Lecture 3: Information Theory Continues

Oregon State University

Review:

Shannon's Information Theory

The
Claude Shannon: XMathematical Theory of Communication
Bell System Technical Journal, 1948

- Shannon's measure of information is the number of bits to represent the amount of uncertainty (randomness) in a data source, and is defined as entropy

$$
H=-\sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)
$$

Where there are n symbols $1,2, \ldots \quad n$, each with probability of occurrence of P_{i}

Entropy: Three properties

1. It can be shown that $0 \cdot H \cdot \log N$.
2. Maximum entropy $(H=\log N)$ is reached when all symbols are equiprobable, i.e., $p_{i}=1 / \mathrm{N}$.
3. The difference $\log N-H$ is called the redundancy of the source.

Joint Information

- X and Y are random variables.
- X and Y can have n and m possibilities, respectively. Then, the joint information is defined as:

$$
H(X, Y)=-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left(r\left(x_{i}, y_{j}\right)\right)
$$

- $r(x, y)$ is the joint probability of x and y.
- Why this definition?

Conditional Information

- X and Y are random variables.
- X and Y can have n and m possibilities, respectively. Then, the conditional information is defined as:

$$
H(Y \mid X)=-\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left(q\left(y_{j} \mid x_{i}\right)\right)
$$

- $\mathrm{q}(\mathrm{y} \mid \mathrm{x})$ is the conditional probability.
- Why this definition?

Conditional Information

Properties of Conditional Information:

1. $H(Y \mid X) \geq 0$
2. $H(Y \mid X) \leq H(Y)$ with equality if X and Y are independent.
3. $H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)$

Mutual Information

- X and Y are random variables.
- X and Y can have n and m possibilities, respectively. Then, the mutual information is defined as:

$$
I(X, Y)=H(Y)-H(Y \mid X)=\sum_{i=1}^{n} \sum_{j=1}^{m} r\left(x_{i}, y_{j}\right) \log \left[\frac{r\left(x_{i}, y_{j}\right)}{q\left(y_{j}\right) p\left(x_{i}\right)}\right]
$$

- Why this definition?

Mutual Information

- Properties of Mutual Information:

$$
I(X, Y)=I(Y, X)
$$

Relationship among entropy, conditional, and mutual information

Example:

- A vase contains 5 black balls and 10 white balls. Experiment x involves the random drawing of a ball, without being replaced in the vase. Experiment Y involves random drawing of the second ball.
- 5 black balls
- 10 white balls

Example: Entropy

- How much uncertainty (information) does experiment X contain?

$$
\begin{gathered}
\left.P\left(\text { black } _X\right)=1 / 3, P\left(\text { white } _X\right)=2 / 3\right) \\
H(X)=-(1 / 3) \log (1 / 3)-(2 / 3) \log (2 / 3)=0.92 \text { bit }
\end{gathered}
$$

Example:

- How much uncertainty (information) in experiment Y given that the ball in experiment X is white?

Drawing
$P($ black_Y \mid white_X $)=5 / 14$
$P($ white_Y|white_X $)=9 / 14$
$H(Y \mid$ white_X $)=-(5 / 14) \log (5 / 14)-(9 / 14) \log (9 / 14)=.94$
bit

Example:

- How much uncertainty (information) in experiment Y given that the ball in experiment X is black?

Drawing
P(black_Y|black_X) $=4 / 14=2 / 7$
$P($ white_Y|black_X) $=10 / 14=5 / 7$
$H(Y \mid$ black_X $)=-(2 / 7) \log (2 / 7)-(5 / 7) \log (5 / 7)=0.86$ bit

Example:

- How much uncertainty does experiment Y contain?

$$
\begin{aligned}
& H(Y)=P\left(\text { black } _X\right) * H(Y \mid \text { black_X })+P\left(\text { white } _X\right) * H(Y \mid \text { white_X }) \\
& =(1 / 3)(0.86)+(2 / 3)(0.94)=0.91 \text { bit }
\end{aligned}
$$

Formal Derivation of Entropy

- Why do we have

$$
H=-\sum_{i=1}^{n} p_{i} \log \left(p_{i}\right) ?
$$

Axiomatic Foundations

- Assuming that information measure should satisfy the three following requirements (Chaundy and McLeod (1960)):

1. If all outcomes are split up into groups, then all the values of H for the various groups, multiplied by the statistical weights, should lead to the overall H .
2. H should be continuous in p_{i}.
3. If all p_{i} 's are equal, i.e. for all $i,\left(p_{i}=1 / n\right)$, then H will increase monotonically as a function of n. That means the uncertainty will increase for an increasing number of equal probabilities.

Derivation of Entropy

- Theorem: The only function that satisfy the three requirements above is

$$
H=-K \sum_{i=1}^{n} p_{i} \log \left(p_{i}\right)
$$

- Proof:

Summary

- History of information theory.
- Information theoretical entities
- Information, self-information, entropy, conditional information, joint information, mutual information.
\square Derivation of $_{H}=-\Sigma p_{i} \log _{i}$

