
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified 
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #034IO

YVON HACHÉ, P. ENG
How to Declare I/O Pins to Ease Software Design and Maintenance

Introduction When developing software and hardware, often during the design phase, a signal on
one I/O pin may change pin and/or port on the microcontroller. Also, if the same soft-
ware is re-used on another design, the signal used is not necessarily on the same I/O
pins as the previous design. When this happens, everywhere in the software where
each signal is used they have to be re-mapped to a different I/O pin and/port. This can
make the task difficult, long and also add risk of introducing errors.

The following shows a way to declare the I/O pins to limit the number of changes in the
software to a one constant per signal when this situation happens. It makes the software
more re-usable and eliminates the need of re-testing the parts that have been tested
already.

Note: Macros defined in this document are written for AVRASM. This must be considered when
used with other assemblers.

Details The examples in this design note are using a macro to make the code more readable.
The macro configures the pin as an output an then set the pin state to high.

The following shows an example of how a signal is often associated with an I/O pin in
assembly language.

.equ Signal1 = 0 ;Pin 0

.equ Signal2 = 1 ;Pin 1

...

sbi DDRA, Signal1 ;Configure Signal 1 as an output

sbi PORTA, Signal1 ;Set Signal 1 to logic 1.

...
1www.AVRfreaks.net Design Note #034 – Date: 06/02



In this example, if Signal1 is moved to pin 4 on Port C during the design phase of the
project; Or if the same software is used on a different circuit, the following modifications
have to be done:

.equ Signal1 = 4 ;Pin 4

.equ Signal2 = 1 ;Pin 1

...

sbi DDRA, Signal1 ;Configure Signal 1 as an output

sbi PORTA, Signal1 ;Set Signal 1 to logic 1.

...

These changes have to be done everywhere in the code where Signal1 is used. This
could be a difficult and time-consuming task, which introduces a risk of errors.

By using a simple technique, Signal1 can be declared at one place and only that place
in the code will need to be modified if Signal1 changes position. Further, to make the
code more readable a macro is used instead of the bit manipulating instruction itself.
The following example does the same thing as the previous example, but Signal1 is
declared and used differently:

.equ GEN_PORT = 0 ;PORT output) register address offset

.equ GEN_DIR = -1 ;DDR(direction) register address offset

.equ GEN_INP = -2 ;PIN(input) register address offset

.equ Signal1 = (PORTA <<8) + 0 ;Equivalent to Signal1=0x1B00+0=0x1B00

.equ Signal2 = (PORTA <<8) + 1 ;Equivalent to Signal2=0x1B00+1=0x1B01

...

.macro setIoBit ;Usage:setIoBit GEN_PORT/DIR/INP,Signal 

sbi high(@1)+@0, low(@1) ;AVRASM specific calls

.endmacro

...

setIoBit GEN_DIR, Signal1 ;Configure Signal 1 as an output.

setIoBit GEN_PORT, Signal1 ;Set Signal1 to logic 1.

...

The three first constants are the address offsets of each register of a particular port:
Output Port Register, Direction Register and Input Register. The Signal1 constant now
contains the pin number and the port address (two bytes long). 
www.AVRfreaks.net2 Design Note #034 – Date: 06/02



Using Signal1 as an example to show how easily changes can now be made: It is
required to move the test signal (Signal1) from PIN0 on PORTA to PIN4 on PORTC. To
accomplish this change only one line in the code needs to be modified:

.equ GEN_PORT = 0 ;PORT(output) register address offset

.equ GEN_DIR = -1 ;DDR(direction) register address offset

.equ GEN_INP = -2 ;PIN(input) register address offset

.equ Signal1 = (PORTC <<8) + 4 ;Equivalent to Signal1=0x1500+4=0x1504

.equ Signal2 = (PORTA <<8) + 1 ;Equivalent to Signal2=0x1B00+1=0x1B01

...

.macro setIoBit ;Usage:setIoBit GEN_PORT/DIR/INP,Signal

sbi high(@1)+@0, low(@1) ;AVRASM specific calls

.endmacro

...

setIoBit GEN_DIR, Signal1 ;Configure Signal 1 as an output.

setIoBit GEN_PORT, Signal1 ;Set Signal1 to logic 1.

...

The three first constants are always the same, no matter which port is used. The two
instructions to configure Signal1 stay exactly the same. When using this technique, the
constants could be declared in a configuration file separate from the software source
code file. If the software is re-used on a different hardware, only the configuration file
has to be modified to match the new hardware. The software is never modified. If the
software is designed in a modular fashion, a library of software modules can be created
and maintained for re-use where each module has its own configuration file.

Please note that this method only applies to ports/pins in the IO memory space and not
to PORTs in extended IO memory space (which the ATmega128 have). This is because
the SBI instruction is limited to only address up to 0x20 in the IO address space and
because the three registers associated with the PORT in extended IO are not organized
as the rest of the ports.
www.AVRfreaks.net 3Design Note #034 – Date: 06/02


	Introduction
	Details

