Lecture 5:
 Introduction to Entropy Coding

Thinh Nguyen
Oregon State University

Codes

- Definitions:
- Alphabet: is a collection of symbols.
- Letters (symbols): is an element of an alphabet.
- Coding: the assignment of binary sequences to elements of an alphabet.
- Code: A set of binary sequences.
- Codewords: Individual members of the set of binary sequences.

Examples of Binary Codes

- English alphabets:
- 26 uppercase and 26 lowercase letters and punctuation marks.
- ASCII code for the letter "a" is 1000011
- ASCII code for the letter " A " is 1000001
- ASCII code for the letter "," is 0011010

Note: all the letters (symbols) in this case use the same number of bits (7). These are called fixed length codes.

Examples of Binary Codes

- English alphabets:
- 26 uppercase and 26 lowercase letters and punctuation marks.
- ASCII code for the letter "a" is 1000011
- ASCII code for the letter " A " is 1000001
- ASCII code for the letter "," is 0011010

Note: all the letters (symbols) in this case use the same number of bits (7). These are called fixed length codes.

The average number of bits per symbol (letter) is called the rate of the code.

Code Rate

- Average length of the code is important in compression.
- Suppose our source alphabet consists of four letters a_{1}, a_{2}, a_{3}, and a_{4} with probabilities $\mathrm{P}\left(\mathrm{a}_{1}\right)=0.5 \mathrm{P}\left(\mathrm{a}_{2}\right)=0.25$, and $\mathrm{P}\left(\mathrm{a}_{3}\right)$ $=P\left(a_{4}\right)=0.125$.
- The average length of the code is given by

$$
l=\sum_{i=1}^{4} P\left(a_{i}\right) n\left(a_{i}\right)
$$

- $n\left(a_{i}\right)$ is the number of bits in the codeword for letter a_{i}

Uniquely Decodable Codes

Letters	Probabilitity	Code 1	Code 2	Code 3	Code 4
a_{1}	0.5	0	0	0	0
a_{2}	0.25	0	1	10	01
a_{3}	0.125	1	00	110	011
a_{4}	0.125	10	11	111	0111
Average Length					1.125

Code 1: not unique a_{1} and a_{2} have the same codeword
Code 2 : not uniquely decodable: 100 could mean $a_{2} a_{3}$ or $a_{2} a_{1} a_{1}$
Codes 3 and 4: uniquely decodable: What are the rules?
Code 3 is called instantaneous code since the decoder knows the codeword the moment a code is complete.

How do we know a uniquely decodable code?

- Consider two codewords: 011 and 011101
- Prefix: 011
- Dangling suffix: 101
- Algorithm:

1. Construct a list of all the codewords.
2. Examine all pairs of codewords to see if any codeword is a prefix of another codeword. If there exists such a pair, add the dangling suffice to the list unless there is one already.
3. Continue this procedure using the larger list until:
4. Either a dangling suffix is a codeword -> not uniquely decodable.
5. There are no more unique dangling suffixes $->$ uniquely decodable.

Examples of Unique Decodability

- Consider $\{0,01,11\}$
- Dangling suffix is 1 from 0 and 01
- New list: $\{0,01,11,1\}$
- Dangling suffix is 1 (from 0 and 01 , and also 1 and 11), and is already included in previous iteration.
- Since the dangling suffix is not a codeword, $\{0,01,11\}$ is uniquely decodable.

Examples of Unique Decodability

- Consider $\{0,01,10\}$
- Dangling suffix is 1 from 0 and 01
- New list: $\{0,01,10,1\}$
- The new dangling suffix is 0 (from 10 and 1).
- Since the dangling suffix 0 is a codeword, $\{0,01,10\}$ is not uniquely decodable.

Prefix Codes

- Prefix codes: A code in which no codeword is a prefix to another codeword.
- A prefix code can be defined by a binary tree

Example:

Decoding a Prefix Codeword

repeat
start at root of tree
repeat
if read bit = 1 then go right
else go left
until node is a leaf
report leaf
until end of the code

11000111100

Decoding a Prefix Codeword

How good is the code?

Suppose a, b, and c occur with probabilities $1 / 8,1 / 4$, and $5 / 8$, respectively.

bit rate $=(1 / 8) 2+(1 / 4) 2+(5 / 8) 1=11 / 8=1.375 \mathrm{bps}$
Entropy $=1.3 \mathrm{bps}$
Standard code $=2 \mathrm{bps}$
(bps = bits per symbol)

Are we losing any efficiency by using prefix code?

- The answer is NO!
- Theorem 1: Let C be a code with N code words with lengths $h_{1}, h_{2}, \ldots h_{\mathrm{N}}$. If C is uniquely decodable, then

$$
K(C)=\sum_{i=1}^{N} 2^{-l_{i}} \leq 1
$$

ㅁ Theorem 2: Given a set of integers $l_{1}, l_{2}, \ldots h_{N}$ that satisfy the inequality

$$
\sum_{i=1}^{N} 2^{-l_{i}} \leq 1
$$

we can always find a prefix code with codeword lengths l_{1}, $h_{2}, \ldots K_{N}$.

Proof of Theorem 1

$$
K(C)=\sum_{i=1}^{N} 2^{-l_{i}} \leq 1
$$

$$
\left[\sum_{i=1}^{N} 2^{-l_{i}}\right]^{n}=\left(\sum_{i=1}^{N} 2^{-l_{i 1}}\right)\left(\sum_{i=1}^{N} 2^{-l_{i 2}}\right) \ldots\left(\sum_{i=1}^{N} 2^{-l_{i 3}}\right)=\sum_{i 1=1}^{N} \sum_{i 2=1}^{N} \ldots \sum_{i n=1}^{N} 2^{-\left(l_{i 1}+l_{i 2}+\ldots+l_{i n}\right)}
$$

The exponent $k=\left(l_{i 1}+l_{i 2}+\ldots+l_{i n}\right)$ is simply the length of n codewords Smallest value of k is n and largest value is
So,

$$
[K(C)]^{n}=\sum_{k=n}^{n l} A_{k} 2^{-k}
$$

A_{k} is the number of combinations of n codewords that have a combined length of k
$A_{k} \leq 2^{k}$ Since for a uniquely decodable code, each sequence can represent one and only one sequence of codewords. This implies
$[K(C)]^{n}=\sum_{k=n}^{n l} A_{k} 2^{-k} \leq \sum_{k=n}^{n l} 2^{k} 2^{-k}=n l-n+1 \quad$ Thus, $\quad K(C) \leq 1$

Proof of Theorem 2: If $\sum_{i=1}^{N} 2^{-l_{i}} \leq 1$ we can always find a prefix codes with the length $l_{1}, l_{2} \ldots l_{N}$

Assume: $\quad l_{1} \leq l_{2} \leq \ldots \leq l_{N}$
Define: $\quad w_{1}=0, w_{j}=\sum_{i=1}^{j-1} 2^{l_{j}-l_{i}} \quad j>1$
Fact 1: binary representation of w_{j} would take up ceil $\left[\log _{2}\left(w_{j}+1\right)\right]$
Fact 2: The number of bits in the binary representation of w_{j} is less than l_{j}

$$
\begin{aligned}
\log _{2}\left(w_{j}+1\right)=\log _{2}\left(\sum_{i=1}^{j=1} 2^{l_{j}-l_{i}}+1\right) & =\log _{2}\left(2^{l_{j}}\left[\sum_{i=1}^{j=1} 2^{-l_{i}}+2^{-l_{j}}\right]\right) \\
& =l_{j}+\log _{2}\left(\sum_{i=1}^{j=1} 2^{-l_{i}}\right) \leq l_{j}
\end{aligned}
$$

Proof of Theorem 2: If $\sum_{i=1}^{N} 2^{-1,} \leq 1$ we can always find a prefix codes with the length $l_{1}, l_{2} \ldots l_{N}$

Now using the binary representation of W_{j}, we define the codeword as:
If $\operatorname{ceil}\left(\log _{2}\left(w_{j}+1\right)\right)=l_{j} \quad$, then the j th codeword c_{j} is the binary representation of w_{j}
If $\operatorname{ceil}\left(\log _{2}\left(w_{j}+1\right)\right) \leq l_{j}$, then the j th codeword c_{j} is the binary representation of w_{j} with $l_{j}-\operatorname{ceil}\left(\log _{2}\left(w_{j}+1\right)\right)$ zeros

This is clearly a decodable code (w_{j} are all different since $\sum_{i=1}^{j-1} 2^{l_{j}-l_{i}}$ is an increased function, each w_{j} also has length I_{j})

Proof of Theorem 2: If $\sum_{i=1}^{N} 2^{-1} \leq 1$ we can always find a prefix codes with the length $l_{1}, l_{2} \ldots l_{N}$

Suppose the claim is not true, then for some $j<k, \mathrm{c}_{\mathrm{j}}$ is the prefix of c_{k} This means I_{j} most significant bits fo w_{k} form the binary represention of w_{j}
$w_{j}=\left\lfloor\frac{w_{k}}{2^{l_{k}-l_{j}}}\right\rfloor$, However $\quad w_{k}=\sum_{i=1}^{k-1} 2^{l_{k}-l_{j}}$
Therefore,
$\frac{w_{k}}{2^{l_{k}-l_{j}}}=\sum_{i=1}^{k-1} 2^{l_{j}-l_{i}}=w_{j}+\sum_{i=j}^{k-1} 2^{l_{j}-l_{i}}=w_{j}+1+\sum_{i=j+1}^{k-1} 2^{l_{j}-l_{i}} \geq w_{j}+1$

That is the smallest value for $\frac{w_{k}}{2^{l_{k}-l_{j}}}$ is $w_{j}+1$
Hence, contradicts!

