Capacitors

Capacitors are two terminal, passive energy storage devices. They store electrical potential energy
in the form of an electric field or charge between two conducting surfaces separated by an insula-
tor called a dielectric. Because an electrical insulator separates the plates, a capacitor cannot not
conduct direct current. It does however, conduct alternating current.

Several schematic symbols for a capacitor are shown below. The symbol resembles the two con-
ducting surfaces separated with a dielectric.
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Figure 1: Capacitor Schematic Symbols

One of the main distinguishing characteristics of a capacitor is its dielectric. The dielectric material
may be air, Mylar, polyester, mica or a variety of other materials. The dielectric affects many of the
parameters of the capacitor such as its temperature stability, breakdown voltage and size. Some
capacitors are polarized, such as electrolytic or tantalum capacitors. These capacitors require con-
nections be made to it observing a particular polarity.

Capacitors are also differentiated as between being fixed or variable in value. In the air variable
capacitor, there are conducting plates on a rotatable shaft that are sandwiched between plates on
a fixed frame. Rotating the shaft changes the degree of overlap between the plates, effecting the
capacitance value. The are also variable capacitors that use a thin plastic dielectric.

Below we see several different types of capacitors. From top left are two variable capacitors called
“trimmer capacitors”. These capacitors are generally small in value, 1-25pF, and are used at radio
frequencies. Moving right, the next capacitor is a mica capacitor, so called because of its mica
dielectric. It is a very low loss capacitor also useful at radio frequencies. The two twisted wires
form what is known as as gimmick capacitor. It provides a one-time trimming capacitor that is set
by clipping off a little of the two wires until the desired capacitance is achieved.



Figure 2: Various capacitors

On the bottom row starting from left, we have a Mylar capacitor, followed by a ceramic capacitor
and an electrolytic capacitor. The Mylar cap is useful at lower frequencies and also has very low
DC leakage. No dielectric is perfect so there is always some DC leakage in a capacitor.

The ceramic cap is a very general purpose capacitor and is useful from audio to high frequen-
cies. The electrolytic capacitor on the far right is an example of a polarized capacitor. The black
stripe indicates the negative terminal. Connecting the negative lead of an electrolytic capacitor to
a higher potential than the positive lead, can cause permanent damage and possibly a rupture of
the capacitor case.

The amount of capacitance available in a capacitor depends on its physical dimensions. For a
parallel plate capacitor;
C=¢€A/d

where C' is capacitance in Farads, A is surface area between the plates, € is the permitivity of the
dielectric and d is the distance between the plates. We often think of capacitors as parallel plate
capacitors but they may be found in many physical configurations. However, the general mean-
ing of this equation holds for other physical configurations. In other words, the closer the two
surfaces and the larger their surface area is, the greater the capacitance.

In terms of charge and voltage, the capacitance is defined as;
C=Q/V

where @) is charge in Coulombs and V is the voltage existing between the plates; thus the units of
capacitance are coulombs per volt.



Capacitors in Series and Parallel

From our work on reducing resistor network to a simplified form, we are often presented with
parallel and series combinations of capacitors. The same techniques may be applied to capacitors
to find an equivalent capacitor for a network of capacitors. However, unlike parallel resistors,
parallel capacitors have an equivalent capacitance that is obtained by summing their values. Con-
versely, the equivalent capacitor to a set of series capacitors is the reciprocal of the sum of the
capacitors.

ci| ca| cs | Ceq=C1+C2+C3
I

AR

Figure 3: Capacitors in Series and Parallel
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Capacitor Current-Voltage Relationship
The current-voltage relationship for the capacitor is;
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where i is the current through the capacitor and o s the change in voltage per unit time. We

could also say;
1. dv

'

Note that the usual capital I and V has been exchanged for a lower case i and v. This is to empha-
size the time varying nature of the current and voltage.

These equations above tell us several things very clearly. The first one makes clear that if the volt-
age is not changing, i.e.; % = 0 (a DC source) then no current is flowing. Therefore, a capacitor is
an open circuit to DC currents.

Secondly, if a constant current is applied to the capacitor, the change in voltage across its terminals
with respect to time is constant, i.e., a straight line. A Spice simulation illustrates this well.



A capacitor charging from a constant current source

Iin gnd cap_in PULSE(O 10ma Oms 1ns 1ns 25ms 50ms) ;10am current source

cl cap_in gnd 1uF
rl cap_in cap_in 1G ;resistor required for convergence
.control

tran lus 10ms
plot v(cap_in)
gnuplot cap_isrc_charging V(cap_in) x1 lu 10m ;make .eps for latex
set noaskquit
.endc
.end

In this circuit, the 1G resistor is only required so that spice has a ground reference, otherwise it
will have convergence errors. The resistor is so big, it may be ignored. Running this simulation
yields:
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Figure 4: 10mA Constant Current Source Charging a 1uF Capacitor

Working the equation out yields:
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This make sense as the graphs shows a voltage ramp of 10 volts per millisecond.

Finally, we can see that the voltage across a capacitor cannot change instantaneously. For the
voltage to change in zero time, then i(c) would have to be infinite.



RC Circuit Behavior

When a capacitor is charged from a voltage source in series with a resistor, we can see that the
voltage across the capacitor terminals charges differently. See the schematic below.
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Figure 5: Circuit to Determine Capacitor Transient Response

Assuming that initially, there is no stored charge on the capacitor at (¢ = 0), when the switch is
closed, the charge on the battery begins to charge the capacitor through the resistor. As the volt-
age across the capacitor terminals charges to the source potential, the current flow asymptotically
approaches zero. We say at this point the capacitor is charged. If we disconnect the capacitor from
the circuit, we would find the voltage across it remains equal to the battery voltage.

For this particular circuit, it has been determined that the voltage across the capacitor is expressed
by the equation:
Ve(t) = Vire(1 — eit/RC)

This relationship can also be seen from a ngspice simulation as shown below.

RC network - charging

Vin vin O 10.0 PULSE(O 10.0 ims 1ns 1ns 25ms 50ms); 10V source

rl vin cap_in 1k
cl cap_in gnd 1uF
.control

tran 100ns 10ms
plot rc_sim V(vin) V(cap_in) x1 1u 8m

* gnuplot rc_sim V(vin) V(cap_in) x1 1lu 8m ;make simoutl.eps for latex
set noaskquit

.endc

*measure the time difference between input reaching 0.01v to
*cap_in reaching 6.32...i.e, the RC time constant

.meas tran tdiff trig v(vin) val=0.01 rise=1 td=500ps

+ targ v(cap_in) val=6.32 rise=1 td=500ns
.end



rc network - charging
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Figure 6: Capacitor charging through a resistor

Although there is no switch in this circuit, the voltage source is not turned on until .001 sec. We
can clearly see the exponential charging curve.

If we choose t equal to the product of R and C, the capacitor voltage expression becomes:

ch(t) = Vsrc(l - 6_1)

V(#) = Vire(1 — 0.368)

Ve(t) = 0.63Vspe
The product RC is called the RC time constant or T and has units of seconds. When time ¢ is equal
to RC, the voltage across the capacitor will have reached 63% of final value of V... Our spice

simulation found the time for the target voltage to reach 6.32 volts with the .measure statement.
The value it found was:

Measurements for Transient Analysis
tdiff = 9.996728e-04

This is almost exactly 1ms, our time constant 7, as (1000)10_6 = 1073 seconds, or 1 millisecond



If we start with a capacitor charged to V.. and discharge it, we also see a different exponential
behavior. For that circuit, without a source but with only a charged capacitor and resistor, the
equation for the voltage across the capacitor is given by:

Velt) = Vire (e7/7C)

If we let t equal RC we get:

Vo(t) = 0.368Ve

So, the voltage across the cap after one time constant, 7, will be .368 times the initial voltage the
capacitor was charged to.
Again, we can run an Spice simulation.

RC network - Discharging charged capacitor through a resistor

.ic v(cap_in)=10V ; cap initally charged to 10 volts
rl cap_in gnd 1k
cl cap_in gnd 1uF

.control
tran 100ns 10ms

* gnuplot rc_sim_disch V(cap_in) x1 lu 8m ;make .eps file for latex
plot rc_sim_disch V(cap_in) x1 1u 8m
set noaskquit

.endc

*measure the time difference between cap_in starting from 9.99v to
*reaching 3.68...i.e, the RC time constant

.meas tran tdiff trig v(cap_in) val=9.99 fall=1 td=1ps

+ targ v(cap_in) val=3.68 fall=1 td=1ps

.end

Measurements for Transient Analysis
tdiff=1.098612e-03

Again, almost exactly 1ms, our time constant, as 1000 x 1 x 1076 =1x%x10"3



rc network - discharging
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Figure 7: Capacitor discharging through a resistor

Capacitor Applications

Capacitors are used in many if not most electronic circuits. They primarily serve in to broad cate-
gories; as timing element and to provide selection or rejection of certain frequencies.

We have seen already how a capacitor can provide a time delay to an input voltage when used
in conjunction with a resistor. The RC time constant 7 allows calculation of a time period before
a voltage waveform reaches a particular value. If we have an element that can make a decision or
cause a switch to be actuated at this voltage then we can also assume that the delay from the onset
of the applied voltage to the switch actuation will be given by 7.

Capacitors are frequently used in AC to DC power supplies. The input AC waveform is con-
verted to a pulsating DC waveform that although is DC, is unusable to a device attached to it. The
problem is that the DC waveform while always flowing in one direction and positive, pulsates
between zero and a little over eight volts. However, we can use the energy storage properties of
the capacitor to supply the current between the humps in the waveform. When the capacitor is
used in this way, its also known as a filter capacitor. Essentially, its filtering out the big bumps in
the DC waveform, providing a useful output voltage.

In the second waveform you can see the output voltage as the green trace. When the input voltage
begins its downward path, the capacitor supplies current to the load resistor. As it does, we see
the beginning of the exponential discharge curve in the output voltage. But before the voltage on
the capacitor can drop too low, the next hump comes and both supplies current to the load resistor
and charges the capacitor.
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(@) Input and Output from Fullwave Rectifier

(b) Fullwave Rectifier with Filter Capacitor




