
GNU toolchain

I The GNU toolchain has played a vital role in the development of the
Linux kernel, BSD, and software for embedded systems.

I The AVR toolchain was built upon the GNU toolchain and includes:
I bash: (Bourne-again shell)
I make: Automation tool for compilation and build
I avr-gcc : GNU Compiler for AVR architecture
I binutils: Suite of supporting tools for AVR

I avr-as, avr-ld, avr-objcopy, avr-size, avr-ld

I gdb: GNU debugger
I avr libc : Subset of standard C library for Atmel AVR

I io.h, delay.h, ctype.h, math.h, string.h, interrupt.h, twi.h, etc.

GNU toolchain

.c

.s

.S

.c
.s

.h
.h

C Compiler Assembler

.hex

Obj

Lib

startup
codeLinker

.elfObject Copy

DebuggerProgrammer

AVR Libc

GCC

GNU Binutils

AVRDUDE

GDB

User’s Input Files

I C source files are compiled by avr-gcc and assembled by avr-as.
I Assembly files (.S) can be read in directly to avr-as
I Object files from the assembler are linked by avr-ld to produce a

single relocatable object file.
I Physical memory addresses are assigned to the relative offsets within

the relocatable program by avr-ld.
I The linker inserts the necessary startup and library code required.
I The .elf (Executable and Linkable Format) file output from the

linker which has sufficient information to build the programming
files.

GNU toolchain

I The object file from the avr-ld contains separate sections containing
code or data:

I Executable code is in the .text section
I Initialized global variables are in the .data section
I Uninitialized global variables are in the .bss section

I To view these areas, invoke avr-size on the .elf file.

traylor -ubuntu$ avr -size alarm_clock.elf

text data bss dec hex filename

8646 317 342 9305 2459 alarm_clock.elf

I Total flash used will be (.text + .data + .bss.) or 9305 bytes.

I These are decimal values except for the hex column.

I Why are initalized and uninitalized variables being stored in flash?

GNU toolchain

I make looks for a makefile in the current directory. The makefile
describes the dependencies and actions using makefile rules

I A rule is formed as follows:
target : prerequisites

<hard tab> commands

I target: usually the name of a file generated by the command below.
It can also be the name of an action to carry out. (phony target)

I prerequisites: file(s) that used as input to create the target. A
target usually depends on several files.

I commands : usually shell command(s) used to create the target.
Can also specify commands for a target that does not depend on
any prerequisites. (e.g.; clean)

GNU toolchain

I An example rule:

sr.o : sr.c

avr-gcc -g -c -Wall -O2 -mmcu=atmega128 -o sr.o sr.c

I This rule tells make that:
I sr.o is dependent on sr.c
I if sr.c is newer than sr.o, recreate sr.o by executing avr-gcc

I A rule then, explains how and when to remake certain files which are
the targets of the particular rule. make carries out the commands on
the prerequisites to create or update the target.

GNU toolchain

I make does its work in two phases:

1. Include needed files, initialize variables, rules, build dependency graph
2. Determine which targets to rebuild, and invoke commands to do so

I The order of the rules is insignificant, except for determining the
default goal.

I Rules tell make when targets are out of date and how to update
them if necessary.

I Targets are out of date if they do not exist or if they are older than
any of its prerequisities.

GNU toolchain
I A simple makefile for edit

edit : main.o kbd.o command.o display.o insert.o search.o files.o\

utils.o

cc -o edit main.o kbd.o command.o display.o insert.o search.o\

files.o utils.o

files.o : utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc utils.c

clean :

rm edit main.o kbd.o command.o display.o insert.o search.o files.o \

utils.o

GNU toolchain

I A simple make file for sr.c including variables

Listing goes here

GNU toolchain

I We can make the makefile more general purpose with some new
rules.

I Implicit rules - make implicitly knows how to make some files. Its has
implicit rules for updating *.o files from a corresponding *.c file
using gcc. We can thus omit commands for making *.o files from
the object file rules.

I Pattern rules - You can define an implicit rule by writing a pattern
rule. Pattern rules contain the character %. The target is considered a
pattern for matching names.
The pattern rule:
%.o : %.c

command
Says to create any file ending with .o from a file ending with .c

execute command.

GNU toolchain

I Automatic variables
I These are variables that are computed afresh for each rule that is

executed based on the target and prerequisites of the rule.
I The scope of automatic variables is thus very limited. They only have

values within the command script. They cannot be used in the target
or prerequisite lists.

I Some automatic variables we will use:
$@ The file name of the target of the rule
$< The name of the first prerequisite
$? The names of all the prerequisites newer than the target
$^ The names of all the prerequisites

GNU toolchain

Big make file goes here

GNU toolchain

I Generally, translational units are turned into object files. But header
files are not standalone translational units, make has no way of
knowing that it needs to rebuild a .c file when a .h file changes.

I gcc is able to read your source file and generate a list of prerequisite
files for it with the -MM switch.

I We can take this output and create another makefile from it using
some shell commands. There will be one makefile for each source
file. Each makefile is then included in our top level makefile so that
the dependencies are taken care of.

I Here is the makefile code for this:

%.d: %.c

@set -e; rm -f $@; \

$(CC) -M $(CFLAGS) $< > $@.$$$$; \

sed ’s,\($*\)\.o[:]* ,\1.o $@ : ,g’ < $@.$$$$ > $@; \

rm -f $@.$$$$

-include ($SRCS:.c =.d)

