Lecture 7: Run-Length, Golomb, and Tunstall Codes

Thinh Nguyen Oregon State University

Outline

Run-Length Coding
Golomb Coding
Tunstall Coding

Lossless coding: Run-Length encoding (RLE)

- Redundancy is removed by not transmitting consecutive identical symbols (pixels or character values that are equal).
- The repeated value can be coded once, along with the number of times it repeats.
- Useful for coding black and white images e.g. fax.

Binary RLE

- Code the run length of 0's using k bits. Transmit the code.
- Do not transmit runs of 1's.
- Two consecutive 1's are implicitly separately by a zero-length run of zero.

Example: suppose we use k = 4 bits to encode the run length (maximum run length of 15) for following bit patterns

RLE Performance

- Worst case behavior: transition occurs on each bit. Since we use k bits to represent the transition, we waste k-1 bits.
- Best case behavior: no transition and use k bits to represent run length then the compression ratio is (2^k-1)/k.

Can you improve RLE coding?

Why use fixed length coding for the length of a run?

Golomb Coding

How to code a potential infinite number of symbols?

- Code the number of consecutive heads in a sequence of coin tosses.
- **110**, **1111110**, **11111110**,

Golomb Coding

- Let n = qm + r where 0 < r < m.
 - Divide m into n to get the quotient q and remainder r.

 \odot

- Code for n has two parts:
 - 1. q is coded in unary.
 - 2. r is coded as a fixed prefix code.

Example: m = 5

code for r

Example

Another Way of Looking at Golomb Code (m=5)

input	output
00000	1
00001	0111
0001	0110
001	010
01	001
1	000

Run-Length Example, m = 5

In this example we coded 17 bit in only 9 bits.

Choosing m

- Suppose that 0 has the probability p and 1 has probability 1-p.
- The probability of 0ⁿ1 is pⁿ(1-p). The Golomb code of order

is optimal. $m = \begin{bmatrix} -\frac{1}{\log_2 p} \end{bmatrix}$

• Example: p = 127/128.

$$m = \left[\frac{-1}{\log_2}(127/128)\right] = 89$$

Compression of Golomb Code

Average Bit Rate = $\frac{\text{Average output code length}}{\text{Average input code length}}$

• m = 4 as an example. With p as the probability of 0.

$$ABR = \frac{p^4 + 3(1-p^4)}{4p^4 + 4p^3(1-p) + 3p^2(1-p) + 2p(1-p) + (1-p)}$$

ouput	1	011	010	001	000
input	0000	0001	001	01	1
probability	p ⁴	р ³ (1-р)	p²(1-p)	р(1-р)	1-р

GC Performance

Notes on GC

- Useful for binary compression when one symbol is much more likely than another.
 - binary images
 - fax documents
 - bit planes for wavelet image compression
- Need a parameter (the order)
 - training
 - adaptively learn the right parameter
- Variable-to-variable length code
- Last symbol needs to be a 1
 - coder always adds a 1
 - decoder always removes a 1

Tunstall Code

- Variable-to-fixed length code
- Example

mput	output
а	000
b	001
са	010
cb	011
сса	100
ccb	101
CCC	110

input output

a b cca cb ccc ... 000 001 110 011 110 ...

Tunstall Code Properties

- No input code is a prefix of another to assure unique *encodability*.
- Minimize the number of bits per symbol.

Prefix Code Properties

а	000
b	001
са	010
cb	011
сса	100
ccb	101
ССС	110

Unused output code is 111.

Prefix Code Properties

- □ Consider the string "cc". It does not have a code.
- Send the unused code and some fixed code for the cc.
- Generally, if there are k internal nodes in the prefix tree then there is a need for k-1 fixed codes.

Designing Tunstall Code

- Suppose there are m initial symbols.
- Choose a target output length n where 2ⁿ > m.
 - 1. Form a tree with a root and m children with edges labeled with the symbols.
 - 2. If the number of leaves is $> 2^n m$ then halt.*
 - 3. Find the leaf with highest probability and expand it to have m children.** Go to 2.

* In the next step we will add m-1 more leaves.
** The probability is the product of the probabilities of the symbols on the root to leaf path.

Example

Example

Compression of Tunstall Code

- The length of the output code divided by the average length of the input code.
- Let p_i be the probability of input code i and r_i the length of input code i (1 < i < s) and let n be the length of the output code.

Average bit rate =
$$\frac{n}{\sum_{i=1}^{s} p_i r_i}$$

Average Bit Rate of Tunstall Code

ABR = 3/[3 (.343 + .098 + .049) + 2 (.14 + .07) + .2 + .1] = 1.37 bits per symbol Entropy = 1.16 bits per symbol

Notes on Tunstall Code

Variable-to-fixed length code

Error resilient

- A flipped bit will introduce just one error in the output.
- Huffman is not error resilient. A single bit flip can destroy the code.