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VQ Encoding 1s Nearest Neighbor
Search

o Given an input vector, find the closest codeword
In the codebook and output its index.

O Closest is measured in squared Euclidean
distance.

o For two vectors (W,,X;,Y¥1,Z;) and (W,,X5,Y5,Z,).

Squarkd Distance= (W, — W, )* +(X,— X, > +(Y, - Y,)* +(z,- 2,)*



k-d Tree

O Jon Bentley, 1975

O Tree used to store spatial data.

= Nearest neighbor search.
= Range queries.
= Fast look-up!

O Kk-d trees are guaranteed log, n depth where n is
the number of points in the set.

= Traditionally, k-d trees store points in d-dimensional
space (equivalent to vectors in ddimensional space).



k-d tree construction

o If there Is just one point, form a leaf with that
point.

o Otherwise, divide the points in half by a line
perpendicular to one of the axes.

O Recursively construct k-d trees for the two sets
of points.

O Division strategies:

= divide points perpendicular to the axis with widest
spread.

m divide in a round-robin fashion.



k-d tree construction example
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k-d tree construction example
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k-d tree construction example
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k-d tree construction example
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k-d tree construction example
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k-d tree Construction Complexity

O First sort the points in each dimension:

= O(dn log n) time and dn storage.
= These are stored in A[l1..d,1..n]

O Finding the widest spread and equally dividing
Into two subsets can be done in O(dn) time.

O Constructing the k-d tree can be done in O(dn log
n) and dn storage



Codebook for 2-d vector

2-d vectors

(X,y)




Node Structure for k-d Tree

0 A node has 5 fields

= axis (splitting axis)

= value (splitting value)
= |left (left subtree)

= right (right subtree)

= point (holds a point if left and right children
are null)
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Why does k-d tree work?
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k-d Tree Nearest Neighbor Search

NNS(q: point, n: node, p: ref point w: ref distance)
if n.left = n.right = null then {leaf case}
w’ = ||q - n.point]|;
ifw <wthenw =w’; p :=n.point;
else
if g(n.axis) < n.value then
search_first := left;
else
search_first := right;
if (search_first == left)
if g(n.axis) - w < n.value then NNS(q, n.left, p, w);
if g(n.axis) + w > n.value then NNS(q, n.right, p, w);
else // search_first == right
if g(n.axis) + w > n.value then NNS(q, n.right, p, w);
if g(n.axis) - w < n.value then NNS(q, n.left, p, w);

initial call | NNS(q, root, p, infinity)




k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search
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k-d Tree Nearest Neighbor Search
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Notes on Nearest Neighbor Search

O

Has been shown to run in O(log n) average time
per search in a reasonable model. (Assuming d a
constant)

For VQ it appears that O(log n) is correct.
Storage for the k-d tree is O(n).

Preprocessing time is O(n log n) assuming d is a
constant.



Notes on Nearest Neighbor Search

O Orchard’s Algorithm (1991)

m  Uses O(Nn2) storage but is very fast
O Annulus Algorithm

m Similar to Orchard but uses O(n) storage. Does many more
distance calculations.

o Principal Component Partitioning (PCP)

m Zatloukal, Johnson, Ladner (1999).
= Similar to k-d trees.
m Also very fast.
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PCP Tree vs. k-d Tree

k-d
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Notes on VQ)

o Works well in some applications.
» Requires training.
O Has some interesting algorithms:

m Codebook design.
m Nearest neighbor search.

o Variable length codes for VQ:

m PTSVQ - pruned tree structured VQ (Chou, Lookabaugh and
Gray, 1989)

m ECVQ) - entropy constrained VQ (Chou, Lookabaugh and Gray,
1989



