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Review:
Shannon’s Information Theory

Claude ShannonClaude Shannon: A Mathematical Theory of Communication
The

Bell System Technical Journal, 1948

Where there are         symbols 1, 2, … ,  each with 

probability of occurrence of 

Shannon’s measure of information is the number of bits to 
represent the amount of uncertainty (randomness) in a 
data source, and is defined as entropy
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Entropy: Three properties
1. It can be shown that 0 · H · log N.

2. Maximum entropy (H = log N) is reached when 
all symbols are equiprobable, i.e.,
pi = 1/N.

3. The difference log N – H is called the redundancy
of the source.



Joint Information
X and Y are random variables.

X and Y can have n and m possibilities, respectively. 
Then,  the joint information is defined as:
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r(x,y) is the joint probability of x and y.

Why this definition?



Conditional Information
X and Y are random variables.

X and Y can have n and m possibilities, respectively. 
Then,  the conditional information is defined as:
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q(y|x) is the conditional probability.

Why this definition?



Conditional Information
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Properties of Conditional Information:



Mutual Information
X and Y are random variables.

X and Y can have n and m possibilities, respectively. 
Then,  the mutual information is defined as:

∑∑
= =

=−=
n

i

m

j ij

ji
ji xpyq

yxr
yxrXYHYHYXI

1 1

]
)()(

),(
log[),()|()(),(

Why this definition?



Mutual Information
Properties of Mutual Information:
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Relationship among entropy, 
conditional, and mutual information

H(X) H(Y)

H(X|Y) H(Y|X)I(X,Y)

H(X) H(Y)

X and Y are dependent 
variables.

X and Y are independent 
variables.



Example:
A vase contains 5 black balls and 10 white balls.  
Experiment x involves the random drawing of a ball, 
without being replaced in the vase.  Experiment Y involves 
random drawing of the second ball.

5 black balls
10 white balls

Drawing



Example: Entropy
How much uncertainty (information) does experiment X 
contain?

Drawing

P(black_X) = 1/3, P(white_X) = 2/3)

H(X) = -(1/3)log(1/3) – (2/3)log(2/3) = 0.92 bit



Example:
How much uncertainty (information) in experiment Y given 
that the ball in experiment X is white?

Drawing

P(black_Y|white_X) = 5/14 

P(white_Y|white_X) = 9/14

H(Y|white_X) = -(5/14)log(5/14) – (9/14)log(9/14) = .94 
bit



Example:
How much uncertainty (information) in experiment Y given 
that the ball in experiment X is black?

Drawing

P(black_Y|black_X) = 4/14 = 2/7

P(white_Y|black_X) = 10/14 = 5/7

H(Y|black_X) = -(2/7)log(2/7) – (5/7)log(5/7) = 0.86 bit



Example:
How much uncertainty does experiment Y contain?

Drawing

H(Y) = P(black_X)*H(Y|black_X) + P(white_X)*H(Y|white_X)

= (1/3)(0.86) + (2/3)(0.94) = 0.91 bit



Formal Derivation of Entropy
Why do we have 
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Axiomatic Foundations
Assuming that information measure should satisfy the three 
following requirements (Chaundy and McLeod (1960)):

1. If all outcomes are split up into groups, then all the values 
of H for the various groups, multiplied by the statistical 
weights, should lead to the overall H.

2. H should be continuous in pi.

3. If all pi’s are equal, i.e. for all i,  (pi = 1/n), then H will 
increase monotonically as a function of n.  That means 
the uncertainty will increase for an increasing number of 
equal probabilities.



Derivation of Entropy
Theorem:  The only function that satisfy the three 
requirements above is

Proof:
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Summary
History of information theory.

Information theoretical entities
Information, self-information, entropy, 
conditional information, joint information, 
mutual information.

Derivation of H = - ∑pilogpi


