Wavelets and Multiresolution Processing

Thinh Nguyen

Multiresolution Analysis (MRA)

- A scaling function is used to create a series of approximations of a function or image, each differing by a factor of 2 from its neighboring approximations.
- Additional functions called wavelets are then used to encode the difference in information between adjacent approximations.

Series Expansions

- Express a signal $f(x)$ as

$$
f(x)=\sum_{k} \alpha_{k} \varphi_{k}(x)
$$

- If the expansion is unique, the $\varphi_{k}(x)$ are called basis functions, and the expansion set $\left\{\varphi_{k}(x)\right\}$ is called a basis

Series Expansions

- All the functions expressible with this basis form a function space which is referred to as the closed span of the expansion set

$$
V=\overline{\operatorname{Span}\left\{\varphi_{k}(x)\right\}}
$$

- If $f(x) \in V$, then $f(x)$ is in the closed span of $\left\{\varphi_{k}(x)\right\}$ and can be expressed as

$$
f(x)=\sum_{k} \alpha_{k} \varphi_{k}(x)
$$

Orthonormal Basis

- The expansion functions form an orthonormal basis for V

$$
\left\langle\varphi_{j}(x), \varphi_{k}(x)\right\rangle=\delta_{j k}= \begin{cases}0 & j \neq k \\ 1 & j=k\end{cases}
$$

\square The basis and its dual are equivalent, i.e.,

$$
\begin{aligned}
& \varphi_{k}(x)=\tilde{\varphi}_{k}(x) \quad \text { and } \\
& \alpha_{k}=\left\langle\varphi_{k}(x), f(x)\right\rangle=\int \varphi_{k}^{*}(x) f(x) d x
\end{aligned}
$$

Scaling Functions

- Consider the set of expansion functions composed of integer translations and binary scalings of the real square-integrable function $\varphi(x)$ defined by

$$
\left\{\varphi_{j, k}(x)\right\}=\left\{2^{j / 2} \varphi\left(2^{j} x-k\right)\right\}
$$

for all $j, k \in \square$ and $\varphi(x) \in L^{2}(\square)$

- By choosing the scaling function $\varphi(x)$ wisely, $\left\{\varphi_{j, k}(x)\right\}$ can be made to span $L^{2}(\square)$

$$
\left\{\varphi_{j, k}(x)\right\}=\left\{2^{j / 2} \varphi\left(2^{j} x-k\right)\right\}
$$

- Index k determines the position of $\varphi_{j, k}(x)$
along the x -axis, index j determines its width;
$2^{j / 2}$ controls its height or amplitude.
- By restricting j to a specific value $j=j_{o}$ the resulting expansion set $\left\{\varphi_{j_{o}, k}(x)\right\}$ is a subset of $\left\{\varphi_{j, k}(x)\right\}$
- One can write

$$
V_{j_{o}}=\overline{\operatorname{Span}\left\{\varphi_{j_{o}, k}(x)\right\}}
$$

Example: The Haar Scaling Function

$\varphi_{1,0}(x)=\sqrt{2} \varphi(2 x)$

$f(x)=0.5 \varphi_{1,0}(x)+\varphi_{1,1}(x)-0.25 \varphi_{1,4}(x)$
$\varphi_{0,0}(x) \in V_{1}$

$$
\varphi_{0, k}(x)=\frac{1}{\sqrt{2}} \varphi_{1,2 k}(x)+\frac{1}{\sqrt{2}} \varphi_{1,2 k+1}(x)
$$

MRA Requirements

1. The scaling function is orthogonal to its integer translates
2. The subspaces spanned by the scaling function at low scales are nested within those spanned at higher scales:

$$
V_{-\infty} \subset \cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{\infty}
$$

Wavelet Functions

- Given a scaling function which satisfies the MRA requirements, one can define a wavelet function $\psi(x)$ which, together with its integer translates and binary scalings, spans the difference between any two adjacent scaling subspaces V_{j} and V_{j+1}

FIGURE 7.11 The
relationship between scaling and wavelet function spaces.

Wavelet Functions

- Define the wavelet set

$$
\left\{\psi_{j, k}(x)\right\}=\left\{2^{j / 2} \psi\left(2^{j} x-k\right)\right\}
$$

for all $k \in \square$ that spans the W_{j} spaces

- We write
and, if $\quad W_{j}=\overline{\operatorname{Span}\left\{\psi_{j, k}(x)\right\}}$

$$
f(x) \in W_{j}
$$

$$
f(x)=\sum_{k} \alpha_{k} \psi_{j, k}(x)
$$

Orthogonality:

$$
V_{j+1}=V_{j} \oplus W_{j}
$$

\square This implies that

$$
\left\langle\varphi_{j, k}(x), \psi_{j, l}(x)\right\rangle=0
$$

for all appropriate ${ }_{j, k, l \in \square}$
\square We can write

$$
\begin{aligned}
& L^{2}(\square)=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \\
& \text { also }
\end{aligned}
$$

$L^{2}(\square)=\cdots \oplus W_{-2} \oplus W_{-1} \oplus W_{0} \oplus W_{1} \oplus W_{2} \oplus \cdots$
(no need for scaling functions, only wavelets!)

Example: Haar Wavelet Functions in W_{0} and W_{1}

\qquad

$\psi_{0,2}(x)=\psi(x-2)$

$f(x)=f_{a}(x)+f_{d}(x)$
 low frequencies
high frequencies

Wavelet Series Expansions

- A function $f(x) \in L^{2}(\square)$ can be expressed as

$$
f(x)=\sum_{k} c_{j_{0}}(k) \varphi_{j_{0}, k}(x)+\sum_{j=j_{0}}^{\infty} \sum_{k} d_{j}(k) \psi_{j, k}(x)
$$

$c_{j}(k)=\left\langle f(x), \varphi_{j_{j}, k}(x)\right\rangle \quad$ detail or wavelet coefficients

$$
d_{j}(k)=\left\langle f(x), \psi_{j, k}(x)\right\rangle
$$

$$
L^{2}(\square)=V_{j_{0}} \oplus W_{j_{0}} \oplus W_{j_{0}+1} \oplus \cdots
$$

Example: The Haar Wavelet Series Expansion of $y=x^{2}$

- Consider $y=\left\{\begin{array}{lr}x^{2} & 0 \leq x<1 \\ 0 & \text { otherwise }\end{array}\right.$ - If $j_{0}=0$, the expansion coefficients are

$$
\begin{aligned}
& c_{0}(0)=\int_{0}^{1} x^{2} \varphi_{0,0}(x) d x=\frac{1}{3} \quad d_{0}(0)=\int_{0}^{1} x^{2} \psi_{0,0}(x) d x=-\frac{1}{4} \\
& d_{1}(0)=\int_{0}^{1} x^{2} \psi_{1,0}(x) d x=-\frac{\sqrt{2}}{32} \quad d_{1}(1)=\int_{0}^{1} x^{2} \psi_{1,1}(x) d x=-\frac{3 \sqrt{2}}{32}
\end{aligned}
$$

$$
y=\underbrace{\underbrace{\frac{1}{3} \varphi_{0,0}(x)}_{V_{1}=V_{0} \oplus W_{0}}+\underbrace{\left[-\frac{1}{4} \psi_{0,0}(x)\right]}_{V_{0}}+\left[-\frac{\sqrt{2}}{32} \psi_{1,0}(x)-\frac{3 \sqrt{2}}{32} \psi_{1,1}(x)\right]}_{V_{2}=V_{1} \oplus W_{1}=V_{0} \oplus W_{0} \oplus W_{1}}+\cdots
$$

Example: The Haar Wavelet Series Expansion of $y=x^{2}$

The Discrete Wavelet Transform (DWT)

- Let $f(x), x=0,1, \ldots, M-1$ denote a discrete function
- Its DWT is defined as
$\underset{\substack{\text { approximation } \\ \text { coefficients }}}{ } W_{\varphi}\left(j_{0}, k\right)=\frac{1}{\sqrt{M}} \sum_{x} f(x) \varphi_{j_{0}, k}(x)$
detail
coefficients

$$
W_{\psi}(j, k)=\frac{1}{\sqrt{M}} \sum_{x} f(x) \psi_{j, k}(x) \quad j \geq j_{0}
$$

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}\left(j_{0}, k\right) \varphi_{j_{o}, k}(x)+\frac{1}{\sqrt{M}} \sum_{j=j_{0}}^{\infty} \sum_{k} W_{\psi}(j, k) \psi_{j, k}(x) \\
& \quad \text { Let } j_{o}=0 \text { and } \quad M=2^{J} \text { so that }\left\{\begin{array}{l}
x=0,1, \ldots, M-1, \\
j=0,1, \ldots, J-1, \\
k=0,1, \ldots, 2^{j}-1
\end{array}\right.
\end{aligned}
$$

Example: Computing the DWT

- Consider the discrete function

$$
f(0)=1, f(1)=4, f(2)=-3, f(3)=0
$$

- It is $M=4=2^{2} \longrightarrow J=2$
- The summations are performed over
$x=0,1,2,3 \quad$ and $k=0$ for $j=0$ and
$k=0,1$ for $j=1$
- Use the Haar scaling and wavelet functions

Example: Computing the DWT

$$
\begin{aligned}
& W_{\varphi}(0,0)=\frac{1}{2} \sum_{x=0}^{3} f(x) \varphi_{0,0}(x)=\frac{1}{2}[1 \cdot 1+4 \cdot 1-3 \cdot 1+0 \cdot 1]=1 \\
& W_{\psi}(0,0)=\frac{1}{2} \sum_{x=0}^{3} f(x) \psi_{0,0}(x)=\frac{1}{2}[1 \cdot 1+4 \cdot 1-3 \cdot(-1)+0 \cdot(-1)]=4 \\
& W_{\psi}(1,0)=\frac{1}{2} \sum_{x=0}^{3} f(x) \psi_{1,0}(x)=\frac{1}{2}[1 \cdot \sqrt{2}+4 \cdot(-\sqrt{2})-3 \cdot 0+0 \cdot 0]=-1.5 \sqrt{2} \\
& W_{\psi}(1,1)=\frac{1}{2} \sum_{x=0}^{3} f(x) \psi_{1,1}(x)=\frac{1}{2}[1 \cdot 0+4 \cdot 0-3 \cdot \sqrt{2}+0 \cdot(-\sqrt{2})]=-1.5 \sqrt{2}
\end{aligned}
$$

Example: Computing the DWT

- The DWT of the 4-sample function relative to the Haar wavelet and scaling functions thus is

$$
\{1,4,-1.5 \sqrt{2},-1.5 \sqrt{2}\}
$$

\square The original function can be reconstructed as

$$
f(x)=\frac{1}{2}\left[W_{\varphi}(0,0) \varphi_{0,0}(x)+W_{\psi}(0,0) \psi_{0,0}(x)+\right.
$$

for

$$
\left.W_{\psi}(1,0) \psi_{1,0}(x)+W_{\psi}(1,1) \psi_{1,1}(x)\right]
$$

$$
x=0,1,2,3
$$

Wavelet Transform in 2-D

-In 2-D, one needs one scaling function

$$
\varphi(x, y)=\varphi(x) \varphi(y)
$$

and three wavelets

$$
\begin{cases}\psi^{H}(x, y)=\psi(x) \varphi(y) & \text { •detects horizontal details } \\ \psi^{V}(x, y)=\varphi(x) \psi(y) & \text { •detects vertical details } \\ \psi^{D}(x, y)=\psi(x) \psi(y) & \text { •detects diagonal details }\end{cases}
$$

口 $\varphi($.$) is a 1-D scaling function and$ is its corresponding wavelet $\psi($.

2-D DWT: Definition

- Define the scaled and translated basis

functions

$$
\begin{aligned}
& \varphi_{j, m, n}(x, y)=2^{j / 2} \varphi\left(2^{j} x-m, 2^{j} y-n\right) \\
& \psi_{j, m, n}^{i}(x, y)=2^{j / 2} \psi^{i}\left(2^{j} x-m, 2^{j} y-n\right), \quad i=\{H, V, D\}
\end{aligned}
$$

- Then

$$
\begin{aligned}
& W_{\varphi}\left(j_{0}, m, n\right)=\frac{1}{\sqrt{M N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \varphi_{j_{0}, m, n}(x, y) \\
& W_{\psi}^{i}(j, m, n)=\frac{1}{\sqrt{M N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \psi_{j, m, n}^{i}(x, y), \quad i=\{H, V, D\} \\
& f(x, y)=\frac{1}{\sqrt{M N}} \sum_{m} \sum_{n} W_{\varphi}\left(j_{0}, m, n\right) \varphi_{j_{0}, m, n}(x, y) \\
& \quad+\frac{1}{\sqrt{M N}} \sum_{i=H, V, D} \sum_{j=j_{0}}^{\infty} \sum_{m} \sum_{n} W_{\psi}^{i}(j, m, n) \psi_{j, m, n}^{i}(x, y)
\end{aligned}
$$

Filter bank implementation of 2-D wavelet

resulting

decomposition
synthesis FB

$$
\begin{aligned}
& W_{\psi}^{D}(j, m, n) \bullet \\
& \begin{array}{c}
\text { Rows } \\
\text { (along } m)
\end{array} \\
& W_{\psi}^{H}(j, m, n) \bullet
\end{aligned}
$$

Example: A Three-Scale FWT

a b
c d
FIGURE 7.23 A
three-scale FWT

Analysis and Synthesis Filters

FIGURE 7.24
Fourth-order symlets: (a)-(b) decomposition filters; (c)-(d) reconstruction filters; (e) the onedimensional wavelet; (f) the one-dimensional scaling function; and (g) one of three twodimensional wavelets, $\psi^{H}(x, y)$.

analysis filters
synthesis filters

scaling

 function
Want to Learn More About Wavelets?

- "An Introduction to Wavelets," by Amara Graps
- Amara's Wavelet Page (with many links to other resources) http://www.amara.com/current/wavelet.html
- "Wavelets for Kids," (A Tutorial Introduction), by B. Vidakovic and P. Mueller
- Gilbert Strang's tutorial papers from his MIT webpage http://www-math.mit.edu/~gs/
- Wavelets and Subband Coding, by Jelena Kovacevic and Martin Vetterli, Prentice Hall, 2000.

