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Multiresolution Analysis (MRA)

oA IS used to create a series of
approximations of a function or image, each
differing by a factor of 2 from its neighboring
approximations.

0 Additional functions called are then
used to encode the difference in information
between adjacent approximations.



Series Expansions

O Express a signal f (x) as

f (%) =2 oo (X)
K

/ expansion functions
expansion coefficients

o If the expansion is unique, the @y (X) are
called , and the expansion set

{§0k (X)} is called a



Series Expansions

o All the functions expressible with this basis
form a which is referred to as
the of the expansion set

V = Spkan{gok (x)}

o 1f T(X) eV | then T (X)is in the closed span
of {gﬂk (X)} and can be expressed as

f(x) =2 o (X)
K



Orthonormal Basis

0 The expansion functions form an
orthonormal basis for V

<§”j (X), ok (X)> =0k =+

(

0 J=Kk
1 j=Kk

O The basis and its dual are equivalent, I.e.,
o (X) =@ (X) and

oy = {1 (%), () = [ @ (X) £ (x) dlx



Scaling Functions

O Consider the set of expansion functions composed
of integer translations and binary scalings of the

real square-integrable function CD(X) defined by
19 :
(P10} ={212p(2)x - k)|

forall J,K €] and (D(X)ELZ(D)

O By choosing the scaling function gD(X) wisely,

{¢j,k(x)} can be made to span E (0)



(P50} ={212p(2)x k)|

0 Index k determines the position of @ j k (x)
along the x-axis, index J determines its width;

9 112 controls its height or amplitude.

O By restricting j to a specific value}] — jothe

resulting expansion set {¢jo’k (X){ is a subset of

{€0j,k(X)}

o One can write VjO = Span {ijo,k (X)}
K



Example: The Haar Scaling Function

@p,o{X) = o(x)

@g,1(x) = o(x — 1)
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FIGURE 7.9 Haar
scaling functions
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MRA Requirements

1. The scaling function is orthogonal to its
Integer translates

2. The subspaces spanned by the scaling
function at low scales are nested within
those spanned at higher scales:

V_,c---cV VoV, -V,

FIGURE 7.10 The Vo, CV,CV,
nested function

spaces spanned by

a scaling function.



Wavelet Functions

O Given a scaling function which satisfies the
MRA requirements, one can define a

W(X) which, together with its integer
translates and binary scalings,

Vi Vin

Vo=V, 8W, = V@ W, 8 W, FIGURE 7.11 The
relationship
between scaling
and wavelet
function spaces.




Wavelet Functions

O Define the wavelet set

19 :
(v} =121y (2 x-k)|
for all K €[] that spans the Wj spaces
0o We write

and, if W, = Spkan{wj,k(x)}
f(x)eW,

f(X) =Y i ()
K



Orthogonality: Vi, =V; ®W,

O This implies that

(@ix (00.wj1(X)) =0
for all appropriate | k,| e[l

O We can write

L5(0) =V, DWW, ®W, @ ---

and also

LZ(D):“'EDW_Z @W—l@WO EDW]. EI—)W2 P--.

(no need for scaling functions, only wavelets!)



Example: Haar Wavelet Functions In

W, and W,

th(x) = W,

olx)

1

iy 2(x) = di(x — 2)
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FIGURE 7.12 Haar
wavelet functions
in Wy and Wi,

T H0 = f,00+ f (%)

f
low frequencies

high frequencies



Wavelet Series Expansions

o A function f(x)eL?(U) can be expressed as

0= Xe;, (095 00+ S S d (k) (9

/‘ JJO/

CjO (k) = < f(x), ?j (X)> detail or wavelet coefficients

dj(K) = F (007} (9)

°([0)=V; ®W; ®W,; ,, ®---



Example: The Haar Wavelet Series
Expansion of y=x?

| y= x> 0<x<1
o Consider 0 otherwise

olf j,=0 , the expansion coefficients are
1

1
Co(0) = IX2¢O,O(X) dx = % do(0) = IXZWO’O(X) dx = 1
0 0

4
J2

32

1 1
d; (0) = g Kyro(x)dx=-"" dy(1) = gxzm(x) dx = V2

32
1 1 J2 3J2
y= 5400,0 (X? + [—Zl//o,o (X)} + {—5%,0 (%) —3%,1()() +ee
V,=V, BW, J

V, 2V, W, =V, BW, W,



Example: The Haar Wavelet Series

Expansion of y=x?
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The Discrete Wavelet Transform (DWT)
oLet f(Xx),x=0,1...,M =1 denote a discrete

function

O Its DWT Is defined as

w¢<jo,k>=ﬁ2f(x)¢jo,k<x>

detail

. 1 .
coefficients WW(J’ k) = WZ f (X)Wj,k (X) )2 Jo
X

f(x)= \/—ZW (JO!k)(Djok(X)—l_\/_ Z

JJo

O Letjon and M =2’ so that .

ZW (3, K)wj k(%)

(x=0,1,..., M -1,
]=01...,J-1

k=01...,2" -1



Example: Computing the DW1

0 Consider the discrete function

f(0)=1 f(D)=4,f(2)=-3, (3)=0
oltis M =4=2° y) =2

O The summations are performed over
x=0,1,2,3 and k=0 for =0 and
k=0,1 for j=1

O Use the Haar scaling and wavelet

functions




Example: Computing the DWT

W,(0,0) == Zf(x)gooo(x)——[ll+41 3-1+0-1]=1
xO

W, (0,0) == Zf(x)z//oo(x)——[l 1+4-1-3-(-1)+0-(-1)] =4
xO

W, (1,0) == Zf(x)gulo(x) [ 12 +4:(~/2)-3-0+0-0|=-15V2

W, (L1) == Zf(x)z//ll(x) [1 0+4-0-3-+2+0-(—/2) | =-15V2



Example: Computing the DWT

0 The DWT of the 4-sample function
relative to the Haar wavelet and scaling
functions thus is

11,4,-15v2,-1.5J2]

O The original function can be
reconstructed as

f(X) = [vv (0,0)¢9,(X) +W,, (0,0)/g 5 (x) +

for Ww(l,o)%,o(x)+WW(1,1)‘//1,1(X)]
x=0,123



Wavelet Transform in 2-D

O In 2-D, one needs one scaling function

(X, Y) =o(X)o(y)
and three wavelets

rw (X, ¥) =w(X)p(y)  edetects horizontal details

' (X, ¥)=@(X)w(y) detects vertical details
W ° (X,¥) =w(X)w(y) -edetects diagonal details

o ¢(.) is a 1-D scaling function and
IS Its corresponding wavelet w(.)

\




2-D DWT: Definition

O Define the scaled and translated basis

functions
?imn (X, Y) =220 x-m, 21y —n)
vt a0y =22y 2Ix=m, 21y —n), i={H,V,D
J,m,n

O Then
M—1N-1

ng(jO’m’n) m XZO yzo f(X y)quo n(X y)
_ M-1N-1
WI(J’mn) \/szoyzof(x y)WJmn(X y) IZ{H1V!D}

f(xy)= ZZW (io, M@} mn (X, Y)
F

_I_

A T3 T WM (Y

NIHVDjjOm n




Filter bank implementation of 2-D
wavelet

ht,r,(—m)AE_. W:;(j, n, n) H H

Rows
] hl_.ri(_n) (along m)

F(x,y) 2555 Lo [al—e wiamm HIL

Weli + 1om, n)e—] Rows

hi;,(—m)—E—. Wg[j, m, 1) L H
I Rows
Columns h*c(fm) Welj, m, n) L L

Rows

W¢[j + 1, m, n)

ir
Rows
(along m) ° hy(n)

v Columns
Wy i, m, n) @— 2+ — hg(m) (along )

Welj, m,n) e—




Example: A

hree-Scale FW"

FIGURE 7.23 A
three-scale FW'T.



Analysis and Synthesis Filters

o o
il =Fll= 3

g

FIGURE 7.24
Fourth-order
symlets:

{a)—(b) decompo-

sition filters;
(c)—(d) recon-
struction filters;
{e) the one-
dimensional
wavelet; (f) the
one-dimensional
scaling function;
and (g) one of
three two-
dimensional
wavelets,

(x, p).
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Want to Learn More About Wavelets?

o “An Introduction to Wavelets,” by Amara Graps

O Amara’s Wavelet Page (with many links to other
resources)

o “Wavelets for Kids,” (A Tutorial Introduction), by B.
Vidakovic and P. Mueller

O Gilbert Strang’s tutorial papers from his MIT webpage

0 Wavelets and Subband Coding, by Jelena Kovacevic
and Martin Vetterli, Prentice Hall, 2000.



