Lecture 8: Arithmetic Coding

Thinh Nguyen Oregon State University

Representation of Real Number in Binary

 Any real number x in the interval [0,1) can be represented in binary as .b₁b₂... where b_i is a bit.

Real-to-Binary Conversion Algorithm

```
\begin{array}{l} L := 0; \ R := 1; \ i := 1 \\ \ while \ x > L \ ^* \\ \ if \ x < (L + R)/2 \ then \ b_i := 0 \ ; \ R := (L + R)/2; \\ \ if \ x \ge (L + R)/2 \ then \ b_i := 1 \ ; \ L := (L + R)/2; \\ \ i := i + 1 \\ end\{while\} \\ b_i := 0 \ for \ all \ j \ge i \end{array}
```

* Invariant: x is always in the interval [L,R)

Arithmetic Coding

- Basic idea in arithmetic coding (Shannon-Fano-Elias):
 - Represent each string x of length n by a unique interval [L,R) in [0,1).
 - The width r-I of the interval [L,R) represents the probability of x occurring.
 - The interval [L,R) can itself be represented by any number, called a tag, within the half open interval.
 - The k significant bits of the tag .t₁t₂t₃... is the code of x. That is, . .t₁t₂t₃...t_k000... is in the interval [L,R).

Example of Arithmetic Coding

Some Tags are better than others

Examples

Code Generation from Tags

- If binary tag is $t_1t_2t_3... = (L+R)/2$ in [L,R) then we want to choose k to form the code $t_1t_2...t_k$.
- Short code:
 - choose k to be as small as possible so that $L \leq .t_1t_2...t_k000... < R.$
- Guaranteed code:
 - choose $k = \lceil \log_2 (1/(R-L)) \rceil + 1$
 - $L \leq .t_1t_2...t_kb_1b_2b_3... < R$ for any bits $b_1b_2b_3...$
 - for fixed length strings provides a good prefix code.
 - example: [.000000000..., .000010010...), tag = .000001001... Short code: 0 Guaranteed code: 000001

Guaranteed Code Example

Arithmetic Coding Algorithm

$$C(x_i) = P(x_0) + P(x_1) + ... P(x_i)$$

Initialize L: = 0 and R: = 1; For i = 1 to n do W:= R - L; $L: = L + W*C(x_{i-1});$ $R:= L + W*C(x_i);$ T: = (L+R)/2; Choose code for the tag

Example

 $P(A) = \frac{1}{4}, P(b) = \frac{1}{2}, P(c) = \frac{1}{4}$ C(a) = $\frac{1}{4}, C(b) = \frac{3}{4}, C(c) = 1$ abca

	symbol	W	L	R
			0	1
W := R - L; L := L + W C(x); R := L + W P(x)	а	1	0	1/4
	b	1/4	1/16	3/16
	С	1/8	5/32	6/32
	а	1/32	5/32	21/128

tag = (5/32 + 21/128)/2 = 41/256 = .001010010...L = .001010000... R = .001010100... code = 00101 prefix code = 00101001

Example

 $P(A) = \frac{1}{4}, P(b) = \frac{1}{2}, P(c) = \frac{1}{4}$ C(a) = $\frac{1}{4}, C(b) = \frac{3}{4}, C(c) = 1$ bbbb

	symbol	W	L	R 1
W := R - L; L := L + W C(x); R := L + W P(x)	b b b	1	0	1
	tag = L = R = code = prefix code	e =		

Decoding

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Decoding

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Decoding

- Assume the length is known to be 3.
- 0001 which converts to the tag .0001000...

Arithmetic Decoding Algorithm

```
C(x_i) = P(x_0) + P(x_1) + ... P(x_i)
```

Decode $b_1b_2...b_m$, the number of symbols in n

```
Initialize L:= 0 and R := 1;

t:= .b_1b_2...b_m

For i = 1 to n do

W := R-L;

Find j such that L + W*C(x<sub>j-1</sub>) <= t < L + W*C(x<sub>j</sub>)

Output x<sub>j</sub>;

L := L + W*C(x<sub>j-1</sub>);

R := L + W*C(x<sub>j</sub>);
```

$$P(a) = \frac{1}{4}, P(b) = \frac{1}{2}, P(c) = \frac{1}{4}$$

C(a) = 0, C(b) = 1/4, C(c) = 3/4

• 00101

tag = .00101000 = 5/32						
W	L	R	output			
	0	1	_			
1	0	1/4	а			
1/4	1/16	3/16	b			
1/8	5/32	6/32	С			
1/32	5/32	21/128	а			

Decoding Issues

- There are two ways for the decoder to know when to stop decoding.
 - 1. Transmit the length of the string
 - 2. Transmit a unique end of string symbol

Practical Arithmetic Coding

Scaling:

- By scaling we can keep L and R in a reasonable range of values so that W = R - L does not underflow.
- The code can be produced progressively, not at the end.
- Complicates decoding some.
- Integer arithmetic coding avoids floating point altogether.

Uniqueness and Efficiency of Arithmetic Code

Uniqueness:Proof:

Efficiency:Proof: