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Review:
Shannon’s Information Theory

The
Claude Shannon:)(MathematicaI Theory of Communication

Bell System Technical Journal, 1948

o Shannon’s measure of information is the number of bits to
represent the amount of uncertainty (randomness) in a
data source, and is defined as entropy

H =—i p, log(p,)

Where there are 1 symbols 1, 2, ... 1, each with

probability of occurrence of pi



Entropy: Three properties

1. It can be shown that 0-H - log N.

2. Maximum entropy (H =log N) is reached when
all symbols are equiprobable, i.e.,
p; = 1/N.

3. The difference log N - H is called the redundancy
of the source.



Joint Information

o X and Y are random variables.

o X and Y can have n and m possibilities, respectively.
Then, the joint information is defined as:

HOGY) == S r(x, y ) log(r(%, ;)

i=1 j=1

o r(x,y) is the joint probability of x and vy.

o Why this definition?



Conditional Information

o X and Y are random variables.

o X and Y can have n and m possibilities, respectively.
Then, the conditional information is defined as:

HEY 1 X) == S r(x, y,) log(a(y; [ %))

i=1 j=1

o q(y|x) is the conditional probability.

o Why this definition?



Conditional Information

Properties of Conditional Information:

1. H((Y|X)=0
2. H(Y|X)<H(Y)withequality if X and Y are independent.
3. H(X,)Y)=H(X)+H({Y|X)=H({Y)+H(X|Y)



Mutual Information

o X and Y are random variables.

o X and Y can have n and m possibilities, respectively.
Then, the mutual information is defined as:

X, Y) = HOO)=HY [ X) =3 S r(x,, v, ) log— 1)

=1 j-1 q(yj)p(xi)]

o Why this definition?



Mutual Information

o Properties of Mutual Information:

1(X,Y)=1(Y, X)



Relationship among entropy,
conditional, and mutual information

H(X) E(Y)

N
X and Y are dependent
variables.

X and Y are independent
variables.



Example:

o A vase contains 5 black balls and 10 white balls.
Experiment x involves the random drawing of a ball,

without being replaced in the vase. Experiment Y involves
random drawing of the second ball.

o 5 black balls
o 10 white balls

Drawing




Example: Entropy

o How much uncertainty (information) does experiment X
contain?
P(black_X) = 1/3, P(white_X) = 2/3)

H(X) = -(1/3)log(1/3) - (2/3)log(2/3) = 0.92 bit

Drawing




Example:

o How much uncertainty (information) in experiment Y given
that the ball in experiment X is white?

Drawing

P(black_Y|white_X) = 5/14
P(white_Y|white_X) = 9/14

H(Y|white_X) = -(5/14)log(5/14) - (9/14)log(9/14) = .94
bit




Example:

o How much uncertainty (information) in experiment Y given
that the ball in experiment X is black?

Drawing

P(black_Y|black_X) = 4/14 = 2/7
P(white_Y|black_X) = 10/14 = 5/7
H(Y|black_X) = -(2/7)log(2/7) - (5/7)log(5/7) = 0.86 bit




Example:

o How much uncertainty does experiment Y contain?

H(Y) = P(black_X)*H(Y|black_X) + P(white_X)*H(Y|white_X)
= (1/3)(0.86) + (2/3)(0.94) = 0.91 bit

Drawing




Formal Dertvation ot Entropy

o Why do we have

H == p, log(p,)’



Axiomatic Foundations

o Assuming that information measure should satisfy the three
following requirements (Chaundy and McLeod (1960)):

1.

If all outcomes are split up into groups, then all the values
of H for the various groups, multiplied by the statistical
weights, should lead to the overall H.

H should be continuous in p;

If all p,'s are equal, i.e. for all i, (p, = 1/n), then H will
increase monotonically as a function of n. That means
the uncertainty will increase for an increasing number of
equal probabilities.



Derivation of Entropy

o Theorem: The only function that satisfy the three
requirements above is

H =K p,log(p)

O Proof:



Summary

o History of information theory.

O Information theoretical entities

= Information, self-information, entropy,
conditional information, joint information,
mutual information.

o Derivation of H = - 2p;logp,



