
Basic Interrupts and I/O

an introduction
to interrupts
and I/O with
the AVR

Eivind, AVRfreaks.net,

Oct.2002

Lets' get physical
The natural place to start is the STK500. It is a very nice development board
for the AVR, reasonably priced (~USD79) and provides all the environment we
need to test some pretty real applications on the AVR out in the wild.

We're gonna start out with some simple counting controlled by external inter-
rupts and exposed on the nice LEDs of the STK500. Then we'll add a speaker
(Oh yeah!), and before we know it we'll have a miniature amusement park
on our desks; with lights AND noise and buttons to push! Perhaps fire as well,
if something REALLY goes wrong.
This is what we'll use:

1. AVRstudio 3 or 4
2. STK500 development kit, all set up with your computer and ready to go
3. An AT90s8515 microcontroller (usually comes with the STK500)
4. Some small speaker that works, including wires soldered in place

The setup is based on a Windows configuration, but it is very possible use
some other software as well, since we won't concentrate much on the use of
AVRstudio besides assembling the project. If you are a Linux user, you could
use:

* avr-gcc (i.e. avrasm) for the assembly
* uisp for programming

The program will be written in assembly, because:

* assembly is very "machine-near" and provides a very educative approach
to what goes on inside the processor during our program

* high-level languages and different compilers all have different notations
and routines for doing the same thing. Learning a compiler and the
respective C-style (e.g.) is a story of itself.

The code for this project is something we found among leftovers from O'Guru
Sean Ellis; which we brutally and without due respect ripped apart. Shame on
us.

Basic interrupts
An interrupt is a flow control mechanism that is implemented on most con-
trollers, among them the AVR. In an MCU application interacting with the out-
side world, many things are happening at the same time, i.e. not in a syn-
chronized manner, that are to be handled by the microcontroller.

Examples: a switch pressed by the user, a data read on the UART (serial port),
a sample taken by the ADC, or a timer calling to say that "time is up!". All
these events neeeds to be handled by the MCU.

Instead of polling each instance round-Robin style to ask whether they are in
need of a service, we can have them call out themselves when they need
attention. This is called "interrupts", since the peripheral device (e.g. a switch
pressed) interrupts the main program execution. The processor then takes time
out of the normal program execution to examine the source of the interrupt
and take the necessary action. Afterwards, normal program execution is
resumed.

An interrupt service in other words is just like a subroutine; except that it is not
anticipated by the processor to occur at a particular time, since there are no
explicitly placed calls to it in the program.

What's in a name?
When reading this article you will from time to time get the feeling that you
are confronting a term possibly denoting an actual physical entity or an entity
in some sense relevant to the current activity; namely playing around or build-
ing serious applications with the AVR...: INT0, INT1, GIMSK, PORTB,
PB7 etc...

You are sure to come across such names in any assembly code, Atmel app-
note, AVRfreaks Design Note or any posting in the AVRforum.

One might think these are just common names used by individuals accustomed
to the jargon, but we will try to use them consciously - in the sense that these
names actually denote actual memory locations in the AVR you will be pro-
gramming.

The mapping of these name to actual memory locations is in the part's def
file (*def cacros vn unknown term:

When including this file in the assembly program file, all I/O register n ames
and I/O register bit names appearing in the data book will be known to the
assembler and can be used in the program.

Note that some high-level language compilers may use proprietary terms
other than these. But they will have files similar to this def file, defining the
memory space of the AVRs. As previously stated; this is another story.

Another document that will prove very useful to anyone working with the AVR,
is this document:Manual you previously downloaded!

8515 datasheet
The datasheet.

(~2MB)
The datasheet is the ultimate reference for any
AVR microcontroller. It even includes an instruc-
tion set summary; look up every instruction you
don't know when you come across it!

an introduction
to interrupts
and I/O with
the AVR

This article is a small project
for you people who are just
getting into the AVR, and
perhaps even microcontrollers
in general.

www.atmel.com
page 11

8515def.inc Example snippet; only a few lines are shown

(~6kB)

;***** I/O Register Definitions
.equ SREG =$3f
.equ SPH =$3e
.equ SPL =$3d
.equ GIMSK =$3b
..
..

A T M E L A P P L I C A T I O N S J O U R N A L

By Eivind Sivertsen,
AVRFreaks

The vector table is reserved

for storing interrupt vectors;

i.e. locations to jump to

when this or that interrupt is

calling. This means that each

interrupt has a reserved

memory location, and when

a particular interrupt comes

in, the MCU looks in this

location to find the address

where code that handles this

interrupt resides.

www.atmel.com
page 12

In this article, we will be using the 8515.
Download this .pdf and keep it close for
reference.

You may even want to print it, but think twice.
It is long.

Now you know where to look when anything unknown pops up. Let's move
on >.

Structure of an interrupt-driven program on the AVR
Take a deep breath. This is the heaviest part.
We are going to write an "interrupt-driven" program where the main
loop simply does nothing but wait for interrupts to occur. What interrupts?

External interrupts
INT0 and INT1 on
pins PD2 and PD3

The interrupts are handled in turn, and a return to the main program is per-
formed at the end of each interrupt service (that's what I call it; "service").
This is a rather wide topic with many pitfalls. But we need somewhere to start
and will mainly discuss aspects concerning elements of our little example appli-
cation. The main important thing that constitutes such elements in a program
is:

1. Setting the interrupt vector jump locations: .org
2. Setting the correct interrupt mask to enable desired interrupts: GIMSK
3. Make necessary settings in control registers: MCUCR
4. Globally enable all interrupts: SREG

Setting the interrupt vector jump locations: .org
The lowest part of the AVR program memory, starting at address $0000, is
sometimes referred to as the "Program memory vector table", and the actual
program should start beyond this space.

The vector table is reserved for storing interrupt vectors; i.e. locations to jump
to when this or that interrupt is calling. This means that each interrupt has a
reserved memory location, and when a particular interrupt comes in, the MCU
looks in this location to find the address where code that handles this interrupt
resides.

8515 Vector table Example; only the few first
vectors are shown

Program memory address Vector Comment
$0000 Reset Start address of Reset handler is stored here
$0001 INT0 Start address of code to handle external INT0 is stored

here
$0002 INT1 Start address of code to handle external INT1 is stored

here
etc...

The number of interrupts available varies from processor to processor.

The .org directive
In assembly code, the .org directive is used to set vector jump locations. This
assembler directive (or "command", if you like) tells the assembler to set the
location counter to an absolute value. It is not part of the AVR instruction set,
it is just a command that the assembler needs to make sure the program code
is mapped correctly when making a binary for the AVR.

Example:

Sample Code

; Interrupt service vectors
; Handles reset and external interrupt vectors INT0

and INT1

.org $0000
rjmp Reset ; Reset vector (when the MCU is reset)

.org INT0addr
rjmp IntV0 ; INT0 vector (ext. interrupt from

pin PD2)

.org INT1addr
rjmp IntV1 ; INT1 vector (ext. interrupt from

pin PD3)

; - Reset vector - (THIS LINE IS A COMMENT)
Reset:

ldi TEMP,low(RAMEND) ; Set initial stack
ptr location at ram end

out SPL,TEMP
ldi TEMP, high(RAMEND)
out SPH, TEMP
...
...

Note that labels are used instead of absolute numbers to designate address-
es in assembly code - The assembler stitches it all together in the end. All we
need to do is tell the assembler where to jump when e.g. the reset vector
is calling, by using the name of the code block meant for handling resets.

A label denotes a block of code, or function if you like; which is not termi-
nated with a "}", an .endfunc or anything like that. The only thing that ends
a code block definition, is it being released by another block name, followed
by a colon (":").

This also implies, unlike with functions in e.g. C, that all blocks are run by the
processor consecutively, unless the flow is broken up by un/conditional jumps,
returns, interrupts etc. In assembly, the whole file is the main() function, and
the flow control is more like Basic...

Please also note the first lines of the reset handler. This is where the stack
is set up. The stack is used to hold return addresses in the main program code
when a sub- or interrupt routine is run; i.e. when a "digression" from the main
program is made. For any interrupt service or subroutine to return to the main
program properly; the stack must be placed outside their vector space. The SP
is namely initialized with the value $0000, which is the same location as the
reset vector. This goes for any program, especially such as this, where we are
involving several interrupt vectors besides the reset vector.

For AVRs with more than 256 bytes SRAM (i.e. none of the Tinys, nor 2343
and 4433), the Stack Pointer register is two bytes wide and divided into SPL
and SPH (low and high bytes).

Setting the interrupt mask: GIMSK
The GIMSK register is used to enable and disable individual external interrupts.

GIMSK General Interrupt Mask register
Bit 7 6 5 4 3 2 1 0

INT1 INT0 - - - - - -
Read/write R/W R/W R R R R R R
Init. value 0 0 0 0 0 0 0 0
Note that only the INT0 and INT1 bits are writable. The other bits are
reserved and always read as zero.

A T M E L A P P L I C A T I O N S J O U R N A L

This is what our code

will do. Nothing more.

Besides initialization,

the short routine for

handling the other switch

(generating INT1) and a

few directives for the

assembler, that's it all.

www.atmel.com
page 13

We are going to use the external interrupts INT0 and INT1 for the switches on
the STK500. These interrupts are enabled by setting INT0 and INT1 in GIMSK;
i.e. bits 6 and 7.

We will be using bits 0,1,2 and 3 in this register to control the interrupt from
INT0 and INT1. These bits control how to sense the external interrupts; either
by level, falling edge on pin, or rising edge of pin:

We will use the rising edge of the switch-
es on the STK500 to trig the interrupt; so
the 8515 must be programmed to trig
external interrupts on rising edges of each
pin PD2 and PD3. Hence; all the ISCx bits
must, for our program, be set to "1".

You can see on the diagram to the right how
pushing the switch will close the lower
branch and pull the pin low. Hence; releasing the switch causes a rising edge
when the branch is re-opened and the pin is pulled high.

Globally enable all interrupts: SREG
In addition to setting up the interrupts individually, the SREG (Status Register)
bit 7 must also be set to globally enable all (i.e. any) interrupts.

All these bits are cleared on reset and can be read or written by a program.
Bit7 (I) is the one we are currently interested in; as setting this bit enables
all interrupts. Vice versa, resetting it disables all interrupts.

In AVR code, we have an instruction of its own to set this flag; sei:

; lots and lots of initialisation, and then...

sei ; this instruction enables all interrupts.
;...and off we go!

Real code part 1
OK, let's start with the real code. Assuming you're already able to assemble
your own code and even program the part in the STK500 - we'll just dig
through the code.

Just remember to couple the switches with the appropriate inputs on the
8515; namely PORTD input pins PD2 and PD3. Use any two switches on the
STK500 you like; on the picture to the right I used switches SW0 and SW1.
Also connect the LEDs to PORTB with a 10-pin ISP connector cable.

When running this code on the STK500, at first all LEDs will be off. Press the
switches a few times, and you will realize one of them counts something up,
the other one down, and the results are reflected on the LEDs.

Let's have an overview of the program. Here's an example snapshot, after ini-
tialization:

1. A switch is pressed -> ext. INT0 generated
2. The vector for INT0 is found
3. Code at the according location is run, and jumps to a common subroutine
4. The common subroutine returns to the main loop by reti instruction

This is what our code will do. Nothing more. Besides initialization, the short
routine for handling the other switch (generating INT1) and a few directives
for the assembler, that's it all.

8515def.inc

(~6kB) Just to make sure I'm still not kidding you; have
a look in the 8515def.inc file and search for
"INT0addr" and "INT1addr". Lo and behold; they
are real addresses.
Reset is placed at $0000.

OK, here is the entire program code, with some excessive comments removed
(these are still left in the available file). Look up any unknown instruction for
full understanding while you read through it. You can click each code block
label to jump to their respective comments next page.

MCUCR MCU general control register
Bit 7 6 5 4 3 2 1 0

ISRE SRW SE SM ISC11 ISC10 ISC01 ISC00
Init. value 0 0 0 0 0 0 0 0
The bits in MCUCR allow general processor control.
Consult the datasheet for an in-depth description of the registers and the
individual bits.

ISCx1 ISCx0 Description
0 0 Low level on INTx pin generates interrupt
0 1 Reserved
1 0 Falling edge on INTx pin generates interrupt
1 1 Rising edge on INTx pin generates interrupt

SREG S tatus register
Bit 7 6 5 4 3 2 1 0

I T H S V N Z C
Init. value 0 0 0 0 0 0 0 0
The bits in SREG indicate the current state of the processor.

A T M E L A P P L I C A T I O N S J O U R N A L

www.atmel.com
page 14

OK, lets go through the code step by step, though at a pace. It may be easi-
er if you have the source printed out next to you while reading the following
comments:
The first lines includes the define file for the 8515; thus making all register
and I/O names known to the assembler. What happens next is the Interrupt

vector table is defined. At $0000, the reset vector is set up. This is where
the 8515 wakes up in the morning - everything is supposed to start from here.
Also, the INT0 and INT1 vectors are set up, and their handling routines
named IntV0 and IntV1, respectively. Look up their labels down the code,
and you can see where they are declared.

INTs_1.asm Source for first part of program
;--

(~3kB) ; Name: int0.asm
; Title: Simple AVR Interrupt Verification Program
;--

.include "8515def.inc"

; Interrupt service vectors

.org $0000
rjmp Reset ; Reset vector

.org INT0addr
rjmp IntV0 ; INT0 vector (ext. interrupt from pin D2)

.org INT1addr
rjmp IntV1 ; INT1 vector (ext. interrupt from pin D3)

;--
;
; Register defines for main loop

.def TIME=r16

.def TEMP=r17

.def BEEP=r18

;---
;
; Reset vector - just sets up interrupts and service routines and
; then loops forever.

Reset:
ldi TEMP,low(RAMEND) ; Set stackptr to ram end
out SPL,TEMP
ldi TEMP, high(RAMEND)
out SPH, TEMP

ser TEMP ; Set TEMP to $FF to...
out DDRB,TEMP ; ...set data direction to "out"
out PORTB,TEMP ; ...all lights off!

out PORTD,TEMP ; ...all high for pullup on inputs
ldi TEMP,(1<<DDD6) ; bit D6 only configured as output,
out DDRD,TEMP ; ...output for piezo buzzer on pin D6

; set up int0 and int1

ldi TEMP,(1<<INT0)+(1<<INT1) ; int masks 0 and 1 set
out GIMSK,TEMP
ldi TEMP,$0f ; interrupt t0 and t1 on rising edge only
out MCUCR,TEMP
ldi TIME,$00 ; Start from 0

sei ; enable interrupts and off we go!

loop:
rjmp loop ; Infinite loop - never terminates

;--
;
; Int0 vector - decrease count

IntV0:
dec TIME
rjmp Int01 ; jump to common code to display new count

;--
;
; Int1 vector - increase count

IntV1:
inc TIME ; drop to common code to display new count

Int01:
mov r0,TIME ; display on LEDs
com r0
out PORTB,r0
reti

A T M E L A P P L I C A T I O N S J O U R N A L

OK, here is the entire

program code, with some

excessive comments

removed (these are still

left in the available file).

Look up any unknown

instruction for full under-

standing while you read

through it. You can click

each code block label to

jump to their respective

comments

Py-haa!

The reset label contains

all initialization code;

this block is run at start-up.

The first 4 lines sets up

the stack pointer, as

mentioned earlier.

www.atmel.com
page 15

Following this, registers r16, r17 and r18 have labels put onto them. This is
a way to make variables in assembly - only we also get to decide where
they are placed in memory. Where? In registers r16, r17 and r18... hence;
they are all one byte wide.

The reset label
Py-haa! The reset label contains all initialization code; this block is run at start-
up. The first 4 lines sets up the stack pointer, as mentioned earlier. Note how
the ldi(load immediate) instruction is used to hold any value temporarily
before writing to the actual location by out. low() and high() are macros
returning the immediate values of their arguments, which are memory loca-
tions defined in the .def file.

The next six lines sets the Data Direction Registers of ports PORTB (used for
LEDs) and PORTD (switches). Please check the datasheet under "I/O Ports"
for functional descriptions of these registers.
Now, notice this line:

ldi TEMP,(1<<DDD6)

This line of code simply (!) means:

"Load TEMP register with a byte value of 1 shifted DDD6 places leftwards".

Ok. Then what is DDD6? From the .def file, we find that this value is 6, and
it is meant to point to the 6th bit of the PORTD Data Direction Register. The
value loaded into TEMP and then into DDRB, becomes 01000000 in
binary. Hence, the bit in this position in the DDRB register is set.

So what happens? That pin (pin PD6) is to be used for a special twist in the
next stage of the program, so that particular pin is set as an output; the oth-
ers will be inputs. For now, just notice the notation.

You can probably imagine what happens if you combine such notation in an
addition? Well, this is what happens next, when the GIMSK register is
loaded, and then the MCUCR. Please refer to the previous section or the
datasheet for a description of these registers and why they are set this way.

Only thing remaining in the reset block now, is to call our friend the sei
instruction for enabling the interrupts we have just set up.

The loop label
The loop label simply contains nothing but a call to itself. It's an equivalent
of writing while(1); in C. After reset is run, the program pointer falls through
to the loop block and it will run forever only interrupted by - interrupts.

The IntV0 label
This label comtains the handling code for the INT0 interrupt. Whenever that
interrupt calls, this code will be run. It will simply decrement the TIME register.
Then it just jumps to a common block called...:

The Int01 label
This block consists of common code that displays the value of TIME (r16) on
the LEDs connected to PORTB. Note that the value is inverted by 1's comple-
ment (com instruction) before written to PORTB, since a low value means no
light and vice versa. This block then performs a return to wherever it was called
from through the reti instruction - which was from the loop label.

The IntV1 label
You've probably figured that this code runs every time the switch connected to
pin PD3 is pressed (i.e. released, due to our MCUCR settings). It increases
TIME. Then it just falls through to the common routine Int01, since it contains

no jump or return instruction. We could just as well have put in an

rjmp Int01

here as well. But we don't need it. Though it may be good common practice
to be consequent with this :-)

Now, take a last
look at this figure
to recollect,
before moving.

The timer overflow interrupt
After stating our success with the
previous experiment, we are
going to ameliorate this little
design a little more. We are going
to add another interrupt into the
application; a Timer Overflow
interrupt for the timer/counter
0 of the 8515. Also, we're going
to supply a small speaker to make
some noise.

If you think the hardware requirements for this project are getting too demand-
ing now, you don't have to hook up the speaker. It is for illustrative purpos-
es only, and your code will work perfectly well without it.

Every which way; you will see how to set up the timer overflow interrupt and
write handling code for it.

Timer overflow 0
The 8515 has two timer/counters; one 8 bits wide and one 16 bits wide.
This means that they are capable of counting from any value you set, until they
reach their limit which is determined by the number of bits available (256 or
65535, respectively). Then they will issue an interrupt, if you have set it up
to do so.

Upon overflow; the Timer/Counter just keeps counting "around" the range...
so if you have set the timer to start from some special value and want it to
start from there again; you will have to reset it to that value. What we need
to do in the code, is to add three little blocks of code more. These are (could
you guess them?):

1. Another interrupt vector, for the TimerOverflow 0 interrupt: OVF0addr
2. Initialization code for timer/counter 0: TIMSK, TCCR0,TCNT0
3. The interrupt handling subroutine.

OVF0addr
This is the name set in the 8515def.inc file for the location where this inter-
rupt vector should reside (check it, I may be pulling your leg). We add these
two lines of code to the vector block:

; -- new interrupt vector -

.org OVF0addr
rjmp TimerV0 ; T/C0 overflow vector

A T M E L A P P L I C A T I O N S J O U R N A L

www.atmel.com
page 16

You are very able to read this now, and realize that it is just like the previ-
ous .org's in this program. Let's move on!

TIMSK, TCCR0,TCNT0
Together, these 3 registers are all we need consider to have timing interrupts
in an application on the AVR.

TCCR0 controls the operation of Timer/counter 0. The count is incremented
for every clock signal at the input of the timer. But the clock input can be
selected, and prescaled by N. We'll just consider the 3 lowest bits of this
register:

This table shows the different settings of these 3 control bits:

TIMSK; the Timer/Counter Interrupt Mask register is simply a "mask" regis-
ter for enabling/disabling interrupts just like you have already seen with the
GIMSK register:

...and again; the only thing you really need to know for this little tutorial; is
the position of one special little bit: this one is called "Timer/Counter0
Overflow Interrupt enable", abbreviated "TOIE0" and found in bit
postition 1 of this register. To enable our Timer interrupt; set this bit (to "1").
TCNT0 is the actual "Timer/Counter" register. This is where the timing and
counting is done, in accordance with the settings in TCCR0. This is simply a
register for storing a counter value; there are no special bits in it. It is entirely
readable/writable; so you can load it with any desired starting value for your
counting if you like. Note that it does not reset itself automatically, even if
an interrupt is issued.

This is already becoming old news to you now, since it's just more or less
another instance of registers controlling similar functions that you have already
heard about regarding the external interrupts... So let's go right to the code>.

Real code part 2
For illustrating the Timer0 Overflow interrupt; we connect a small speaker to
an output pin of the 8515. Each Timer0 overflow interrupt will toggle the pin.
The result is that the speaker will buzz with a base frequency proportional to
the frequency with which the pin is toggled. I.e. the base frequency will be:

CLK/2*Prescale*(256-TIME)

where TIME is the current value in the TIME register (r16).

Also, the two switches affecting the value in TIME will make the buzz fre-
quency waver up or down.

The picture shows how to connect the speaker. We have chosen pin PD6 for
no particular reason.

TCCR0 Timer/Counter0 register
Bit 7 6 5 4 3 2 1 0

- - - - - CS02 CS01 CS00
Read/write R R R R R R/W R/W R/W
Init. value 0 0 0 0 0 0 0 0
Note that bits 7-3 are reserved, and always read as zero

CS02 CS01 CS00 Description
0 0 0 Stop the timer/counter
0 0 1 CK
0 1 0 CK/8
0 1 1 CK/64
1 0 0 CK/256
1 0 1 CK/1024
1 1 0 Ext. pin T0, falling edge
1 1 1 Ext. pin T0, rising edge

TIMSK Timer/Counter Interrupt Mask register
Bit 7 6 5 4 3 2 1 0

TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 -
Read/write R/W R/W R/W R R/W R R/W R
Init. value 0 0 0 0 0 0 0 0
Note that bits 4,2 and 0 are reserved, and always read as zero

Huh? Why is that the formula for the base frequency?

? The Timer/counter counts up from some value
every clock cycle until it overflows. Then
we reset it, to repeat the drill.

Let's say the timer can only count to 1
before overflow. Flipping the pin every
time, will give us one cycle of a square-
wave like waveform every 2 flips, right?
(up a while, then down a while, repeat...).
Hence, the base frequency would be:

CLK/2

Now; the Timer/Counter register is 8 bits
wide, and can count from any value it is
set (TIME) to 255. The formula becomes:

CLK/2*(256-TIME)

Besides; we have a prescaler which, when
set to N, makes the Timer count just every
Nth cycle...

CLK/2*N*(256-TIME)

A T M E L A P P L I C A T I O N S J O U R N A L

...and again; the only

thing you really need to

know for this little tutorial;

is the position of one

special little bit: this one is

called "Timer/Counter0

Overflow Interrupt enable",

abbreviated "TOIE0" and

found in bit postition

1 of this register.

Now, these were the very

basic basics of interrupts

and I/O. Feel free to

experiment with what you

have learnt in this article;

use other prescaler

settings, try other flanks

of external interrupt

triggering, write programs

that use switches to make

flow control decisions,

whatever...

Good luck!

www.atmel.com
page 17

These are the three snippets of code to insert. Please consult the complete
source code (INTs_2.asm, available below) to where the snippets are insert-
ed:

; - - - - - - - - - - CODE SNIPPET #1 - OVF0addr vector - - - - - - - - - - - - - - - - - - -
This part simply declares the Timer Overflow vector address.

; - - - - - - - - - - CODE SNIPPET #2 - Initializing TIMSK,TCCR0,TCNT0 - - - -
First, we set the TIME register to a higher value (0x80 = 128 decimal) for
starters, and load it into the Timer/Counter register. It's just a more fitting
start value if you run the 8515 on a low CLK freq. Then the relevant interrupt
enable bit is set in the TIMSK register, and the prescaling bits in the Timer
Control register are set to Prescale=8.

This way, if the 8515 runs @ 1.23MHz; the speaker will buzz with a base
frequency equal to 1.23E6/2*8*127 = 605.3 Hz

; - - - - - - - - - - CODE SNIPPET #3 - handling the Timer overflow int. - -
The important issues in handling this interrupt is:
• Resetting the Timer/Counter - it won't do that itself!
• Flipping the beep pin
• Returning to the program

Resetting Timer/Counter is obviously done by loading the value of TIME (r16)
into TCNT0, and returning from the interrupt routine is done by issuing a reti
instruction.

Flipping the beep pin (PD6) is a little curious, however: This is done by invert-

ing every bit in BEEP (r18) with the com instruction, and then OR'ing it with
this value 0xbf = 10111111 b (note the 6th position is '0').

Follow the sequence below:

BEEP 00000000
after com: 11111111
'OR' with: 10111111
Result: 11111111
after com: 00000000
'OR' with: 10111111
Result: 10111111
etc... ...

As you may see; whichever value is in BEEP, the 6th bit of it will flip every
time... So, the pin will toggle up and down, and the speaker beeps this little
song: "...10101010101010...". Haha.

Now, these were the very basic basics of interrupts and I/O. Feel free to exper-
iment with what you have learnt in this article; use other prescaler settings, try
other flanks of external interrupt triggering, write programs that use switches
to make flow control decisions, whatever...

Good luck!

❑

INTs_2.asm Source snippets for second part of program
;------------------ CODE SNIPPET #1 - OVF0addr vector -----------------------------

(~3kB) ; inserted below the existing vector defs

;---

.org OVF0addr

rjmp TimerV0 ; T/C0 overflow vector

.

.

;------------------ CODE SNIPPET #2 - Initializing TIMSK,TCCR0,TCNT0 -------------

; inserted in the Reset: label, right before the 'sei' call

;--

ldi TIME,$80 ; Start from 128. NB!

out TCNT0,TIME ; set Timer/counter also.

ldi TEMP,(1<<TOIE0) ; timer overflow interrupt enable 0

out TIMSK,TEMP

ldi TEMP,$02 ; clock prescaler = clk/8

out TCCR0,TEMP

.

.

;---------- CODE SNIPPET #3 - handling the Timer overflow int. --

; new subroutine label, inserted at the end of the file

;--

TimerV0:

out TCNT0,TIME ; reset time

com BEEP

ori BEEP,$BF ; bit 6 only

out PORTD,BEEP

reti ; important!

A T M E L A P P L I C A T I O N S J O U R N A L

