

Outline

● Version Control System (VCS) basics
● Git terminology & concepts
● Basic Git commands
● Branches in Git
● Git over the network (time permitting)

Why do I need version control?

● How many lines of code was the biggest project
you've worked on thus far?

● Were you collaborating with others on that
project?

● How did you share code?
● How did you keep track of different changes?
● Were you ever in a place where the project

once worked but it didn't when you needed it?

What does VCS do for me?

What we want from a VCS:
● Save a history of changes we make

– Visibly show the history

– Allow us to revert to an older state

● Aid in collaboration with others
– Should include tools for combining code together

● Aid in creating backups of our work

The local approach

● No special program,
just a collection of
folders

● Versions identified by
a number or date

● Does this look
familiar?

The centralized approach

● Server-Client model
● A single server stores

all revisions
● Clients check-out the

revision they want

The distributed approach

● Everyone has the full
history of the project

● Possible to have
more than one server

● Crashed server is
only a minor
speedbump

● Easy to recover from
bad hard drive on
server

The three states of a tracked file

● Modified
– The file has been modified after you checked it out

● Staged
– You tell git when to stage a file(s)

– Files must be staged before they are committed

● Committed
– You tell git when to commit a file(s)

– Committed files are recorded in a database

The three states of a file

Git creates a database of snapshots

● Each commit has data about the author,
committer, time committed, notes, etc.

● Each commit also has references to the binary
objects needed to recreate your project.

First steps

First thing you do in Git needs to be to tell Git
who you are. This is needed for your work
history when collaborating with others.

$ git config --global user.name “John Doe”

$ git config --global user.email
“johndoe@aol.com”

Git Init

You have to tell git where you want to make a
repository. This path will be the top directory of
your project.

$ cd ~/school/ece473/lab/lab_1

$ git init

Git Status

The “git status” command tells you which
branch you are on, which files are modified,
and which are staged.

$ git status

On branch master
#
Initial commit
#

Git Status Example #2
On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

#modified: hello.py

#

Changes not staged for commit:

(use "git add <file>..." to update what will be
committed)

Git Status Example #2
(use "git checkout -- <file>..." to discard changes in
working directory)

#

#modified: main.py

#

Untracked files:

(use "git add <file>..." to include in what will be
committed)

#

#hello.pyc

Git Add

After adding new files or modifying existing
ones we use the “git add” command to add files
to the staging area.

$ vim main.c

$ vim fm_radio.c

$ git add *.c

Git Commit

The git commit command creates a new commit (aka
snapshot) of your project with all the changes that are in
the staging area (used git add to stage files).

$ git commit

Important flags:
-a: add all new/modified files and then commit
-m: write commit message in command

$ cp ~/math_lib/ .
$ git commit -a -m “Add math library to
project.”

Git Log

The git log command prints to the terminal the
history of your commit messages for the branch
that you are currently on.

$ git log

Commit:
e95513e4fe173ca6b0246d2a4c85057ee41b63
9c
Author: Micah Losli <micah.losli@gmail.com>
Date: (7 days ago) 2013-11-11 21:22:53
-0800
Subject: Add support for song options

Good so far?

In Class Exercise Part 1

Branch?

“Branching means you diverge from the main line of
development and continue to do work without
messing with the main line.”

-Scott Chacon, Pro Git

“Think of a branch as you would a copy of your poject
folder: a safe place to experiment with new code.”

-Micah Losli

What is a branch?

● In most VCSs, a branch is actually a new copy
of your project directory. With a large project,
this is very expensive in terms of disk space.

● In Git, a branch is merely a pointer to a
snapshot (aka commit). This makes working
with branches in git very “cheap”.

Branches are pointers

A repository after 3 commits and no new branches.

Git Branch

$ git branch

– List local branches

$ git branch <branch_name>

– Make a new branch with name branch_name

$ git branch -d <branch_name>

– Delete the <branch_name> branch

Git Checkout

The git checkout command changes our current
branch. When the branch is changed, the
project directory is updated to the contents of
that branch.

$ git branch testing
$ git checkout testing

Or you can use an equivalent shortcut:

$ git checkout -b testing

Branches are pointers

$ git branch testing

Branches are pointers

$ git checkout testing

Branches are pointers

A new commit on the testing branch.

Branches are pointers

$ git checkout master

Branches are pointers

A new commit on the master branch.

Git Log EXTREME

The git log command has some tricks up its' sleeves.

Regular and Canadian LOLs

 ...just copy the following into ~/.gitconfig for your full color git lola action:

 [alias]

 lol = log --graph --decorate --pretty=oneline --abbrev-commit

 lola = log --graph --decorate --pretty=oneline --abbrev-commit --all

 [color]

 branch = auto

 diff = auto

 interactive = auto

 status = auto

From Conrad Parker's blog <http://blog.kfish.org/2010/04/git-lola.html>

Git Diff

Git can show you the difference between two
commits or two branches.

$ git diff 3df73768 f3c3bfc

– Show the differences between the two commits

$ git diff master testing

– Show the differences between the two branches.
Remember, branches are pointers to commits.

● The --stat flag shows a list of changed files
rather than all the changes.

In Class Exercise Part 2

Git Merge

The git merge command merges in the named
branch into the branch that you are currently
on.

$ git merge <other_branch_name>

– Creates a new commit with the two branches
combined.

$ git merge --squash <branch_name>

– Doesn't make a new commit with two ancestors.
Instead all the merge differences are added to the
index, and you can commit them when ready.

In Class Exercise Part 3

Remote Repositories

“Remote repositories are versions of your
project that are hosted on the Internet or
network somewhere.”
– Scott Chacon, Pro Git

Git Remote

$ git remote -v

– List all remote servers (-v means show remote url)

$ git remote add <local_name> <url>

– Add the repo at the given <url> as a remote server
and call it by <local_name> in this repo.

Git Fetch

The git fetch command updates your
repository's information about the remote
repository. It will be easiest to observe the
remote branches with the 'git lola' command.

$ git remote add <remote_name> <url>

$ git fetch <remote_name>

Git Push

The git push command puts/updates your local
branch to a branch on the remote repository.

$ git push <remote_name>
<local_branch_name>

– Add/update your <local_branch_name> on the
remote server.

$ git push <remote_name>
<local_branch_name>:<remote_branch_name>

– Same as above, but rename branch on remote

In Class Exercise Part 4

What You Need Now

● More practice
● Pro Git by Scott

Chacon
– $23 on Amazon

– PDFs online for free

Git Questions?

Git Out Of Here

● I can linger for a while if you have further
questions.

● Thank you for having me, it's a pleasure and
honor to be here.

● Go into the world and use version control!

Git Out Of Here

● I can linger for a while if you have further
questions.

● Thank you for having me, it's a pleasure and
honor to be here.

● Go into the world and use version control!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

