
8-bit
Microcontroller

Application
Note

Rev. 1231B–AVR–05/02
AVR242: 8-bit Microcontroller
Multiplexing LED Drive and a 4 x 4 Keypad

Features
• 16 Key Pushbutton Pad in 4 x 4 Matrix
• Four Digit Multiplexed LED Display with Flashing Colon
• Industrial Real Time Clock/Timer
• Controls ON/OFF Times for Two Loads
• Tactile Feedback via Piezo Sounder
• Flashing Display to Indicate Power-down Event
• Dual Function I/O Pins
• Minimum External Components
• Efficient Code
• Complete Program Included for AT90S1200
• Suitable for any AVR MCU with 20 Pins or More

Introduction
This application note describes a comprehensive system providing a 4 x 4 keypad as
input into a Real Time Clock/Timer with two outputs. This system control external
loads, and a four digit mulitplexed LED display. The application is designed to show
the versatility of the AVR port configuration, and the efficiency of the rich instruction
set. The application will run on any AVR with 20 pins or more, although due consider-
ation will have to be given to stack initialization and table placement. The program has
been structured within the confines of the three level deep hardware stack at the
AT90S1200 and could be better structured in the other AVRs with software stack.

Theory of Operation
The connection of a 4 x 4 keypad, a piezo sounder, two LED loads and a four digit
multiplexed display, would normally require 23 I/O lines. This application shows how
this can be reduced to 15 with a bit of ingenuity, allowing the smaller 20-pin AVR to be
used. The circuit diagram is shown in Figure 1 and is complete apart from the Oscilla-
tor components, which have been omitted for clarity.

The four keypad columns are connected to the low nibble of port B and the four key-
pad rows are connected to the high nibble. The same eight bits also directly drive the
segment cathodes of the four digit LED display, via current limit resistors R13-20. The
pins thus serve a dual function, acting as outputs when driving the LED display and
I/O when scanning the keypad. This is accomplished by using the programmable
nature and large current drive capabilities of the AVR ports to good effect.
1

The majority of the time port B sinks the 9 mA of current, to directly drive the LED seg-
ments. Each digit is switched sequentially in 5 ms time slots, to multiplex the displays via
the PNP transistors Q1-4. The common anodes of the LED display digits are driven via
PNP transistors, since the maximum possible 72 mA (9mA - 8 segments) of current is
outside the handling capabilities of the ports.

These can be any PNP type capable of driving 100 mA or so (e.g, BC479). This could
be modified by paralleling up two port pins for each anode to share the current, but then
the number of I/O pins required would necessitate the use of a larger MCU.

Before the start of each display cycle, the port configuration is changed to provide four
inputs with internal pull-ups enabled, and four outputs in the low state to scan the key-
pad. If a key is pressed the nibble configuration is transposed to calculate the key value
with the key number stored in a variable. A short delay is allowed between each port
change to allow the port to settle. This method is more code efficient than the conven-
tional “snake” method in this application.

The common anode drives are disabled during this time to avoid interference. The port
configuration is then reinstated ready for the multiplexing routine. The main housekeep-
ing function then uses this key variable to take the appropriate action.

The Real Time Clock is interrupt driven, using Timer0 clocked from the system clock
divided by 256. The Timer is preloaded with the number 176 and interrupts on overflow
every five milliseconds, ensuring high accuracy if a good quality crystal is used. To be
accurate a 4.096 MHz clock crystal is employed. The program could be modified to use
a 4 MHz crystal with minor modifications.

The interrupt service routine reloads the Timer and increments three variables: A
counter variable (tOCK), a keypad debounce variable (bounce) and a Counter to maintain
the seconds count (second). This is used by the main housekeeping function to update
the minutes and hours, which in turn are displayed by the display function.

The housekeeping function checks the two loads for ON or OFF times and controls the
outputs on the high nibble of port D accordingly. In this application the loads are simu-
lated by red and green LEDs driven in current sink (active low) configuration. These
could be replaced by relay drivers or opto-coupled triacs to drive power loads.

The keypad provides a means of setting up (SET) the real time and the ON/OFF times
of each load and also allows the loads to be turned off (CLEAR) at once. A Piezo-
sounder, connected to the top bit of port D, provides an audible beep on keypress.

The use of the port B pins requires some careful consideration. Since the pins are used
for two functions, it is important that if a key is pressed, it does not short out the display.
This is achieved by placing current limit resistors in series with each key. When used as
inputs the internal pull-up resistors are employed saving external components. The
choice of resistor value (R1-8) is such that the potential division is negligible. With the
values chosen, and on a 5V supply, the logic levels are about 0.6V for logic “0” and
4.95V for logic “1”. Resistors R21 and R22 are the traditional current limit resistors for
the LEDs and can be any suitable value for the supply rail. This note was tested using
330 Ω on a 5V supply. The LEDs are driven in current sink mode (“0” = ON) and provide
about 9 mA of forward current with the values specified.

Implementation The firmware comprises of two main areas, a background function, which is interrupt
driven and provides the real-time accuracy, and the foreground processes. These con-
sist of three sections, the Reset routine, which sets up the ports, Timer and the
interrupts, the Timesetting routine and the main housekeeping function.
2 AVR242
1231B–AVR–05/02

AVR242
Foreground Process The foreground process is running for most of the time, only interrupted for 5.127 micro-
seconds (21 cycles) every 5 ms to update the Real Time Clock variables. It consists of
three sections, RESET, TIME SETTING and HOUSEKEEPING. The flowchart is shown
in Figure 1.

Figure 1. .Foreground Process Flow Chart (Part 1), Continued on Figure 3

Reset Section On Power-up, or Reset conditions, a Reset routine is entered to initializes the system
hardware. The ports are initialized with their starting directions and all pins set high to
turn off any loads. These are fixed as all outputs initially, requiring 255 to be loaded into
the Data Direction Registers of both ports. The directions are modified on port B for a
short time by the keypad scanning function. The Timer prescaler is set up to divide the
clock by 256, giving a 5 ms interrupt period when the timer is loaded with 176. The
Timer Overflow Interrupt is then enabled followed by Global Interrupts.

The equation for the interrupt period is tied to the 4.096 MHz clock, providing an instruc-
tion cycle time of 0.2441 microseconds. The number n to be loaded into the Timer0
Register TCNT0 is thus given by :

(256 - n) * 256 * 0.2441 microseconds.

A value of 176 provides 5 ms exactly , ensuring high RTC accuracy.

Y

N

Start

Initialise ports

Set up timer
prescaler

Load timer 0

Enable interrupts

Display
flash FFFF

Set?

Set RTC

A

Reset

Time setting
3
1231B–AVR–05/02

Time Setting
The LEDs are now made to Flash EEEE to indicate that the time is incorrect and needs resetting. This will continue until the
SET key is pressed on the key pad. This calls the “setrtc” function which handles input from the keypad and display feed-
back. Once the time has been Reset, the main housekeeping function handles the updating and driving of the display from
the main “second” variable, and scans the keypad for commands.

Figure 2. Circuit Diagram for Keypad/Display Unit

20

19

18

17

16

15

14

13

12

11

RESET

PD0

PD1

XTAL2

XTAL1

PD2

PD3

PD4

PD5

GND

VCC

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PD6

AT90S1200
1

2

3

4

5

6

7

8

9

10

AT1
vcc

D1
GREEN

R21
330

vcc

D2
RED

R22
330

LS1

PIEZO SOUNDER

C1

C2

100n

100uF Tant

vcc

R9
4K7

R12
4K7

R11
4K7

R10
4K7

A4 A1A3 A2

vcc vcc vcc vcc

Q3
PNP

Q4
PNP

Q3
PNP

Q2
PNP

dp g f e d c b a

R6

R5

R7

R8

R2

R3

R4

R1
2K7

2K7

2K7

2K7

2K7

2K7

2K7

2K7

8
Row 4

7
Row 3

6
Row 2

5
Row 1

C
ol

1

C
ol

2

C
ol

3

C
ol

41 2 3 4

1

4

7

A

2

5

8

0

3

6

9

B

F

E

D

C

R20
330

R19
330

R18
330

R17
330

R16
330

R15
330

R14
330

R13
330
4 AVR242
1231B–AVR–05/02

AVR242
Housekeeping The main housekeeping function does the work of updating the time variables derived
from the background process and driving the LED display with the correct time. The key
pad is also scanned to allow command inputs and the on/off times are checked for the
loads. The flowchart is shown in Figure 3.

The seconds, incremented by the interrupt service routine, are compared with 60. If 60
seconds has passed the minute variable is incremented and the seconds reset to zero.
The same procedure is adopted for the hours, with the minute variable compared to 60
and the hour variable incremented accordingly. The hour variable is then compared with
24 to check for the start of a new day and the hours and seconds all reset to zero.

To save on the use of RAM storage, the minutes and hours have been confined to one
byte each. The low nibble houses the low digit and the high nibble the high digit. This
means that it must be treated as BCD and the appropriate error trapping included to
ensure correct counting. The minute or hour byte must therefore be split up into nibbles
and checked for size on each check.

If no change is encountered during any of the checks on minutes or hours the next sec-
tion is bypassed and the time is displayed. The clock is a 24 hour type and consequently
must cause a start of new day when the time is incremented from 23:59. The display
routine is a function called “display” which also includes the keyscan routine. This func-
tion is explained later.

On return from the display function the key value is checked, followed by the on/off
times for the loads and any appropriate action taken before the housekeeping loop is
repeated. E.g., If load 1 on time equals the RTC then load 1 is turned on.

A “Flag” variable is used to contain single bits to indicate various actions. This is used to
pass control from one function to another. For this application NINE flags were required,
which is one more than that available in one byte. To save using another register just for
one bit, the “T” Flag in the Status Register has been employed for the ninth bit. This is
useful because it can be tested using specific branch instructions (BRTC, BRTS) mak-
ing programming easy, with the SBRS and SBRC instructions used for the main “Flag”
tests. The flags are active high and are allocated as shown in Table 1 on page 7, along
with their function: The time taken around the loop does not affect the accuracy of the
RTC since it is interrupt driven, with the loop being interrupted four times during one
pass of the loop.
5
1231B–AVR–05/02

Figure 3. -Foreground Process Flow Chart (part 2)

Y

N

Y

N

Y

N

A

Toggle
colon blink

60s?

Increment
minutes

60m?

Increment
hours

24h?

Start new day

Display time

Time set?

Load
control

Y

N

Y

N

Set RTC

Control loads
6 AVR242
1231B–AVR–05/02

AVR242
The central colon (dp) is flashed at half second intervals using the “blink” variable incre-
mented by the background interrupt process. This is used to toggle the “Flash” variable
which is used as a mask by the display function. The load check routine is actually more
complex than the single flowchart box would suggest, testing the various control bits in
the “Flag” word and taking action accordingly. Including this in the flowchart would have
made it very difficult to follow.

If it picks up a “set load” command it calls up the “setrtc” function to load in a new on or
off time for the load key selected. The same flashing method is employed here, only now
the display flashes “n” in the appropriate digit being entered and moves across from
high to low as the time is entered. The user is thus sure which number is going where.

A CLEAR command turns off both loads immediately cancelling any previous on/off
commands.These processes do not affect the RTC, which still maintains the correct
time in the background. The RTC can also be modified, to update the time, at any stage
by the same process.

Display Function The flowchart is shown in Figure 5. This function is called up by the Flashing Reset Rou-
tine, the “setrtc” function and the housekeeping routine, and serves to scan the keypad
and multiplex the display. If a larger AVR is to be employed it would be worth making the
digit drive segments a function and calling it up four times. This can not be done with the
AT90S1200, because of the three level deep stack.

The first section disables the display anode drives and then scans the keypad. This is
done by changing the PORTB configuration to inputs on the row nibble and outputs on
the column nibble. The internal pull-ups are also enabled on the four inputs. All four col-
umns bits are taken low and the row inputs read from PINB. This generates either a
base number, stored in “key” of 0, 4, 8, or 12 depending on the key row pressed, or the
number 0x10 if no key is pressed.

The port configuration is then swapped over to make the row nibble outputs and the col-
umn nibble inputs, and the row bits taken low. After a short settling time the column
inputs are read from PINB and used to add a small offset of 0, 1, 2, or 3 to the base
number depending on the key column pressed. The end result is a number stored in
“key” which is used as an index to look up the actual key value required in a table stored
in EEPROM. The true key value is written back into “key” and used by the calling func-
tions. This is necessary because the keys are not arranged in a logical order. It also
provides greater flexibility for the programmer. The keypad layout and functions are
shown in Figure 4.

Table 1. Flag Word Usage

“FLAG” Bit Number Function

0 Load 1 active

1 Load 2 active

2 Load 1 ON

3 Load 1 OFF

4 Load 2 ON

5 Load 2 OFF

6 Key press OK (debounced)

7 5 ms tick pulse

Status T Flag Time Set encountered
7
1231B–AVR–05/02

Figure 4. Keypad Layout and Function

Key values greater than nine are trapped and used to set the corresponding bits in the
“Flag” word used by the calling functions. A key value of 0x10 indicates that no key has
been pressed.

1
#1

4
#4

7
#7

A
SetRTC

2
#2

5
#5

8
#8

0
#0

3
#3

6
#6

9
#9

B
Clear

F
Load 1 ON

E
Load 1 OFF

D
Load 2 ON

C
Load 2 OFF
8 AVR242
1231B–AVR–05/02

AVR242
Figure 5. Flowchart for keyscan part of “display” function

If a key has been pressed a short “beep” is sent to the Piezo Sounder connected to
PORTD bit six for tactile feedback to the user.

The digits are then multiplexed in turn in 5 ms time slots, timed by the 5 ms flag set by
the background process. This gives about a 50 Hz display rate producing a bright, flicker
free display (ignoring the short keyscan time).

Each digit drive uses a look-up table stored in EEPROM for the seven segment decod-
ing, taking the index in via the “Temp” Register and using it to access the byte required
to light up that character. Several special characters are used to make keypad input
more meaningful. For instance the letter “E” is defined for the flashing error display on
Power-up, the letters “o”, “n” and “f” are defined for the load setting ON/OFF inputs. If
you are using a larger AVR for your application you may wish to transfer these tables to
ROM and access them by indexed addressing.

The colon blinking section then checks for a half second event and changes the “Flash”
mask used in the previous display process, thus blinking the centre colon to indicate
correct clock function.

Y

N

Y

N

Display

Clear Display

Change port
B I/O

Settle time

Row 1?

Row 2?

Row 3?

Row 4?

Swap port
I/O nibbles

Settle delay

A

Y

N

Y

N

Key = 0

Key = 4

Key = 8

Key = 12

Y

N

Y

N

Y

N

Y

N

Key = Key +0

Key = Key +1

Key = Key +2

Key = Key +3

A

Col1?

Col 2?

Col 3?

Col 4?

Set "flag"
if needed

Key ?

Restore port
B configuration

B

Beep
Y

N

9
1231B–AVR–05/02

The function then returns to the calling function with the key value stored in “key”.

Figure 6. Flowchart for Display Part of “Display” Function

Setrtc Function The flowchart is shown in Figure 7. This function is called up by all the routines which
require keypad input to set up the display. This happens at Power-up/Reset to enter the
real time, on pressing the SET key to modify the real time, and on pressing any of the
four load setting keys. It calls the display function to find the keypress and display the
appropriate digits. It uses a “bounce” counter, incremented every 5 ms by the back-
ground interrupt function, to provide a reasonable keypress action.

The function proceeds in four phases, starting from the most significant digit and work-
ing to the least significant digit, displays a flashing “n” in each digit until a suitable value
has been entered via the keypad. Values that are out of range are trapped and the input
requested again until it is in range.

When all four digits have been input correctly the function exits with the hours in the
variable “hiset” and the minutes in the varibable “loset”. These are redirected by the call-
ing function into the appropriate variables for use by the housekeeping function.

B

Light Digit 1
for 5 ms

Light Digit 2
for 5ms

Light Digit 3
for 5 ms
including

colon flash

Light Digit 4
for 5 ms

Return
10 AVR242
1231B–AVR–05/02

AVR242
Figure 7. Flow Chart for “setrtc” Function

Y

N

Y

N

Y

N

Y

N

SetRTC

Set flashing
display

Enter digit 4

OK?

Enter digit 3

OK?

Enter digit 2

OK?

Enter digit 1

OK?

Clear digit flash

Return
11
1231B–AVR–05/02

Background Function
(Tick)

This function is triggered every 5 ms by Timer0 Overflow and interrupts the foreground
function at any point in the loop. The routine consequently preserves the Status Register
on entry and restores it on exit as a matter of course, to avoid disturbing the foreground
processes. The use of the “Temp” Register is also avoided for the same reason.

The function is very straightforward and merely increments three counting registers on
every entry, sets the 5 ms tick Flag used by the display routine, reloads Timer0, and
increments the RTC second counter if necessary. The flowchart is shown in Figure 8.

Figure 8. Flowchart for “Tick” Background Function

Y

N

N

tick

Preserve status

Increment
counters

Set 5 ms flag

1s?

Reload timer 0

Restore status

Return

Increment
"seconds"
12 AVR242
1231B–AVR–05/02

AVR242
Resources
Table 2. CPU and Memory Usage

Function
Code Size

(Words) Cycles Register Usage Interrupt Description

Reset 17 17 cycles R16, R31 – Initiialization

Timesetting 9 14 cycles R1, R2, R18,
R19, R24, R25

– Initial setting of
RTC

Housekeeping 97 52 typical R1, R2, R16,
R17, R18, R19,
R20, R21, R24,
R25, R28

– Main
housekeeping
loop to maintain
real time display,
respond to
keypad and
control loads.

Display 158 150 typical R16, R17, R20,
R21, R23, R24,
R25, R26, R28

– Keyscan and
Display function

Setrtc 47 45 typical R1, R2, R16,
R20, R22, R24,
R25, R26, R28

- Function to
handle keypad
time and load
setting input

tick 15 21 cycles R0, R31 TIMER0 Background
interrupt service
routine to
provide real time
5 ms and 1 s
“tick”

TOTAL 343 – R0, R1, R2,
R16, R17, R18,
R19, R20, R21,
R22, R23, R24,
R25, R26, R28,
R31

TIMER0

Table 3. Peripheral Usage

Perpheral Description Interrupts

Timer0 5 ms Tick Counter Timer0 Overflow with prescalar
set to divide by 256

16 byte EEPROM Key to value mapping Seven segment
decoding

-

8 I/O pins PORT B 4 x 4 keypad connections and LED
segment drive(dual function)

-

3 I/O pins PORT D Load 1 and 2 and Piezo Sounder -

4 I/O pins PORT D Anoder drive for four digit LED display -
13
1231B–AVR–05/02

;**** A P P L I C A T I O N N O T E A V R 242 ************************

;*

;* Title: Multiplexing LED drive and 4x4 keypad sampling

;* Version: 1.0

;* Last Updated: 98.07.24

;* Target: All AVR Devices

;*

;* Support E-mail:avr@atmel.com

;*

;* DESCRIPTION

;* This Application note covers a program to provide a 24 hr Industrial

;* timer or real-time clock using I/O pins for dual functions.

;* With input via a 4 x 4 matrix keypad, output to a multiplexed

;* four digit LED display and two ON/OFF outputs to drive loads via additional

;* interface circuitry. LED loads are driven in this example but it could

;* drive Any load with the addition of suitable components. Tactile feedback

;* is provided on every key press by a piezo sounder which beeps when a key is

;* pressed.

;* Included is a main program that allows clock setting via the keypad

;* and one ON/OFF time setting per 24 hours for each load, functions for the

;* real time clock, key scanning, and adjustment routines. The example runs on

;* the AT90S1200 to demonstrate how limited I/O can be overcome, but can

;* be any AVR with suitable changes in vectors, EEPROM and stack pointer.

;* The timing assumes a 4.096 MHz crystal is employed (4 MHz crystal produces

;* an error of -0.16% if 178 instead of 176 used in the timer load sequence,

;* but this could be adjusted in software at regular intervals). Look up

;* tables are used in EEPROM to decode the display data, with additional

;* characters provided for time and ON/OFF setting displays and a key pad

;* conversion table.

;* If the EEPROM is needed for your application the tables could be moved

;* to ROM in the larger AVR devices.

;***

;***** Registers used by all programs

;******Global variables used by routines

.def loset =r1 ;storage for timeset minutes

.def hiset =r2 ;storage for timeset hours

.def ld1minon =r3 ;storage for load on and off times

.def ld1hron =r4 ;set from keypad entry

.def ld1minoff =r5 ;and tested in the housekeeping function

.def ld1hroff =r6 ;and stores on or off times for the loads

.def ld2minon =r7

.def ld2hron =r8

.def ld2minoff =r9

.def ld2hroff =r10

.def temp =r16 ;general scratch space

.def second =r17 ;storage for RTC second count

.def minute =r18 ;storage for RTC minute count
14 AVR242
1231B–AVR–05/02

AVR242
.def hour =r19 ;storage for RTC hour count

.def mask =r20 ;flash mask for digits flashing

.def blink =r21 ;colon blink rate counter

.def bounce =r22 ;keypad debounce counter

.def flash =r23 ;flash delay counter

.def lobyte =r24 ;storage for display function minutes digits

.def hibyte =r25 ;storage for display function hours digits

.def key =r26 ;key number from scan

;***'key' values returned by 'keyscan'***************************

;VALUE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

;KEY 1 2 3 F 5 6 E 7 8 9 D A 0 B C NONE

;FUNC 1 2 3 LD1ON 4 5 6 LD1OFF 7 8 9 LD2ON SET 0 CLEAR LD2OFF

.def tock =r27 ;5 ms pulse

.def flags =r28 ;flag byte for keypad command keys

;7 6 5 4 3 2 1 0

;5ms keyok ld2off ld2on ld1off ld1on ld2 ld1

; tick 0 = off, 1 = on

.equ ms5 =7 ;ticks at 5 ms intervals for display time

.equ keyok =6 ;sets when key is debounced, must be cleared again

.equ ld2off =5 ;set by load ON/OFF key press and flags

.equ ld2on =4 ;up the need for action

.equ ld1off =3 ;in the housekeeping routine

.equ ld1on =2

.equ ld2 =1 ;when set tells the housekeeping routine to

.equ ld1 =0 ;check load on/off times.

;***the T flag in the status register is used as a SET flag for time set

.equ clear =0 ;RTC modification demand flag

;Port B pins

.equ col1 =0 ;LED a segment/keypad col 1

.equ col2 =1 ;LED b segment/keypad col 2

.equ col3 =2 ;LED c segment/keypad col 3

.equ col4 =3 ;LED d segment/keypad col 4

.equ row1 =4 ;LED e segment/keypad row 1

.equ row2 =5 ;LED f segment/keypad row 2

.equ row3 =6 ;LED g segment/keypad row 3

.equ row4 =7 ;LED decimal point/keypad row 4

;Port D pins

.equ A1 =0 ;common anode drives (active low)

.equ A2 =1 ;

.equ A3 =2 ;

.equ A4 =3 ;

.equ LOAD1 =4 ;Load 1 output (active low)

.equ LOAD2 =5 ;Load 2 output (active low)
15
1231B–AVR–05/02

.equ PZ =6 ;Piezo sounder output (active low)

.include "1200def.inc"

;***** Registers used by timer overflow interrupt service routine

.def timer =r31 ;scratch space for timer loading

.def status =r0 ;low register to preserve status register

;*****Look up table for LED display decoding **********************

.eseg ;EEPROM segment

.org 0

table1:

.db 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90

;digit 0 1 2 3 4 5 6 7 8 9

.db 0x86,0x8E,0xA3,0xAB,0XFF,0XFF

;digit E f o n BLANK special characters

;****Look up table for key value conversion into useful numbers****

;key1 2 3 F 4 5 6 E 7 8 9 D A 0 B C

table2:

.db 1, 2, 3,15, 4, 5, 6,14, 7, 8, 9, 13, 10, 0, 11, 12

;value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

;****Source code***

.cseg ;CODE segment

.org 0

rjmp reset ;Reset handler

nop ;unused ext. interrupt

rjmp tick ;timer counter overflow (5 ms)

nop ;unused analogue interrupt

;*** Reset handler **

;*** to provide initial port, timer and interrupt setting up

reset:

ser temp ;

out DDRB,temp ;initialize port B as all Outputs

out DDRD,temp ;initialize port D as all Outputs

out PORTB,temp ;key columns all high/LEDs off

out PORTD,temp ;turn off LEDs and loads off

ldi temp,0x04 ;timer prescalar /256

out TCCR0,temp

ldi timer,176 ;load timer for 5 ms

out TCNT0,timer ;(256 - n)*256*0.2441 us

ldi temp,0x02 ;enable timer interrupts

out TIMSK,temp

clr flags ;clear control flags

clr tock ;clear 5 ms tick
16 AVR242
1231B–AVR–05/02

AVR242
clr bounce ;clear key bounce counter

clr flash

clr blink

sei ;enable global interrupts

;****Flash EEEE on LEDS as test and power down warning**************

;****repeats until SET key is pressed on keypad

timesetting:

ldi hibyte,0xaa ;show "EEEE" on LED

ldi lobyte,0xaa ;display and

ser mask ;set flashing display

notyet:

rcall display ;display until time set

brtc notyet ;repeat until SET key pressed

rcall setrtc ;and reset time

mov hour,hiset ;and reload hours

mov minute,loset ;and minutes

clt ;clear T flag

;*****Main clock house keeping loop*****************************

do:

clr mask ;do housekeeping

cpi blink,100 ;is half second up

brne nohalf

clr blink

com flash ;invert flash

nohalf:

cpi second,60 ;is one minute up?

brne nochange ;no

clr second ;yes clear seconds and

inc minute ;add one to minutes

mov temp,minute

andi temp,0x0f ;mask high minute

cpi temp,10 ;is it ten minutes?

brne nochange ;no

andi minute,0xf0 ;clear low minutes

ldi temp,0x10

add minute,temp ;increment high minutes

cpi minute,0x60 ;is it 60 minutes?

brne nochange ;no

clr minute ;yes, clear minutes and

inc hour ;add one to hours

mov temp,hour

andi temp,0x0f ;mask high hour

cpi temp,10 ;is 10 hours up?

brne nochange ;no

andi hour,0xf0 ;yes, increment

ldi temp,0x10
17
1231B–AVR–05/02

add hour,temp ;high hours

nochange:

cpi hour,0x24 ;is it 24 hours?

brne sameday ;no,

clr hour ;yes, clear time variables

clr minute ;to start new day

clr second

sameday: ;update times

mov lobyte,minute

mov hibyte,hour

rcall display ;show time for 20 ms

brtc case1 ;if not SET

rcall setrtc ;and reset time

mov hour,hiset ;and reload hours

mov minute,loset ;and minutes

clt ;else, clear T flag

case1:sbrc flags,ld1 ;is load 1 active?

rjmp chkload1 ;yes, check load 1

case2:sbrc flags,ld2 ;is load 2 active

rjmp chkload2 ;yes, check load 2

case3:
sbrc flags,ld1on ;is load 1 on time reset

rjmp setld1on ;yes reset on time

case4:
sbrc flags,ld1off ;is load 1 off time reset

rjmp setld1off ;yes reset off time

case5:
sbrc flags,ld2on ;is load 2 on time reset

rjmp setld2on ;yes reset on time

case6:
sbrc flags,ld2off ;is load 2 on time reset

rjmp setld2off ;yes reset on time

case7:
rjmp do ;repeat housekeeping loop

;****case routines to service load times and key presses********

chkload1:
cp hour,ld1hroff ;is load 1 off time reached?

brne onload1

cp minute,ld1minoff

brne onload1

sbi PORTD,LOAD1 ;yes, turn load 1 off

onload1:

cp hour,ld1hron ;is load 1 on time reached?

brne case2

cp minute,ld1minon

brne case2

cbi PORTD,LOAD1 ;yes,turn load 1 on

rjmp case2 ;repeat with load on
18 AVR242
1231B–AVR–05/02

AVR242
chkload2:
cp hour,ld2hroff ;is load 2 off time reached?

brne onload2

cp minute,ld2minoff

brne onload2

sbi PORTD,LOAD2 ;yes, turn load 2 off

onload2:

cp hour,ld2hron ;is load 2 on time reached?

brne case3

cp minute,ld2minon

brne case3

cbi PORTD,LOAD2 ;yes,turn load 2 on

rjmp case3 ;repeat with load on

setld1on:

sbr flags,0x01 ;make load 1 active

rcall setrtc ;pickup new on time

mov ld1hron,hiset ;and store

mov ld1minon,loset

cbr flags,0x04 ;clear ld1on flag

rjmp case4

setld1off:

rcall setrtc ;pickup new off time

mov ld1hroff,hiset ;and store

mov ld1minoff,loset

cbr flags,0x08 ;clear ld1off flag

rjmp case5

setld2on:

sbr flags,0x02 ;make load 2 active

rcall setrtc ;pickup new on time

mov ld2hron,hiset ;and store

mov ld2minon,loset

cbr flags,0x10 ;clear ld2on flag

rjmp case6

setld2off:

rcall setrtc ;pickup new on time

mov ld2hroff,hiset ;and store

mov ld2minoff,loset

cbr flags,0x20 ;clear ld2off flag

rjmp case7

;****Multiplexing routine to display time and scan keypad every*****

;****second pass,used by all routines taking digits from hibyte

;****and lobyte locations with each digit on for 5 ms

display:
ser temp ;clear display

out PORTB,temp
19
1231B–AVR–05/02

;****Keypad scanning routine to update key flags*******************

keyscan:
cbr flags,0x40 ;clear keyok flag

ldi key,0x10 ;set no key pressed value

ser temp ;set keypad port high prior to

out PORTB,temp ;reinitializing the port

in temp,PORTD ;turn off LEDs and leave loads

ori temp,0x0f ;untouched prior to

out PORTD,temp ;key scan

ldi temp,0x0f ;set columns output and

out DDRB,temp ;rows input with pull-ups

ldi temp,0xf0 ;enabled and all columns

out PORTB,temp ;low ready for scan

ldi temp,20 ;short settling time

tagain1:
dec temp

brne tagain1

sbis PINB,ROW1 ;find row of keypress

ldi key,0 ;and set ROW pointer

sbis PINB,ROW2

ldi key,4

sbis PINB,ROW3

ldi key,8

sbis PINB,ROW4

ldi key,12

ldi temp,0xF0 ;change port B I/O to

out DDRB,temp ;find column press

ldi temp,0x0F ;enable pull ups and

out PORTB,temp ;write 0s to rows

ldi temp,20 ;short settling time

tagain2:
dec temp

brne tagain2 ;allow time for port to settle

clr temp

sbis PINB,COL1 ;find column of keypress

ldi temp,0 ;and set COL pointer

sbis PINB,COL2

ldi temp,1

sbis PINB,COL3

ldi temp,2

sbis PINB,COL4

ldi temp,3

add key,temp ;merge ROW and COL for pointer

cpi key,0x10 ;if no key pressed

breq nokey ;escape routine, else

ldi temp,0x10

add key,temp ;change to table 2

out EEAR,key ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM
20 AVR242
1231B–AVR–05/02

AVR242
in key,EEDR ;read decoded number for true key

convert:
cpi key,10 ;is it SET key ?

brne notset ;no check next key

set ;yes set T flag in status register

notset:
cpi key,11 ;is key CLEAR?

brne notclear ;no, check next key

sbi PORTD,LOAD1 ;yes, shut down all loads

sbi PORTD,LOAD2

cbr flags,0x03 ;deactivate both loads

notclear:
cpi key,15 ;is key LD1ON?

brne notld1on ;no, check next key

sbr flags,0x04 ;yes, set LD1ON flag

notld1on:
cpi key,14 ;is key LD1OFF?

brne notld1off ;no, check next key

sbr flags,0x08 ;yes, set LD1OFF flag

notld1off:
cpi key,13 ;is key LD2ON?

brne notld2on ;no, check next key

sbr flags,0x10 ;yes, set LD2ON flag

notld2on:
cpi key,12 ;is key LD2OFF?

brne notld2off ;no, check next key

sbr flags,0x20 ;yes, set LD2OFF flag

notld2off:

;***Tactile feedback note generation routine*****************

;***provides a 4 kHz TONE to the piezo sounder for 5 ms*****

tactile:
cbr flags,0x80

cbi PORTD,PZ ;turn on piezo

ldi temp,125 ;for a short time

t1again:
dec temp

brne t1again

sbi PORTD,PZ ;turn on piezo

ldi temp,125 ;for a short time

t2again:
dec temp

brne t2again

sbrs flags,ms5 ;repeat for 5ms

rjmp tactile

notok:
cpi bounce,40

brlo nokey

sbr flags,0x40 ;set bounce flag

nokey:
ser temp
21
1231B–AVR–05/02

out DDRB,temp ;reinitialize port B as all Outputs

out PORTB,temp ;and clear LEDs

;***Display routine to multiplex all four LED digits****************

cbi PORTD,A1 ;turn digit 1 on

mov temp,lobyte ;find low minute

digit1:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led1:
sbrs flags,ms5 ;5 ms finished?

rjmp led1 ;no, check again

sbi PORTD,A1 ;turn digit 1 off

ser temp ;clear display

out PORTB,temp

cbi PORTD,A2;

mov temp,lobyte ;find high minute

swap temp

digit2:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led2:
sbrs flags,ms5 ;5 ms finished?

rjmp led2 ;no, check again

sbi PORTD,A2 ;

ser temp ;clear display

out PORTB,temp

cbi PORTD,A3 ;

mov temp,hibyte

digit3:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs second,clear ;flash colon

andi temp,0x7f
22 AVR242
1231B–AVR–05/02

AVR242
sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led3:
sbrs flags,ms5 ;5 ms finished?

rjmp led3 ;no, check again

sbi PORTD,A3

ser temp ;clear display

out PORTB,temp

cbi PORTD,A4;

mov temp,hibyte

swap temp

andi temp,0x0f ;is hi hour zero?

brne digit4

ldi temp,0xff ;yes,blank hi hour

digit4:

cbr flags,0x80 ;clear 5 ms tick flag

andi temp,0x0f ;mask high nibble of digit

out EEAR,temp ;send address to EEPROM (0 - 15)

sbi EECR,EERE ;strobe EEPROM

in temp,EEDR ;read decoded number

sbrs flash,clear ;flash every 1/2 second

or temp,mask ;flash digit if needed

out PORTB,temp ;write to LED for 5 ms

led4:
sbrs flags,ms5 ;5 ms finished?

rjmp led4 ;no, check again

sbi PORTD,A4

ser temp ;clear display

out PORTB,temp

tst mask ;is flash complete?

breq outled ;yes, exit

cpi blink,50 ;is blink time done?

brlo outled ;no, exit

clr blink ;yes, clear blink rate counter

com flash ;and invert flash byte

outled:
ret

;****Function to Set RTC/on-off hours and minutes from keypad

;****returns with minutes in 'loset' and hours in'hiset'

setrtc:
ser mask ;set flashing display

ldi hibyte,0xdf ;place 'n' in hi hour

ser lobyte ;and blank in lo hr & minutes

hihrus:
clr bounce

bounce1:
rcall display ;display and check keypad
23
1231B–AVR–05/02

sbrs flags,keyok

rjmp bounce1

cbr flags,0x40 ;clear keyok flag

cpi key,0x03 ;is high hour > 2

brsh hihrus ;yes, read key again

hihrok: ;no, valid entry

swap key ;move hihour to hi nibble

mov hiset,key ;and store in hours

ldi hibyte,0x0d ;place 'n' in lo hour

add hibyte,hiset ;merge hihour and 'n'

lohrus:
clr bounce

bounce2:
rcall display ;display and check keypad

sbrs flags,keyok ;is key stable?

rjmp bounce2 ;no try again

cbr flags,0x40 ;yes, clear keyok flag

mov temp,hibyte ;check that total hours

andi temp,0xf0 ;are not > 24

add temp,key

cpi temp,0x24 ;is hour>24?

brsh lohrus ;yes, read key again

add hiset,key ;no, merge hi and lo hours

lohrok:

mov hibyte,hiset ;display hours as set

ldi lobyte,0xdf ;place 'n' in hi minutes

himinus:
clr bounce

bounce3:
rcall display ;display and check keypad

sbrs flags,keyok

rjmp bounce3

cbr flags,0x40 ;clear keyok flag

cpi key,6 ;is hi minutes >5

brsh himinus ;no, read key again

lominok:

swap key ;move himin to hi nibble

mov loset,key ;and store in minutes

ldi lobyte,0x0d ;place 'n' in lo minutes

add lobyte,loset ;merge with hi minute

lominus:
clr bounce

bounce4:
rcall display ;display and check keypad

sbrs flags,keyok

rjmp bounce4

cbr flags,0x40 ;clear keyok flag

cpi key,10 ;is key >9

brsh lominus ;no, read key again

add loset,key ;yes, merge hi and lo minutes

clr mask ;clear digits flash
24 AVR242
1231B–AVR–05/02

AVR242
ret ;and return with time set

;****Timer Overflow Interrupt service routine******************************

;****Updates 5 ms, flash and debounce counter to provide RTC time reference

tick:

in status,SREG ;preserve status register

inc tock ;add one to 5 ms 'tock' counter

inc blink ;and blink rate counter

inc bounce ;and bounce rate delay

sbr flags,0x80 ;set 5 ms flag for display time

cpi tock,200 ;is one second up?

breq onesec ;yes, add one to seconds

nop ;balance interrupt time

rjmp nosecond ;no, escape

onesec:
inc second ;add one to seconds

clr tock ;clear 5 ms counter

nosecond:
ldi timer,176 ;reload timer

out TCNT0,timer

out SREG,status ;restore status register

reti ;return to main
25
1231B–AVR–05/02

Printed on recycled paper.

© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1231B–AVR–05/02 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Theory of Operation
	Implementation
	Foreground Process
	Reset Section
	Time Setting
	Housekeeping
	Display Function
	Setrtc Function
	Background Function (Tick)
	Resources

