

EE6378 Power Management Circuits

Lecture 4: Voltage References

Instructor: Prof. Hoi Lee

Mixed-Signal & Power IC Laboratory Department of Electrical Engineering The University of Texas at Dallas

UT D

Introduction

- Here, we will learn to build a reference voltage to provide a stable and accurate supply voltage. The voltage reference is an electronic circuit to provide an accurate and stable DC voltage that is very insensitive to the change in supply voltage and temperature
- How accurate is a voltage reference? E.g. Weston cell is an electrochemical device which provides a reproducible voltage of 1.018636 V at 20°C with a small temperature coefficient of 40 ppm/°C. For integrated circuit implementation, active solid-state devices can achieve a tempco of 1-4 ppm/°C if appropriate compensation technique is employed
- Note
 - To minimize error due to self-heating, voltage reference usually operates with modest current (e.g. < 1mA)
 - Tempco = temperature coefficient, usually expressed in ppm/°C (parts per million/°C or 10⁻⁶/°C

- Performance Requirements
- Zener Diode Voltage Reference
- Bandgap Voltage References
- Bandgap Voltage References Implemented in CMOS technologies

EE6378 Lecture 4

© 2009 H. Lee pg. 3

UT D

Performance Parameters (1)

The primary requirements of a voltage reference are accuracy and stability. Some qualitative parameters are:

- Load Regulation = ΔV_o/ΔI_o (usually expressed in mV/mA or mV/A) or Load Regulation = 100(ΔV_o/ΔI_o) (in %/mA or %/A)
- Line Regulation = $\Delta V_o / \Delta V_{in}$ (usually expressed in mV/V) or Line Regulation = $100(\Delta V_o / \Delta V_{in})$ (in %/V)
- Power Supply Rejection Ratio (PSRR) is a measure of the ripple in the reference voltage due to the ripples in the supply voltage

$$PSRR = 20 \log_{10} \frac{V_{ri}}{V_{ro}} \quad \text{(in dB)}$$

Example of line regulation / supply-voltage dependence at V_{DD} = 3.3, 4.15 and 5V (step size of 0.85V)

Performance Parameters (3)

The maximum (V_{ref(max)}) and minimum (V_{ref(min)}) reference voltages are 1.1761V and 1.1731V, respectively. The reference voltage at T = $27^{\circ}C$ (V_{ref}) is 1.1761V. The tempco in ppm/°C can be found by

 $\text{Tempco} = \frac{V_{ref(\text{max})} - V_{ref(\text{min})}}{V_{ref}} \times \frac{10^6}{(T_{\text{max}} - T_{\text{min}})} = \frac{1.1761 - 1.1731}{1.1761} \times \frac{10^6}{(100 - 0)} = 25.5 \text{ppm}/^{O} \text{C}$

Review on Zener Diode Voltage Reference

The Zener diode described in Lecture 2 can be considered as a voltage reference. Since the breakdown voltage due to Zener breakdown mechanism has a negative temperature coefficient, and the breakdown voltage due to the avalanche multiplication has a positive coefficient, the reference voltage is somewhat independent of the change of temperature

$$V_{o} = \frac{r_{z}}{R_{s} + r_{z}} V_{in} + \frac{R_{s}}{R_{s} + r_{z}} V_{ZK} - \frac{R_{s}r_{z}}{R_{s} + r_{z}} I_{L}$$

$$\text{Line Regulation} = \frac{\Delta V_{o}}{\Delta V_{in}} = \frac{r_{z}}{R_{s} + r_{z}}$$

$$\text{Load Regulation} = \frac{\Delta V_{o}}{\Delta I_{L}} = -\frac{R_{s}r_{z}}{R_{s} + r_{z}}$$

Improved Zener Diode Reference (1)

In the case of Zener diode, the output voltage V_o heavily depends on the load current I_L, which in most cases are not good. It would be better if we could shield the V_z from the influence of the load. This can be done with the help of an op amp as shown below. This method refers to self regulation which shifts the burden of line and load regulations from the diode to the op amp

EE6378 Lecture 4

© 2009 H. Lee pg. 9

Improved Zener Diode Reference (2)

By inspection,

$$V_{\rm o} = (1 + \frac{R_2}{R_1})V_z = (1 + \frac{24k}{39k})6.2 = 10V.$$

- The output voltage is also adjustable via R₂
- The load current I_L is supplied from the opamp such that the current flowing through the Zener diode is almost constant at

$$I_z = \frac{V_o - V_z}{R_3} = \frac{10.0 - 6.2}{3.3k} = 1.15 mA.$$

- Since the diode current is independent of the load current, the diode voltage is insensitive to the load
- R₃ can be raised to avoid unnecessary power wastage and self-heating effects

The load regulation is directly related to the output impedance. To find R_o, we suppress the input source V_z and apply the test-voltage technique. By voltage divider formula:

$$v_N = \frac{R_1 //r_{in}}{R_1 //r_{in} + R_2} v$$

Summing currents at the output node

$$i + \frac{v_N - v}{R_2} + \frac{-Av_N - v}{r_o} = 0$$

Eliminating v_N and solving for the R_o=v/I, we obtain

$$R_{o} = \frac{r_{o}}{1 + [(A + r_{o} / R_{1} + r_{o} / r_{in}) / (1 + R_{2} / R_{1} + R_{2} / r_{in})]} \approx \frac{r_{o}}{1 + Ab} \text{ where } b = \frac{R_{1}}{R_{1} + R_{2}}$$

EE6378 Lecture 4

© 2009 H. Lee pg. 11

Load Regulation (2)

UT D

- Typically r_{in} is in the MΩ range or greater, R₁ and R₂ are in kΩ range and r_o is on the order of 10² Ω. The terms r_o/R₁, r_o/r_{in}, and R₂/r_{in} can thus be ignored to yield R_o≈r_o/(1+Ab)
- The load regulation R_o≈r_o/(1+Ab) which is much smaller than the Zener diode voltage reference without opamp
- Since r_o and A are frequency dependent, so are the load regulation. In general, load regulation tends to degrade with frequency

 Thermal stability is one of the most demanding performance requirement of voltage references due to the fact that semiconductor components are strongly influenced by temperature

 The forward-bias voltage V_D and current I_D of a silicon pn junction, which forms the basis of the diodes and BJTs, are related as V_D=V_TIn(I_D/I_S), where V_T is the thermal voltage and I_S is the saturation current. Their expressions are

$$V_T = kT/q$$
 and $I_S = BT^3 \exp(-V_{G0}/V_T)$

where

k=1.381×10⁻²³ is Boltzmann's constant q=1.602 ×10⁻²³ C is the electron charge T is the absolute temperature B is a proportionality constant V_{G0} = 1.205V is the bandgap voltage for silicon

EE6378 Lecture 4

© 2009 H. Lee pg. 13

Thermal Stability (2)

The temperature coefficient (TC) of the thermal voltage:

$$\mathsf{TC}(V_T) = \frac{\partial V_T}{\partial T} = \frac{k}{q} = 0.0862 \,\mathrm{mV/^oC}$$

$$\mathsf{TC}(V_D) = \frac{\partial V_T}{\partial T} \ln(\frac{I_D}{I_S}) + V_T \frac{\partial [\ln \frac{I_D}{I_S}]}{\partial T} = \frac{V_D}{T} - V_T \frac{\partial (3 \ln T - \frac{V_{G0}}{V_T})}{\partial T} = -(\frac{V_{G0} - V_D}{T} + \frac{3k}{q})$$

Assume
$$V_D = 650 \text{mV}$$
 at 25°C, we get TC(V_D) \approx -2.1mV/°C.

 TC(V_T) have a positive tempco and TC(V_D) have a negative tempco, so these two equations form the basis of two common approaches to thermal stabilization, namely, thermal compensated Zener diode references and bandgap references

UTD

Since the best breakdown voltages of the Zener diode references range from 6 to 7V, they usually require supply voltages on the order of 10V to operate. This can be a drawback in systems powered from lower supplies, such as 5V. This limitation is overcome by bandgap voltage references, so called because their output is determined primarily by the bandgap voltage of silicon V_{G0} = 1.205V

Bandgap Voltage Reference (2)

Addition of the voltage drop V_{BE} of a base-emitter junction, which has a negative tempco, to a voltage proportional to the thermal voltage V_T, which has a positive tempco, to generate a reference voltage, which is independent of temperature As TC(V_{BE}) ≈ -2.1mV/°C and TC(V_T) = 0.0086mV/°C, then zero tempco is achieved at a particular temperature (e.g. T=300K):

$$V_{BG} = V_{BE} + KV_T$$

i.e. $TC(V_{BG})|_{300K} = TC(V_{BE}) + K \cdot TC(V_T) = 0$
$$\Rightarrow K = \frac{-TC(V_{BE})}{TC(V_T)} = \frac{2.1}{0.086} = 24.4$$

If for a particular transistor with certain bias current such that V_{BE} = 650mV, then

$$V_{BG} = V_{BE} + KV_T = 0.65 + 24.4(0.0259) = 1.28$$
 V.

 Note that V_T = kT/q ∞ T, i.e. V_T is proportional to absolute temperature. We call V_T a <u>P</u>roportional <u>T</u>o <u>A</u>bsolute <u>T</u>emperature voltage, or in short, PTAT voltage

EE6378 Lecture 4

© 2009 H. Lee pg. 19

Bandgap Voltage Reference Circuit (1)

- From the figure, the emitter area of Q1 is n times as large as the emitter area of Q2, then I_{s1}/I_{s2} = n
- By op amp action with identical collector resistances, the collector currents are also identical, i.e. I_{C1} = I_{C2}. Ignore the base currents, we have KV_T = R₄(I_{C1}+I_{C2}) = 2R₄I

$$IR_3 = V_{BE2} - V_{BE1} = V_T \ln(\frac{I_{C2}I_{S1}}{I_{C1}I_{S1}}) = V_T \ln(n)$$

Combine two equations give

$$K = \frac{2R_4}{V_T} \frac{V_T}{R_3} = 2\frac{R_4}{R_3} \ln(n)$$
$$\Rightarrow V_{BG} = V_{BE2} + KV_T = V_{BE2} + (2\frac{R_4}{R_3} \ln n)V_T$$

Bandgap Voltage Reference Circuit (2)

• From the previous discussion, for a zero tempco voltage reference V_{BG} , K \approx 24, with n = 4, then

$$\frac{R_4}{R_3} = \frac{K}{2\ln 2} = \frac{24.4}{2\ln 4} \approx 8.8$$

Note that I = V_TIn(n)/R₃ ∞ V_T, I is a PTAT current

EE6378 Lecture 4

© 2009 H. Lee pg. 21

Brokaw Cell

- Brokaw cell is commonly used bandgap-cell realization circuit and is shown in the figure
- The function of op amp is replaced by Q₃, Q₄ and Q₅. Q₃ and Q₄ form a current mirror to enforce the collector currents of Q₁ and Q₂ are identical
- The emitter follower Q₅ raises the reference voltage to V_{ref} = (1+R₁/R₂)V_{BG}

- In a bandgap reference, there exists 2 feedback loops, 1 positive loop and 1 negative loop.
- For the negative loop (the outer loop),

Negative Loop Gain = $\frac{R_2 + 1/g_{m1}}{R_1 + R_2 + 1/g_{m1}} A(s)$

• For the positive loop (the inner loop),

Positive Loop Gain = $\frac{1/g_{m1}}{R_1 + 1/g_{m1}} A(s)$

 For stability, we must have a negative loop gain magnitude > positive loop gain magnitude. This is true as ((a+c)/(b+c))>(a/b) for b>a

EE6378 Lecture 4

© 2009 H. Lee pg. 23

Stability of Simple Brokaw Cell (1)

- If we neglect R₃, then clearly Q1 and Q2 form a differential pair with positive and negative terminals tied together
- Above is the way to break the loop for measuring loop gain. The circuit should have a DC closed loop and AC open loop. The DC closed loop is for biasing and the AC loop is to measure loop gain

Stability of Simple Brokaw Cell (2)

- With the presence of R₃, the positive loop looks like an amplifier with degenerated emitter ⇒ the gain is smaller than that with R₃. Therefore, negative loop gain magnitude > positive loop gain magnitude, i.e. stability requirement is satisfied
- C_c is the compensation capacitor. Here, dominant pole compensation is employed

EE6378 Lecture 4

Derview
Performance Requirements
Zener Diode Voltage Reference
Bandgap Voltage References Implemented in CMOS technologies

© 2009 H. Lee pg. 25

- that the base contact is far away from the base
 The maximum collector current is thus limited to less than 0.1n
- The maximum collector current is thus limited to less than 0.1mA to minimize errors due to the base resistance

Two possible implementations:

EE6378 Lecture 4

© 2009 H. Lee pg. 29

CMOS Bandgap References (4)

$$V_{BG} = V_{EB2} + V_{R2}$$

 Assume the op amp has very large gain and very small input currents such that its input terminals are at the same voltage, then

$$V_{R3} = V_{EB2} - V_{EB1} = \Delta V_{EB}$$

 Since the current through R₁ is the same as in R₃

$$\frac{V_{R1}}{R_1} = \frac{V_{R3}}{R_3} \quad \text{or} \quad V_{R1} = \frac{R_1}{R_3} V_{R3} = \frac{R_1}{R_3} \Delta V_{EB}$$
$$V_{BG} = V_{EB2} + \frac{R_1}{R_3} \Delta V_{EB}$$

CMOS Voltage References (5)

In CMOS realization, the bipolar transistors are often taken the same size, and different current densities (I_C/I_S) are realized by taking R₁ greater than R₂, which causes I₂ to be greater than I₁:

$$V_{R1} = V_{R2} \Longrightarrow I_1 R_1 = I_2 R_2$$
 or $\frac{I_2}{I_1} = \frac{R_1}{R_2}$

 $\Delta V_{FB} = V_{FB2} - V_{FB1} = \frac{kT}{\ln(\frac{l_2}{L})}$

$$\Rightarrow V_{BG} = V_{EB2} + \frac{R_1}{R_3} \frac{kT}{q} \ln(\frac{R_1}{R_2}) \quad \text{with} \quad K = \frac{R_1}{R_3} \ln(\frac{R_1}{R_2})$$

EE6378 Lecture 4

© 2009 H. Lee pg. 31

Example

- Find the resistances of a bandgap voltage reference based on the CMOS n-well process where $I_1 = 5\mu A$, $I_2 = 40\mu A$ and $V_{EB} = 0.65V$ at T = 300K. Assume $V_{BG} = 1.24V$
- Ans. $R_1 = 118k\Omega$, $R_2 = 14.8k\Omega$ and $R_3 = 10.1k\Omega$

Other CMOS References

- Current mirror enforces equal currents at M1, M2 and M3
- Voltage clamping by M4 and M5 to enforce V1=V2
- PTAT loop formed by Q1, Q2 and R1

$$V_{ref} = V_{EB3} + \frac{R_2}{R_2} \ln(N) \cdot V_7$$

 Cascode current mirror or other forms for better current matching at different supply voltages

© 2009 H. Lee pg. 33

EE6378 Lecture 4

UT D

Current Mirror with Op Amp

 In CMOS reference using current mirror with op amp, an op amp is used to enforce the drain voltage of M₁ the same as of M₂. This allows a better current matching of drain currents of M₁ and M₂

(b) current mirror with op amp

Error Sources in Voltage-Reference Design

- Current mirror
- Voltage-clamping circuit
- BJT emitter area ratio (BJT matching)
- Resistor ratio (resistor matching)
- Base current

EE6378 Lecture 4

- Base resistance
- Systematic offset at different supply voltages
- Random offset of devices
- Temperature gradient within a chip

Design Considerations: BJTs Q1 Q1 **Q1** Q1 Q1 Q1 QÍ Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1-Q1 Q1 Q1-Q1 Q1 Q1 QÍ Q1 Q1 Q1 01 N = 8N = 24

- Closely packed common-centroid layout
- Large N does not provide significant change due to the logarithm relation
- Generally, N=8 is chosen based on chip area consideration

© 2009 H. Lee pg. 35

Design Considerations: Resistors

- Matching is important to obtain an accurate resistance ratio
- Square-like common-centroid layout

EE6378 Lecture 4

© 2009 H. Lee pg. 37

UT D

Typical Low-Voltage Implementation

- Error-amplifier current mirror enforces V_A = V_B
- Min $V_{DD} = V_{REF} + |V_{ov,M2}|$
- Offset voltage → error
- Offset voltage = function of V_{TH}, mobility and transistor size → temperature dependent
- Use simple amplifier
- Reduce both systematic and random offset

Offset Voltage Consideration

$$I = \frac{V_{T} \ln(N) + V_{OFF}}{R_{1}}$$
$$\Rightarrow V_{ref} = V_{EB2} + (\frac{R_{2}}{R_{1}})[V_{T} \cdot \ln(N) + V_{OFF}]$$

- A larger N is used to minimize the required R₂/R₁, and the effect of the amplifier offset
- Increase chip area

EE6378 Lecture 4

© 2009 H. Lee pg. 39

UT D

- Large base resistance of parasitic vertical BJT
- Diode-connected BJT \neq V_{EB}
- As mentioned before, I < 0.1mA
- Not due to low-power design, but due to reduce voltage across R_B
- On layout, more N-well contacts to reduce R_B

Base Current Compensation

- β is small in CMOS technology
- $I_C \neq I_E$ and I_C is a function of β
- Introduced β in I_C causes extra errors and temperature dependence
- Base current compensation by a dummy transistor Q1D
- I_E of Q1 = I + I/β
 I_C of Q1 = I
- Q1D must match with Q1

EE6378 Lecture 4

 Resistor ratio can be fine-tuned by using a series of resistor network associated with fuse

 By burning the fuse, the resistor value can be adjusted to fine-tune the reference voltage and the temperature with zero tempco to a particular value

© 2009 H. Lee pg. 41

Resistor Trimming

Buffered Voltage Reference

• $V_{MIN} = V_{ov} + V_{REF}$

CMOS Bandgap Reference with Sub-1-V Operation (1)

$$V_{REF} = \left(\frac{R_3}{R_2}\right)\left(V_{EB2} + \left(\frac{R_2}{R_1}\right)\ln(N) \cdot V_{T}\right)$$

- R₁, R₂ & R₃ of same material
- Good matching R₁ and R₂ for optimizing tempco
- Good matching R₂ and R₃ for adjusting the value of V_{REF}
- M1, M2 & M3 of equal W, L
- $V_{REF} \approx 0.5-0.7$ V for matching V_{DS} of M1-M3 at different V_{DD}

© 2009 H. Lee pg. 45

EE6378 Lecture 4

CMOS Bandgap Reference with Sub-1-V Operation (2)

- Native NMOST : V_{THN} = 0.2V
- Not available in standard CMOS technologies

Low-Voltage Design Problem of Error Amplifier VDD N-input stage P-input stage Worst case (smallest) V_{EB} at Worst case (largest) V_{FB} and maximum operational $|V_{THP}|$ at minimum temperature temperature • $V_{EB} < V_{DD} - |V_{thp}| - 2|V_{ov}|$ • $V_{EB} > V_{THN} + 2V_{ov}$ • $V_{DD(min)} = V_{FB} + |V_{THP}| + 2V_{ov}$ Low-V_{THN} (<0.4V) technology Body effect increases V_{THN} © 2009 H. Lee pg. 47 EE6378 Lecture 4

