Lecture 8:
 Arithmetic Coding

Thinh Nguyen
Oregon State University

Representation of Real Number in Binary

- Any real number x in the interval $[0,1)$ can be represented in binary as.$b_{1} b_{2} \ldots$ where b_{i} is a bit.

Real-to-Binary Conversion Algorithm

```
\(\mathrm{L}:=0 ; \mathrm{R}:=1 ; \mathrm{i}:=1\)
while \(x>L\) *
    if \(x<(L+R) / 2\) then \(b_{i}:=0 ; R:=(L+R) / 2\);
    if \(x \geq(L+R) / 2\) then \(b_{i}:=1 ; L:=(L+R) / 2\);
    \(\mathrm{i}:=\mathrm{i}+1\)
end\{while\}
\(b_{j}:=0\) for all \(\mathrm{j} \geq \mathrm{i}\)
```

* Invariant: x is always in the interval [L,R)

Arithmetic Coding

- Basic idea in arithmetic coding (Shannon-FanoElias):
- Represent each string x of length n by a unique interval [L, R) in $[0,1)$.
- The width r-I of the interval [L,R) represents the probability of x occurring.
- The interval [L,R) can itself be represented by any number, called a tag, within the half open interval.
- The k significant bits of the tag.$t_{1} t_{2} t_{3} \ldots$ is the code of x. That is, . . $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots \mathrm{t}_{\mathrm{k}} 000 \ldots$ is in the interval $[\mathrm{L}, \mathrm{R})$.

Example of Arithmetic Coding

Some Tags are better than others

Alternative tag $=14 / 27=.100001001 \ldots$ code $=1$

Examples

- $P(a)=1 / 3, P(b)=2 / 3$.

$\operatorname{tag}=(L+R) / 2$	code	
$.000001001 \ldots$	0	aaa
$.000000110 \ldots$	0001	aab
$.001001100 \ldots \ldots$	001	aba
$.010000101 \ldots$	01	abb
$.010111110 \ldots$	01011	baa
$.011110111 \ldots$	0111	bab
$.101000010 \ldots$	101	bba
$.110110100 \ldots$	11	bbb
.95	bits/symbol	
.92 entropy lower bound		

Code Generation from Tags

- If binary tag is $\mathrm{t}_{1} \mathrm{t}_{2} \mathrm{t}_{3} \ldots=(\mathrm{L}+\mathrm{R}) / 2$ in $[\mathrm{L}, \mathrm{R})$ then we want to choose k to form the code $t_{1} t_{2} \ldots t_{k}$.
- Short code:
- choose k to be as small as possible so that $\mathrm{L} \leq \mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{k}} 000 \ldots<\mathrm{R}$.
- Guaranteed code:
- choose $\mathrm{k}=\left\lceil\log _{2}(1 /(\mathrm{R}-\mathrm{L}))\right\rceil+1$
$-L \leq t_{1} t_{2} \ldots t_{k} b_{1} b_{2} b_{3} \ldots<R$ for any bits $b_{1} b_{2} b_{3} \ldots$
- for fixed length strings provides a good prefix code.
- example: [.000000000.... .000010010...), tag $=.000001001 \ldots$ Short code: 0
Guaranteed code: 000001

Guaranteed Code Example

- $P(a)=1 / 3, P(b)=2 / 3$.

$$
\begin{array}{lll}
\operatorname{tag}=(L+R) / 2 & \text { short } & \text { Prefix } \\
\text { code } & \text { code }
\end{array}
$$

Arithmetic Coding Algorithm

$$
C\left(x_{i}\right)=P\left(x_{0}\right)+P\left(x_{1}\right)+\ldots P\left(x_{i}\right)
$$

I nitialize L: = 0 and R: = 1;
For $\mathbf{i}=1$ to \mathbf{n} do

$$
\begin{aligned}
& \mathbf{W}:=\mathbf{R}-\mathbf{L} ; \\
& \mathbf{L}:=\mathbf{L}+\mathbf{W} * \mathbf{C}\left(\mathrm{x}_{\mathrm{i}-1}\right) ; \\
& \mathbf{R}:=\mathbf{L}+\mathbf{W} * \mathbf{C}\left(\mathbf{x}_{\mathrm{i}}\right) ;
\end{aligned}
$$

T: = (L+R)/2;
Choose code for the tag

Example

$$
\begin{aligned}
& \mathbf{P}(\mathbf{A})=1 / 4, P(b)=1 / 2, P(C)=1 / 4 \\
& C(a)=1 / 4, C(b)=3 / 4, C(C)=1
\end{aligned}
$$

abca

$$
\begin{array}{cccc}
\text { symbol } & \text { W } & \mathrm{L} & \mathrm{R} \\
& & 0 & 1 \\
\mathrm{a} & 1 & 0 & 1 / 4 \\
\mathrm{~b} & 1 / 4 & 1 / 16 & 3 / 16 \\
\mathrm{c} & 1 / 8 & 5 / 32 & 6 / 32 \\
\mathrm{a} & 1 / 32 & 5 / 32 & 21 / 128 \\
\text { tag }=(5 / 32+21 / 128) / 2=41 / 256=.001010010 \ldots \\
\mathrm{~L}=.001010000 \ldots \\
\mathrm{R}=.001010100 \\
\text { code }=00101 \\
\text { prefix code }=00101001
\end{array}
$$

Example

$$
\begin{aligned}
& P(A)=1 / 4, P(b)=1 / 2, P(C)=1 / 4 \\
& C(a)=1 / 4, C(b)=3 / 4, C(c)=1
\end{aligned}
$$

bbbb

$$
\begin{array}{lcccc}
& \text { symbol } & \mathrm{W} & \mathrm{~L} & \mathrm{R} \\
\mathrm{~W}:=\mathrm{R}-\mathrm{L} ; & \mathrm{b} & 1 & 0 & 1 \\
\mathrm{~L}:=\mathrm{L}+\mathrm{W} \mathrm{C}(\mathrm{x}) ; & \mathrm{b} & & & \\
\mathrm{R}:=\mathrm{L}+\mathrm{W} P(\mathrm{x}) & \mathrm{b} & & & \\
& \mathrm{~b} & \\
& \\
& \\
\mathrm{tag}= \\
\mathrm{L}= \\
\mathrm{R}= \\
& \\
& \text { code }= \\
& \text { prefix code }=
\end{array}
$$

Decoding

- Assume the length is known to be 3 .
- 0001 which converts to the tag .0001000...

output a

Decoding

- Assume the length is known to be 3 .
- 0001 which converts to the tag .0001000...

output a

Decoding

- Assume the length is known to be 3 .
- 0001 which converts to the tag .0001000...

Arithmetic Decoding Algorithm

$$
C\left(x_{i}\right)=P\left(x_{0}\right)+P\left(x_{1}\right)+\ldots P\left(x_{i}\right)
$$

Decode $b_{1} b_{2} \ldots b_{m}$, the number of symbols in n

I nitialize L:= 0 and $R:=1$;
$t:=. b_{1} b_{2} \ldots b_{m}$
For $\mathbf{i}=1$ to \mathbf{n} do
W:= R-L;
Find j such that $\mathrm{L}+\mathrm{W}^{*} \mathbf{C}\left(\mathrm{X}_{\mathrm{j}-1}\right)<=\mathbf{t}<\mathbf{L}+\mathbf{W}^{*} \mathbf{C}\left(\mathrm{x}_{\mathrm{j}}\right)$
Output \mathbf{x}_{j};
$L:=L+W * C\left(x_{j-1}\right) ;$
$\mathbf{R}:=\mathbf{L}+\mathbf{W}^{*} \mathbf{C}\left(\mathbf{x}_{\mathrm{j}}\right)$;

Decoding Example

$$
\begin{aligned}
& P(a)=1 / 4, P(b)=1 / 2, P(c)=1 / 4 \\
& C(a)=0, C(b)=1 / 4, C(c)=3 / 4
\end{aligned}
$$

- 00101

$=$			
tag	$.00101000 \ldots=5 / 32$		
W	L	R	output
	0	1	
1	0	$1 / 4$	a
$1 / 4$	$1 / 16$	$3 / 16$	b
$1 / 8$	$5 / 32$	$6 / 32$	c
$1 / 32$	$5 / 32$	$21 / 128$	a

Decoding Issues

- There are two ways for the decoder to know when to stop decoding.

1. Transmit the length of the string
2. Transmit a unique end of string symbol

Practical Arithmetic Coding

- Scaling:
- By scaling we can keep L and R in a reasonable range of values so that $\mathrm{W}=\mathrm{R}-\mathrm{L}$ does not underflow.
- The code can be produced progressively, not at the end.
- Complicates decoding some.
- Integer arithmetic coding avoids floating point altogether.

Uniqueness and Efficiency of Arithmetic Code

- Uniqueness: Proof:

- Efficiency: Proof:

