ECE 499/599 Data Compression & Information Theory

> Thinh Nguyen Oregon State University

Adminstrivia

Office Hours

TTh: 2-3 PM Kelley Engineering Center 3115

Class homepage

http://www.eecs.orst.edu/~thinhq/teaching/ece499/spring06/spring06.html

Adminstrivia

Textbook

Title: Introduction to Data Compression, third edition Author: Khalid Sayood Publisher: Morgan Kaufmann

Adminstrivia

Grade Policy

25% Homework30% Midterm5% Class participation40% Final

Syllabus

- Basic Information Theory
- Prefix Codes.
- Huffman Codes.
- Tunstall and Golomb Codes.
- Arithmetic Codes .
- Dictionary Codes: LZW, LZ77.
- Predictive coding and Burrows Wheeler.
- Lossy image compression and scalar quantization.
- Vector quantization.
- Nearest-neighbor search for VQ.
- **Transform coding (DCT) and JPEG '87**.
- Subband coding (wavelets) and SPIHT
- EBCOT and JPEG 2000.
- Intro to Video Coding and H.261/MPEG-1.
- □ Mpeg2 and Mpeg4.
- Audio and MP3's.

Why Compression?

Multimedia applications generates a lot of data

- Need to compress data for efficient storage
- Need to compress data for efficient transmission.

Why Compression?

Examples of applications that use compression.

- Video: DVD, video conferencing
- Image: JPEG
- Audio: MP3
- Text: Winzip
- Visualization: 3D medical volume visualization

Compression is everywhere!

Why compression?

Speech	8000 samples/s	8 Kbytes/s
CD audio	44,100 samples/s, 2 bytes/sample, stereo	176 Kbytes/s
NTSC	30 fps, 640x480 pixels, 3 bytes/pixel	30 megabytes/s
Volume visualization voxels	30 fps, 1000x1000x1000 voxels, 3 bytes/voxels	90 gigabytes/s

Lecture 1: Basic Compression Concepts

Thinh Nguyen Oregon State University

Compression

- Lossless compression
 - Also called entropy coding, reversible coding.
- Lossy compression
 - Also called irreversible coding.
- Compression ratio = |x|/|y|
 - |x| is the number of bits in *x*.

Compression: Beware!

- Compression ratio = |x|/|y|
- **Two ways to make the ratio larger:**
 - Decrease the size of the compressed version.
 - Increase the size of the uncompressed version!

Compression Classification

Lossless Compression

Data is not lost - the original is really needed.

- text compression.
- compression of computer binaries to fit on a floppy.
- Compression ratio typically no better than 4:1

Statistical Techniques:

- Huffman coding.
- Arithmetic coding.
- Golomb coding.
- Dictionary techniques:
 - LZW, LZ77.
 - Burrows-Wheeler Method.
- Standards
 - Zip, bzip, GIF, PNG, JBIG, Lossless JPEG.

Lossy Compression

Data is lost, but not too much:

- Audio.
- Video.
- Still images, medical images, photographs.
- Compression ratios of 10:1.
- Major techniques include:
 - Vector Quantization.
 - Wavelets.
 - Block transforms.
- **Standards**:
 - JPEG, JPEG 2000, MPEG (1, 2, 4, 7).

Why data compression possible?

- Redundancy exists in many places
 - Texts
 - Redundancy(German) > Redundancy(English)
 - Video and images
 - Redundancy (videos) > redundancy(images)

Audio

- Redundancy(music) ? Redundancy(speech)
- Eliminate redundancy keep essential information
 - Assume 8 bits per character
 - □ Uncompressed: aaaaaaaab: 10x8 = 80 bits
 - **Compressed:** 9ab = 3x8 = 24 bits
- Reduce the amount of bits to store the data
 - Small storage, small network bandwidth, low storage devices.
 - Ex: 620x560 pixels/frame
 - 24 bits/pixel 1 MB
 - 30 fps
 30 MB/s (CD-ROM 2x 300KB/s)
 - 30 minutes 50 GB

Why data compression possible?

Always possible to compress?

- Consider a two-bit sequence.
- Can you always compress it to one bit?
- Information theory is needed to understand the limits of compression and give clues on how to compress well. We will study information theory shortly!

Compression Techniques

□ JPEG (DCT), JPEG-2000 (Wavelet)

Images
JBIG

Fax

LZ (gzip)

Text

MPEG

Video

16:1 compression ratio

Typical Compression Ratios

Digital Representation of Data

Digitization

- Analog
- Discrete Time
- Digital
- Why digitize?
 - Universality of representation
 - Robustness to error, aging, distortion, noise

Digital Representation

Advantages of Digital Representation

- Storage of different information types on the same devices -> easy integration of different media.
- Transmission of various information types over a single digital network.
- Processing and manipulation of various information by computer programs for editing, quality improvement, or recognition of meaningful information.

Disadvantages of Digital Representation

- Quantization distortion
- Sampling distortion (aliasing)
- Need large amount of digital storage capacity

Compression

We will deal with only digital information in this class

Digital Representation

- Analog data:
 - Also called continuous data.
 - Represented by real numbers.

Digital data:

- □ Finite set of symbols {a1, a2, ..., an}.
- All data represented as sequences (strings) in the symbol set.
- Example: {a, b, c, d, r}: abracadabra.
- Digital data can be an approximation to analog data.

Symbols

- Roman alphabet plus punctuation.
 ASCII 256 symbols.
- Binary {0, 1}: 0 and 1 are called bits.
- All digital information can be represented in binary.
 - a, b, c, d} fixed length representation:
 - □ a→00; b→01; c→10; d→11.
 - 2 bits per symbol.

Symbols

- Suppose we have n symbols. How many bits b (as a function of n) are necessary to represent a symbol in binary?
- What if some symbols occur more frequently than others, can we reduce the average number of bits to represent the symbols?