
8-bit RISC
Microcontroller

Application
Note

Rev. 2585A–AVR–11/04
AVR151: Setup And Use of The SPI

Features
• SPI Pin Functionality
• Multi Slave Systems
• SPI Timing
• SPI Transmission Conflicts
• Emulating the SPI
• Code examples for Polled operation
• Code examples for Interrupt Controlled operation

Introduction
This application note describes how to setup and use the on-chip Serial Peripheral
Interface (SPI) of the AVR micro-controller. Most AVR devices come with an on board
SPI and can be configured according to this document. After a theoretical background
it will be shown how to configure the SPI to run in both master mode and slave mode

Figure 1. Master and Slave Interface.

Receive Buffer

MOSI MISO
Shift-

Register

DATABUS

Receive Buffer

MISO MOSI

DATABUS

Slave Mode

SPI
Clock Generator

Master Mode

MISO

MOSI

SCK

SS

VCC

SS

Shift-
Register

General description of the SPI
The SPI allows high-speed synchronous data transfer between the AVR and peripheral
devices or between several AVR devices. On most parts the SPI has a second purpose
where it is used for In System Programming (ISP). See application note AVR910 for
details.

The interconnection between two SPI devices always happens between a master
device and a slave device. Compared to some peripheral devices like sensors which
can only run in slave mode, the SPI of the AVR can be configured for both master and
slave mode. The mode the AVR is running in is specified by the settings of the master
bit (MSTR) in the SPI control register (SPCR). Special considerations about the SS pin
have to be taken into account. This will be described later in the section “Multi Slave
Systems - SS pin Functionality” on page 3.

The master is the active part in this system and has to provide the clock signal a serial
data transmission is based on. The slave is not capable of generating the clock signal
and thus can not get active on its own. The slave just sends and receives data if the
master generates the necessary clock signal. The master however generates the clock
signal only while sending data. That means that the master has to send data to the slave
to read data from the slave.
Note: This can be confusing especially if “passive” peripherals like sensors are used.

The need to send random data to a sensor just to read its data is not always
clear.

Data transmission between
Master and Slave

The interaction between a master and a slave AVR is shown in Figure 1 on page 1. Two
identical SPI units are displayed. The left unit is configured as master while the right unit
is configured as slave. The MISO, MOSI and SCK lines are connected with the corre-
sponding lines of the other part. The mode in which a part is running determines if they
are input or output signal lines. Because a bit is shifted from the master to the slave and
from the slave to the master simultaneously in one clock cycle both 8-bit shift registers
can be considered as one 16-bit circular shift register. This means that after eight SCK
clock pulses the data between master and slave will be exchanged.
The system is single buffered in the transmit direction and double buffered in the receive
direction. This influences the data handling in the following ways:
1. New bytes to be sent can not be written to the data register (SPDR) / shift regis-

ter before the entire shift cycle is completed.
2. Received bytes are written to the Receive Buffer immediately after the transmis-

sion is completed.
3. The Receive Buffer has to be read before the next transmission is completed or

data will be lost.
4. Reading the SPDR will return the data of the Receive Buffer.
After a transfer is completed the SPI Interrupt Flag (SPIF) will be set in the SPI Status
Register (SPSR). This will cause the corresponding interrupt to be executed if this inter-
rupt and the global interrupts are enabled. Setting the SPI Interrupt Enable (SPIE) bit in
the SPCR enables the interrupt of the SPI while setting the I bit in the SREG enables the
global interrupts.

Pins of the SPI The SPI consists of four different signal lines. These lines are the shift clock (SCK), the
Master Out Slave In line (MOSI), the Master In Slave Out line (MISO) and the active low
2 AVR151
2585A–AVR–11/04

AVR151
Slave Select line (SS). When the SPI is enabled, the data direction of the MOSI, MISO,
SCK and SS pins are overridden according to the following table.

This table shows that just the input pins are automatically configured. The output pins
have to be initialized manually by software. The reason for this is to avoid damages e.g.
through driver contention.

Multi Slave Systems -
SS pin Functionality

The Slave Select (SS) pin plays a central role in the SPI configuration. Depending on
the mode the part is running in and the configuration of this pin, it can be used to acti-
vate or deactivate the devices. The SS pin can be compared with a chip select pin which
has some extra features.
In master mode, the SS pin must be held high to ensure master SPI operation if this pin
is configured as an input pin. A low level will switch the SPI into slave mode and the
hardware of the SPI will perform the following actions:
1. The master bit (MSTR) in the SPI Control Register (SPCR) is cleared and the

SPI system becomes a slave. The direction of the pins will be switched accord-
ing to Table 1.

2. The SPI Interrupt Flag (SPIF) in the SPI Status Register (SPSR) will be set. If the
SPI interrupt and the global interrupts are enabled the interrupt routine will be
executed.

This can be useful in systems with more than one master to avoid that two masters are
accessing the SPI bus at the same time. If the SS pin is configured as output pin it can
be used as a general purpose output pin which does not affect the SPI system.
Note: In cases where the AVR is configured for master mode and it can not be ensured that the

SS pin will stay high between two transmissions, the status of the MSTR bit has to be
checked before a new byte is written. Once the MSTR bit has been cleared by a low level
on the SS line, it must be set by the application to re-enable SPI master mode.

In slave mode the SS pin is always an input. When SS is held low, the SPI is activated
and MISO becomes output if configured so by the user. All other pins are inputs. When
SS is driven high, all pins are inputs, and the SPI is passive, which means that it will not
receive incoming data. Table 2 shows an overview of the SS Pin Functionality.
Note: In slave mode, the SPI logic will be reset once the SS pin is brought high. If the SS pin is

brought high during a transmission, the SPI will stop sending and receiving immediately
and both data received and data sent must be considered as lost.

Table 1. SPI Pin overrides

Pin Direction Master Mode Direction Slave Mode

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input
3
2585A–AVR–11/04

As shown in Table 2, the SS pin in slave mode is always an input pin. A low level acti-
vates the SPI of the device while a high level causes its deactivation. A Single Master
Multiple Slave System with an AVR configured in master mode and SS configured as
output pin is shown in Figure 2. The amount of slaves which can be connected to this
AVR is only limited by the number of I/O pins to generate the slave select signals.

Figure 2. Multi Slave System

The ability to connect several devices to the same SPI-bus is based on the fact that only
one master and only one slave is active at the same time. The MISO, MOSI and SCK
lines of all the other slaves are tristated (configured as input pins of a high impedance
with no pullup resistors enabled). A false implementation (e.g. if two slaves are activated
at the same time) can cause a driver contention which can lead to a CMOS latchup state
and must be avoided. Resistances of 1 to 10 k ohms in series with the pins of the SPI
can be used to prevent the system from latching up. However this affects the maximum
usable data rate, depending on the loading capacitance on the SPI pins.
Unidirectional SPI devices require just the clock line and one of the data lines. If the
device is using the MISO line or the MOSI line depends on its purpose. Simple sensors
for instance are just sending data (see S2 in Figure 2), while an external DAC usually
just receives data (see S3 in Figure 2).

Table 2. Overview of the SS pin functionality

Mode SS Configuration SS Pin-level Description

Slave Always Input
High Slave deactivated (deselected)

Low Slave activated (selected)

Master

Input
High Master activated (selected)

Low Master deactivated, switched to slave mode

Output
High

Master activated (selected)
Low

SCK
MOSI
MISO

SS (PB4)

SCK
MOSI
MISO
SS

SCK

MISO
SS

SCK
MOSI

SS

SCK
MOSI
MISO
SS

S1

S2

S3

SN

PB0

PB1

PB7

Master Mode
4 AVR151
2585A–AVR–11/04

AVR151
SPI Timing The SPI has four modes of operation, 0 through 3. These modes essentially control the
way data is clocked in or out of an SPI device. The configuration is done by two bits in
the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit,
which selects an active high or active low clock. The clock phase (CPHA) control bit
selects one of the two fundamentally different transfer formats. To ensure a proper com-
munication between master and slave both devices have to run in the same mode. This
can require a reconfiguration of the master to match the requirements of different
peripheral slaves.
The settings of CPOL and CPHA specify the different SPI modes, shown in Table 3.
Because this is no standard and specified different in other literature, the configuration
of the SPI has to be done carefully.

The clock polarity has no significant effect on the transfer format. Switching this bit
causes the clock signal to be inverted (active high becomes active low and idle low
becomes idle high). The settings of the clock phase, however, selects one of the two dif-
ferent transfer timings, which are described closer in the next two chapters. Since the
MOSI and MISO lines of the master and the slave are directly connected to each other,
the diagrams show the timing of both devices, master and slave. The SS line is the
slave select input of the slave. The SS pin of the master is not shown in the diagrams. It
has to be inactive by a high level on this pin (if configured as input pin) or by configuring
it as an output pin.

A.) CPHA = 0 and CPOL = 0
(Mode 0) and
CPHA = 0 and CPOL = 1
(Mode 1)

The timing of a SPI transfer where CPHA is zero is shown in Figure 3. Two wave forms
are shown for the SCK signal - one for CPOL equals zero and another for CPOL equals
one.

Figure 3. SPI Transfer Format with CPHA = 0

Table 3. SPI Mode Configuration

SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge

0 0 0 Falling Rising

1 0 1 Rising Falling

2 1 0 Rising Falling

3 1 1 Falling Rising

SAMPLE

*Not defined but normally MSB of character just received.

SCK CYCLE#
(FOR REFERENCE)

SCK (CPOL=0)
SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

SS (TO SLAVE)

1 2 3 4 5 6 7 8

MSB 123456 LSB

MSB 123456 LSB *
5
2585A–AVR–11/04

When the SPI is configured as a slave, the transmission starts with the falling edge of
the SS line. This activates the SPI of the slave and the MSB of the byte stored in its data
register (SPDR) is output on the MISO line. The actual transfer is started by a software
write to the SPDR of the master. This causes the clock signal to be generated. In cases
where the CPHA equals zero, the SCK signal remains zero for the first half of the first
SCK cycle. This ensures that the data is stable on the input lines of both the master and
the slave. The data on the input lines is read with the edge of the SCK line from its inac-
tive to its active state (rising edge if CPOL equals zero and falling edge if CPOL equals
one). The edge of the SCK line from its active to its inactive state (falling edge if CPOL
equals zero and rising edge if CPOL equals one) causes the data to be shifted one bit
further so that the next bit is output on the MOSI and MISO lines.
After eight clock pulses the transmission is completed. In both the master and the slave
device the SPI interrupt flag (SPIF) is set and the received byte is transferred to the
receive buffer.

B.) CPHA = 1 and CPOL = 0
(Mode 2) and
CPHA = 1 and CPOL = 1
(Mode 3)

The timing of a SPI transfer where CPHA is one is shown in Figure 4. Two wave forms
are shown for the SCK signal - one for CPOL equals zero and another for CPOL equals
one.

Figure 4. SPI Transfer Format with CPHA = 1

Like in the previous cases the falling edge of the SS lines selects and activates the
slave. Compared to the previous cases, where CPHA equals zero, the transmission is
not started and the MSB is not output by the slave at this stage.
The actual transfer is started by a software write to the SPDR of the master what causes
the clock signal to be generated. The first edge of the SCK signal from its inactive to its
active state (rising edge if CPOL equals zero and falling edge if CPOL equals one)
causes both the master and the slave to output the MSB of the byte in the SPDR. As
shown in Figure 4, there is no delay of half a SCK-cycle like in Mode 0 and 1. The SCK
line changes its level immediately at the beginning of the first SCK-cycle. The data on
the input lines is read with the edge of the SCK line from its active to its inactive state
(falling edge if CPOL equals zero and rising edge if CPOL equals one).
After eight clock pulses the transmission is completed. In both the master and the slave
device the SPI interrupt flag (SPIF) is set and the received byte is transferred to the
receive buffer.

SAMPLE

*Not defined but normally LSB of previously transmitted character.

SCK CYCLE#
(FOR REFERENCE)

SCK (CPOL=0)
SCK (CPOL=1)

MOSI
(FROM MASTER)

MISO
(FROM SLAVE)

SS (TO SLAVE)

1 2 3 4 5 6 7 8

MSB 123456 LSB

MSB 123456 LSB*
6 AVR151
2585A–AVR–11/04

AVR151
Considerations for high speed
transmissions

Parts which run at higher system clock frequencies and SPI modules capable of running
at speed grades up to half the system clock require a more specific timing to match the
needs of both the sender and receiver. The following two diagrams show the timing of
the AVR in master and in slave mode for the SPI Modes 0 and 1. The exact values of
the displayed times vary between the different parts and are not an issue in this applica-
tion note. However the functionality of all parts is in principle the same so that the
following considerations apply to all parts.

Figure 5. Timing Master Mode

The minimum timing of the clock signal is given by the times “1” and “2”. The value “1”
specifies the SCK period while the value “2” specifies the high / low times of the clock
signal. The maximum rise and fall time of the SCK signal is specified by the time “3”.
These are the first timings of the AVR to check if they match the requirements of the
slave.
The Setup time “4” and Hold time “5” are important times because they specify the
requirements the AVR has on the interface of the slave. These times determine how
long before the clock edge the slave has to have valid output data ready and how long
after the clock edge this data has to be valid.
If the Setup and Hold time are long enough the slave suits to the requirements of the
AVR but does the AVR suit to the requirements of the slave?
The time “6” (Out to SCK) specifies the minimum time the AVR has valid output data
ready before the clock edge occurs. This time can be compared to the Setup time “4” of
the slave.
The time “7” (SCK to Out) specifies the maximum time after which the AVR outputs the
next data bit while the time “8” (SCK to Out high) the minimum time specifies during
which the last data bit is valid on the MOSI line after the SCK was set back to its idle
state.

MOSI
(Data Output)

SCK
(CPOL = 1)

MISO
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

6 1

2 2

34 5

87
7
2585A–AVR–11/04

Figure 6. Timing Slave Mode

In principle the timings are the same in slave mode like previously described in master
mode. Because of the switching of the roles between master and slave the requirements
on the timing are inverted as well. The minimum times of the master mode are now max-
imum times and vice versa.

SPI Transmission
Conflicts

A write collision occurs if the SPDR is written while a transfer is in progress. Since this
register is just single buffered in the transmit direction, writing to SPDR causes data to
be written directly into the SPI shift register. Because this write operation would corrupt
the data of the current transfer, a write-collision error in generated by setting the WCOL
bit in the SPSR. The write operation will not be executed in this case and the transfer
continues undisturbed.
A write collision is generally a slave error because a slave has no control over when a
master will initiate a transfer. A master, however, knows when a transfer is in progress.
Thus a master should not generate write collision errors, although the SPI logic can
detect these errors in a master as well as in a slave mode.

Emulating the SPI When emulating the SPI using the ICE200 hardware emulator, be aware of the fact that
the peripherals on this emulator are not stopped on a break point but continue to run
with the speed they are configured for.
When emulating the SPI using the ICEPRO the timing can be less accurate than it is the
case on the part itself. This is caused by longer internal signal lines of the ICEPRO
which is the price we had to pay for its ability to upgrade and its flexibility.

Setup the SPI The configuration of the SPI in master mode will be shown in two different ways. The
first example will show how to implement an SPI communication which is controlled by
polling the interrupt flags. The second example will show how to implement an interrupt
controlled communication.
A communication between two AVR devices will be shown by sending a “Text String”
from the part configured as master to the other part configured as slave. The received
characters will be compared to the expected ones and the result of this communication
test will be output on the Port D. These examples are well suited to be implement by
using two development boards like the STK500.
In all the examples shown here the SPI is configured to run in mode 0 with MSB trans-
mitted first. This is done by setting the bits CPOL, CPHA and DORD in the register
SPCR to zero. In the same register the SPI is enabled by setting the SPE bit, while the

MISO
(Data Output)

SCK
(CPOL = 1)

MOSI
(Data Input)

SCK
(CPOL = 0)

SS

MSB LSB

LSBMSB

...

...

10

11 11

1213 14

1515

9

X

8 AVR151
2585A–AVR–11/04

AVR151
SCK frequency is specified to CK/4 in the first example and the assembler code of the
second example. It is set to CK/16 in the C code of the second example.
To compare the configuration of the SPI in the different examples the attention has to be
directed on the settings of the Master / Slave Select (MSTR) bit and the SPI Interrupt
Enable (SPIE) bit.
Notes: 1. Because both examples show the transmission between a single master and a single

slave it is not necessary to check if the MSTR bit is still set before the master initiates
a new transmission. This code has to be added in a multi master application.

2. Although the settings of the Clock Rate Select bits have no effect in slave mode it has
to be ensured that the system clock (CK) of the slave is at least four times higher than
the SPI clock (SCK).

3. Pending SPI interrupts are cleared by a dummy access to the SPSR and the SPDR.
Four files come along with this application note which contain the assembler and C code
shown in this examples.
To run the code, setup two STK500 development boards as shown in Figure 7. The
code is written for ATmega162, but can be compiled for any part with hardware SPI and
PORTA, PORTB and PORTD.

Figure 7. Hardware setup

ATmega162
as SPI Master

ATmega162
as SPI Slave

8 LEDs

8 switches

8 LEDs

STK500 #1 STK500 #2

PORTD PORTD

PORTA

PORTB
9
2585A–AVR–11/04

Example 1 - SPI
communication controlled by
polling:

Master Side: If no interrupts are used there is just the SPI module and its pins to configure. Important
in this example is the setting of the SS pin as output pin. This has to be done before the
SPI is enabled in master mode. Enabling the SPI while the SS pin is still configured as
an input pin would cause the SPI to switch to slave mode immediately if a low level is
applied to this pin. This pin is always configured as an input pin in slave mode (see Fig-
ure 8 on page 10). Using polling gives the fastest communication. This is why polling is
most commonly used in master mode.

Figure 8. Polled master - initialization and transmission

Slave Side: To configure the AVR to run in slave mode there is no order required in which the regis-
ters have to be initialized. The MISO pin has to be defined as an output pin, while all
other pins are configured automatically as input pins if the SPI is enabled (see Table 9).
To configure the AVR to run in slave mode the MSTR bit has to be set to zero. In this
case the Clock Rate Select bits SPR0 and SPR1 do not care because of the synchro-
nous transmission.
All other settings of the SPI configuration register (SPCR) have to be the same as in
master mode. This is essential for a successful communication between the two
devices.

Master
Initialization

Configure /SS,
MOSI and SCK as

output pins

Set bits SPE and
MSTR of the

SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

Send String

Current
character

= 0 ?

Copy character to
SPDR register

Wait for SPI
Interrupt Flag

Advance to next
character of string

No Return

Yes
10 AVR151
2585A–AVR–11/04

AVR151
Figure 9. Polled slave - initialization and reception

Slave
Initialization

Configure MISO
as output pin

Set bit SPE of the
SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

Receive/Verify
String

Current
character

= 0 ?

Wait for SPI
Interrupt Flag

Advance to next
character of string

No Transmission
successful

Yes

SPDR =
current

character ?

Yes Transmission
failed

No
11
2585A–AVR–11/04

Example 2 - SPI
communication controlled by
interrupts:

In master mode interrupt controlled communication makes mainly sense if the SCK
clock is generated by dividing the system clock by a large division factor (like 64 or 128).
In this case the processor can do other processing instead of just waiting to
send/receive the next byte. In slave mode where the part does not know when a com-
munication starts an interrupt controlled implementation can ensure that the part will
react in time so that write collision errors will be avoided.

Master Side: The initialization of the SPI happens in a similar way to the one in the previous example.
Like before in master mode the SS pin has to be set as output first and then the SPI can
be enabled. The SPI interrupt is enabled by setting the SPIE bit in the SPCR.

Figure 10. Interrupt controlled master - initialization and transmission

Slave Side: A slave never knows when the master is going to start a new communication. Interrupts
are a perfect feature to react on such undetermined events so this is a common way to
implement the SPI in slave mode.
In this example the main program has to be notified about transmission errors and the
completion of the transmission.

Master
Initialization

Configure /SS,
MOSI and SCK as

output pins

Set bits SPE and
MSTR of the

SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

SPI Interrupt
Handler

Current
character

= 0 ?

Copy character to
SPDR register

ClearToSend =
true

Advance to next
character of string

Return

Select SPI speed
and enable SPI

Interrupt

Enable global
interrupts

No

Yes

Send String

ClearToSend =
true ?

Copy character to
SPDR

ClearToSend =
false

Send String

Yes

No
12 AVR151
2585A–AVR–11/04

AVR151
Figure 11. Interrupt controlled slave - initialization and transmission

Slave
Initialization

Configure MISO
as output pin

Set bit SPE of the
SPCR register

Clear SPI Interrupt
Flag by reading

SPSR and SPDR

Return

SPI Interrupt
Handler

SPDR =
current

character ?

Advance to next
character of string

Return

Enable SPI
Interrupt

Enable global
interrupts

Receive/Verify
String

Use LEDs to show
TransmitState

Current
character

= 0 ?

TransmitState =
success

Disable SPI
Interrupt

Yes

Yes

No

TransmitState =
error

Disable SPI
Interrupt

No
13
2585A–AVR–11/04

 Printed on recycled paper.

2585A–AVR–11/04

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

© Atmel Corporation 2004. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks,
and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Microsoft®, Windows®, Windows NT®, and Windows XP®

are the registered trademarks of Microsoft Corporation. Other terms and product names may be trademarks of others.

	Features
	Introduction
	General description of the SPI
	Data transmission between Master and Slave
	Pins of the SPI
	Multi Slave Systems - SS pin Functionality
	SPI Timing
	A.) CPHA = 0 and CPOL = 0 (Mode 0) and CPHA = 0 and CPOL = 1 (Mode 1)
	B.) CPHA = 1 and CPOL = 0 (Mode 2) and CPHA = 1 and CPOL = 1 (Mode 3)
	Considerations for high speed transmissions

	SPI Transmission Conflicts
	Emulating the SPI
	Setup the SPI
	Example 1 - SPI communication controlled by polling:
	Master Side:
	Slave Side:

	Example 2 - SPI communication controlled by interrupts:
	Master Side:
	Slave Side:

