=1 / 2 * \mathrm{~T}_{1}=1 / 2 * 8\)
    \(=4\)
- \(6>4 \rightarrow \mathrm{sp}\)
ㅁ \(|-7|>4 \rightarrow\) sn
ㅁ \(7>4 \rightarrow \mathrm{sp}\)
- \(6=4 \rightarrow \mathrm{sp}\)
- \(4=4 \rightarrow \mathrm{sp}\)
- \(4=4 \rightarrow \mathrm{sp}\)
- |-4| \(=4 \rightarrow\) sn
- 2, - 2 are coded as iz
- \(4=4 \rightarrow \mathrm{sp}\)
■ -3, -2, 0 are iz
\begin{tabular}{|l|l|ll|}
\hline\(*\) & \(\mathbf{6}\) & \(*\) & \(*\) \\
\hline\(-\mathbf{7}\) & \(\mathbf{7}\) & \(\mathbf{6}\) & \(\mathbf{4}\) \\
\hline \(\mathbf{4}\) & \(\mathbf{- 4}\) & \(\mathbf{4}\) & -3 \\
2 & -2 & -2 & 0 \\
\hline
\end{tabular}
```

- appsn sp sp sp sp sn iz iz sp iz iz iz
- Requires 26 bits
- Total bits $=26+26=$ 52

EZW Example (1): Subordinate Pass

$*$	$\mathbf{6}$	$*$	$*$
$\mathbf{- 7}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{4}$
$\mathbf{4}$	$-\mathbf{4}$	$\mathbf{4}$	-3
2	-2	-2	0

- The significant coefficient

$$
\begin{aligned}
& 1.5 \mathrm{~T} 2=1.5 * 4=6 \\
& \text { ㄴs }=\{26,13,10,6,-7, \\
& 7,6,4,4,-4,4\}
\end{aligned}
$$

- reconstructed bands

$*$	6	$*$	$*$
-6	6	6	6
6	-6	6	-3
2	-2	-2	0

26	6	14	10
-6	6	6	6
6	-6	6	0
0	0	0	0

27	$\mathbf{7}$	13	11
$\mathbf{- 7}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{5}$
$\mathbf{5}$	$\mathbf{- 5}$	$\mathbf{5}$	0
0	0	0	0

