Lecture 15+:
Nearest Neighbor Search

Thinh Nguyen
Oregon State University

VQ Encoding 1s Nearest Neighbor
Search

o Given an input vector, find the closest codeword
In the codebook and output its index.

O Closest is measured in squared Euclidean
distance.

o For two vectors (W,,X;,Y¥1,Z;) and (W,,X5,Y5,Z,).

Squarkd Distance= (W, — W,)* +(X,— X, > +(Y, - Y,)* +(z,- 2,)*

k-d Tree

O Jon Bentley, 1975

O Tree used to store spatial data.

= Nearest neighbor search.
= Range queries.
= Fast look-up!

O Kk-d trees are guaranteed log, n depth where n is
the number of points in the set.

= Traditionally, k-d trees store points in d-dimensional
space (equivalent to vectors in ddimensional space).

k-d tree construction

o If there Is just one point, form a leaf with that
point.

o Otherwise, divide the points in half by a line
perpendicular to one of the axes.

O Recursively construct k-d trees for the two sets
of points.

O Division strategies:

= divide points perpendicular to the axis with widest
spread.

m divide in a round-robin fashion.

k-d tree construction example

&[]

@
‘e he
¢ ‘e fo
b
% ° Co
s1
X
i@
‘e e
{ ‘o fo
s2
be
? ‘o
s3 s1

k-d tree construction example

Yo he
y| ¢ Ce fo
s2
b
®
® ‘o
s3 s1
X
P
Y% he
sd4
¢ ‘e fo
s2
b,
®
* Ce
s3 s1

‘e he
¢, ‘e fo
s2
b
® ° Ce
s1
X
i@
= he
s4
$ | e fo
s2
b
? ° Co

s1

k-d tree construction example

s3 s1

s3 s1

k-d tree construction example

Y% he
sd s6
y | d) fo

s5

52
b s7
®
% Co
s3| s1
X
)
% he
o 6
y |7 g | e fo

sb

52
b s7
@
% Co
s3 s1

k-d tree construction example

s1
I. /'_,_,_../-""‘"_ _"""'--..,_‘_‘_N_"_
y y
‘e % h. s2 s6)
s4 s6 \ \
v "¢ | e o X y y y
> s3 s4 s7 @K
e /\ L /
a C a b [X N B B B B
@] s5
s3 1
- /\
X d &

k-d tree Construction Complexity

O First sort the points in each dimension:

= O(dn log n) time and dn storage.
= These are stored in A[l1..d,1..n]

O Finding the widest spread and equally dividing
Into two subsets can be done in O(dn) time.

O Constructing the k-d tree can be done in O(dn log
n) and dn storage

Codebook for 2-d vector

2-d vectors

(X,y)

Node Structure for k-d Tree

0 A node has 5 fields

= axis (splitting axis)

= value (splitting value)
= |left (left subtree)

= right (right subtree)

= point (holds a point if left and right children
are null)

Node Structure for k-d Tree

0 A node has 5 fields

= axis (splitting axis)

= value (splitting value)
= |left (left subtree)

= right (right subtree)

= point (holds a point if left and right children
are null)

Why does k-d tree work?

| |
| |
search | | slearch
left | nearest | right
i codeword i
| |
| W
| |
| |
| |
| |
| |
| |
| |
| |
| |
n.value q(n.axis) g(n.axis) n.value
g(n.axis) —w < n.value g(n.axis) + w > n.value
means the circle overlaps means the circle overlaps

the left subtree. the right subtree.

k-d Tree Nearest Neighbor Search

NNS(q: point, n: node, p: ref point w: ref distance)
if n.left = n.right = null then {leaf case}
w’ = ||q - n.point]|;
ifw <wthenw =w’; p :=n.point;
else
if g(n.axis) < n.value then
search_first := left;
else
search_first := right;
if (search_first == left)
if g(n.axis) - w < n.value then NNS(q, n.left, p, w);
if g(n.axis) + w > n.value then NNS(q, n.right, p, w);
else // search_first == right
if g(n.axis) + w > n.value then NNS(q, n.right, p, w);
if g(n.axis) - w < n.value then NNS(q, n.left, p, w);

initial call | NNS(q, root, p, infinity)

k-d Tree Nearest Neighbor Search

E query point B query point
io o
g‘ s8 g. s8
] ho m ho
7} 6 - =
¢ | %o fo y %4 | %o fo
= D s5|
52
b,
a° o S7C. a b° s7
s3 s1 Q Co
s3 s1
X
X
B query point IR 72
: i
g o
% s8 h° N\ﬁx h.
7} = 6 Ex &ﬁ/
¢ | % f e N fo
o o .
) s2)
b s7) s7
Q
3 Co % ‘o
s3 s1 s3 s1

k-d Tree Nearest Neighbor Search

m int
B query point query poin

Pt

w§9\h.
K

54 E:l
& y o j’ f
v [%¢g [N g $ N °
5 sZ
52
b° & a b° sTC
% Co o s3 s1 °
s3 s1
X
X
B query point M query point
. i
PN o o
8 h
gaf;\ﬁa he Q:\% o
W y |©'d - f
y % \e& i o (]
S5 2
52
b s7
b 7 o
% ° sc ° ‘e
o Q 53 s1
s3 s1

k-d Tree Nearest Neighbor Search

® query point B query point
ig 'o
% s h
Tl O
4
y do wﬁé fo y % \e“f f°
s5 - s5
s2
b s7 b, s7
ol ©
® Co 3 o
s3 s1 s3| s1
X X
B query point
m query point
i lo
° %
5 h
I ol
* !wﬁé y | ed f
vy q <" fo) - o
. 2
s2
b s7 b. s7
(&)
° e % o
s3 s1 s3) s1

k-d Tree Nearest Neighbor Search

E query point
B query point
iO
i
o g.(«\ﬁ -
VS e ")
-W/sg y 'd eg” fo
y CL \e‘J f. © s5
= 2
N b b° s7
(%) s7 a .
@ Q
a° C° s3 s1
s3 s1
X
X
H query point
B query point
e
% \s\a he
Y% \ﬁ) he n
g A
S S fo
y d \e‘, f. .
[+
= 2
* b° s7
b. s7 % c°
ao C° s3 s1
s3 s1

k-d Tree Nearest Neighbor Search

E query point
B query point
i o
Q
90(‘ 8 h
o
o ho "
wg KT L
A ICS fe 5
s5 2
s2 b, s7
bﬂ s7 a° e C.
) ‘o 3 s1
s3 s1
X
X
| query point B query point
ig o
90(\-\3 he 90(“\?3 he
d ‘@I““/‘é = \eszé
y o fo % fa
s5 <5
e s2
a b@ = b. s7
o e 9 o
s3 s1 s3 s1

Notes on Nearest Neighbor Search

O

Has been shown to run in O(log n) average time
per search in a reasonable model. (Assuming d a
constant)

For VQ it appears that O(log n) is correct.
Storage for the k-d tree is O(n).

Preprocessing time is O(n log n) assuming d is a
constant.

Notes on Nearest Neighbor Search

O Orchard’s Algorithm (1991)

m Uses O(Nn2) storage but is very fast
O Annulus Algorithm

m Similar to Orchard but uses O(n) storage. Does many more
distance calculations.

o Principal Component Partitioning (PCP)

m Zatloukal, Johnson, Ladner (1999).
= Similar to k-d trees.
m Also very fast.

PCP T

I'CC

Z50

Z0o

150

100

prindple componenl ——

pliliing line —

150

rd1 [n]

250

PCP Tree vs. k-d Tree

k-d

Search Time

= 7
2
© 6
[72]
= 5
o O Orchard
o 4
= B k-d tree
= 3
b O PCP free
N 2
©
£ 1]
s o [
= ﬂ_

4D 16D 64D

dimension

4.096 codewords

Notes on VQ)

o Works well in some applications.
» Requires training.
O Has some interesting algorithms:

m Codebook design.
m Nearest neighbor search.

o Variable length codes for VQ:

m PTSVQ - pruned tree structured VQ (Chou, Lookabaugh and
Gray, 1989)

m ECVQ) - entropy constrained VQ (Chou, Lookabaugh and Gray,
1989

