Lecture 5:
Introduction to Entropy
Coding

Thinh Nguyen
Oregon State University

Codes

O Definitions:

= Alphabet: is a collection of symbols.
= Letters (symbols): is an element of an alphabet.

= Coding: the assignment of binary sequences to
elements of an alphabet.

= Code: A set of binary sequences.

= Codewords: Individual members of the set of binary
sequences.

Examples of Binary Codes

O English alphabets:

= 26 uppercase and 26 lowercase letters and
punctuation marks.

m ASCII code for the letter “a” is 1000011
m ASCII code for the letter “A” is 1000001
m ASCII code for the letter “,” is 0011010

Note: all the letters (symbols) in this case use
the same number of bits (7). These are called
fixed length codes.

Examples of Binary Codes

O English alphabets:

m 26 uppercase and 26 lowercase letters and punctuation
marks.

m ASCII code for the letter “a” is 1000011
m ASCII code for the letter “A” is 1000001
m ASCII code for the letter “,” is 0011010

Note: all the letters (symbols) in this case use the same
number of bits (7). These are called fixed length codes.

The average number of bits per symbol (letter) is called
the rate of the code.

Code Rate

O Average length of the code is important in compression.

O Suppose our source alphabet consists of four letters a,, a,, as,
and a, with probabilities P(a,) = 0.5 P(a,) = 0.25, and P(ay)
= P(ay) = 0.125.

O The average length of the code is given by
4
| = Z P(ai)n(ai)
1=1

O n(a) Is the number of bits in the codeword for letter a

Uniquely Decodable Codes

Letters | Probabilitity |Code 1 Code 2 Code 3 Code 4
a 0.5 0 0 0 0

ay 0.25 0 1 10 01

Az 0.125 1 00 110 011
a, 0.125 10 11 111 0111
Average Length 1.125 |1.25 1.75 1.875

Code 1: not unique a, and a, have the same codeword

Code 2: not uniquely decodable: 100 could mean a,a; or a,a,a,
Codes 3 and 4: uniquely decodable: What are the rules?

Code 3 is called instantaneous code since the decoder knows the
codeword the moment a code is complete.

How do we know a uniquely decodable
coder

O Consider two codewords: 011 and 011101

= Prefix: 011
= Dangling suffix: 101

o Algorithm:
1. Construct a list of all the codewords.

2. Examine all pairs of codewords to see if any codeword is a prefix
of another codeword. If there exists such a pair, add the
dangling suffice to the list unless there is one already.

3. Continue this procedure using the larger list until:

Either a dangling suffix is a codeword -> not uniquely decodable.

There are no more unique dangling suffixes -> uniquely decodable.

Examples ot Unique Decodability

o Consider {0,01,11}

= Dangling suffix is 1 from O and 01
= New list: {0,01,11,1}

= Dangling suffix is 1 (from O and 01, and also 1 and 11),
and is already included in previous iteration.

= Since the dangling suffix is not a codeword, {0,01, 11}
IS uniquely decodable.

Examples ot Unique Decodability

o Consider {0,01,10}

= Dangling suffix is 1 from O and 01
= New list: {0,01,10,1}
= The new dangling suffix is O (from 10 and 1).

= Since the dangling suffix O is a codeword, {0,01, 10} is
not uniquely decodable.

Prefix Codes

O Prefix codes: A code in which no codeword is a prefix to
another codeword.

O A prefix code can be defined by a binary tree

Example:
input output
0 1 a 00
ds c b |01 | code
a b C 1

Decoding a Prefix Codeword

repeat
0 1 start at root of tree
repeat
0 1 & if read bit = 1 then go right
\b else go left
a until node is a leaf
report leaf
until end of the code

11000111100

Decoding a Prefix Codeword

0@ JOR
S @ | QT R
= B & F % B

11000111100 11000111100 11000111100 11000111100
c c cd
(PJON
o @1 0O 01
0 O 1 \I! — 0 @, <l =D 0o @, | = é;'.]
[a] [b] [a] [b] [a] [b]
11000111100
11000111100 11000111100 CULISRGRIUY -

cea ccab
cc cec

How good 1s the coder?

Suppose a, b, and c occur with probabilities
1/8, 1/4, and 5/8, respectively.

0 1
c

01 58
a b
778 /4

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2 bps

(bps = bits per symbol)

Are we losing any etficiency by using
pretfix coder

O The answer iIs NO!

O Theorem 1: Let C be a code with N code words with lengths
l, b, ... iy - 1T Cis uniquely decodable, then

N
K(C)=>2"<1
i=1
O Theorem 2: Given a set of integers /, 4, ... 4, that satisfy

the inequality
N
Y 2«1
i=1

we can always find a prefix code with codeword lengths /,
lyy i Iy -

K(C):ZNZZ‘“ <1

Proof of Theorem 1

[11=1i2=1 in=1

The exponent K=(l;;+l;5+...+1;;) is simply the length of n codewords

Smallest value of k is n and largest value is
So,

nl
KO =2 A2"
k=n
Ak is the number of combinations of n codewords that have a combined length of k

Ak < 2k Since for a uniquely decodable code, each sequence can represent
one and only one sequence of codewords. This implies

Growth linearly!!!!

_
Thus, K(C)<1

nl

[KC)N"=> A27"< nlekzk =nl-n+1

k=n

Proot of Theorem 2: If iZ"‘ <1 we can always

find a pretix codes with th; length 1,1,y

Assume: | <I, <...<I
=

Define: leo,wj:ZZJ i j>1
i=1

Fact 1: binary representation of W; would take up Ceil[log, (w; +1)]

Fact 2: The number of bits in the binary representation of Wj Is less than |j

log, (w; +1) = Iog{i 2 +1j = Iogz[Z'{i 2" +2"'D

Proot of Theorem 2: If ZNZZ‘“ <1 we can always

find a pretix codes with the lenoth b, 1.y

Now using the binary representation of Wj , we define the codeword as:

If Cei|(|092(Wj +1)) = |j , then the jth codeword c; is the binary

representation of w;

If Cel|(|092(Wj +1)) < |j , then the jth codeword c; is the binary

representation of w; with |, —ceil(log,(w; +1)) zeros

j-1
-}
This is clearly a decodable code (w; are all different since ZZ :
i=1
is an increased function, each w; also has
length 1;)

Proot of Theorem 2: If ZN:Z‘“ <1 we can always
find a pretix codes with the lenoth b, 1.y

Suppose the claim is not true, then for some j <Kk, c; is the prefix of ¢,

This means |; most significant bits fo w, form the binary represention of w;

k-1
I -1
Wj:\‘ Wi J , However WKZZZ'(:

2|k—|j —
Therefore,
i i i I i
|k_| 22 =W, 22 =w, +1+ ZZ 2w+l
i=j+1
| w, .
That is the smallest value for IS Wj +1

ST,

Hence, contradicts!

