Essential VHDL for ASICs

A brief introduction to design with VHDL for ASIC design.
Roger Traylor
9/7/01
Version 0.2

All rights reserved. No part of this publication may be reproduced, without t
prior written permission of the author.

Copyrightd 2001, Roger Traylor

he

Essential VHDL for ASICs 1

Revision Record

rev 0.1 : Initial rough entry of material. 9/7/01 RLT
rev 0.2 : Started entering JMMSs revisions 4/15/02

Essential VHDL for ASICs

HDL Design

Traditionally, digital design was done with schematic entry.

In today’s very competitive business environment, building cost-
effective products in an quick fashion is best done with a top down
methodology utilizing hardware description languages and
synthesis.

shift_register:
PROCESS (clk_50, reset_n, data_ena, serial_data, parallel_data)
BEGIN
IF (reset_n="0") THEN
parallel_data <= "00000000";
ELSIF (clk_50'EVENT AND clk_50 ='1") THEN
IF (data_ena ='1") THEN
parallel_data(7) <= serial_data; --input gets input data
FORiINOTO 6 LOOP
parallel_data(i) <= parallel_data(i+1); --all other bits shift down
END LOOP;
ELSE
parallel_data <= parallel_data;
END IF;
END IF;
END PROCESS shift_register;

synthesi

Essential VHDL for ASICs

HDLs - Motivation

Increased productivity
shorter development cycles, more features, but........
still shorter time-to-market, 10-20K gates/day/engineer

Flexible modeling capabilities.
can represent designs of gates or systems
description can be very abstract or very structural
top-down, bottom-up, complexity hiding (abstraction)

Design reuse is enabled.
packages, libraries, support reusable, portable code

Design changes are fast and easily done
convert a 8-bit reqgister to 64-bits........
four key strokes, and its done!
exploration of alternative architectures can be done quickly

Use of various design methodologies.
top-down, bottom-up, complexity hiding (abstraction)

Technology and vendor independence.
same code can be targeted to CMOS, ECL, GaAs
same code for: Tl, NEC, LSI, TMSC....no changes!

Enables use of logic synthesis which allows a investigation of the
area and timing space.
ripple adder or CLA?, How many stages of look ahead?

HDLs can leverage software design environment tools.
source code control, make files

Using a standard language promotes clear communication of
ideas and designs.
schematic standards?... what's that... a tower of Babel.

Essential VHDL for ASICs 4

HDLs - What are they? How do we use them?

A Hardware Description Language (HDL) is a programming
language used to model the intended operation of a piece of
hardware.

An HDL can facilitate:
abstract behavioral modeling
-no structural or design aspect involved
hardware structure modeling
-a hardware structure is explicitly implied

In this class we will use an HDL to describe the structure of a
hardware design.

When we use an HDL, we will do so at what is called tHeegister
Transfer Language level (RTL)At this level we are implying
certain hardware structures when we understand apriori.

When programming at the RTL level, we are not describing an
algorithm which some hardware will execute, we are describing a
hardware structure.

Without knowing beforehand what the structure is we want to
build, use of an HDL will probably produce a steaming pile (think
manure) of gates which may or may not function as desired.

You must know what you want to buildbefore you describe it in
an HDL.

Knowing an HDL does not relieve you of thoroughly
understanding digital design.

Essential VHDL for ASICs

HDL's- VHDL or Verilog

We will use VHDL as our HDL.

VHDL
more capable in modeling abstract behavior
more difficult to learn
strongly typed
85% of FPGA designs done in VHDL

Verilog
easier and simpler to learn
weakly typed
85% of ASIC designs done with Verilog (1993)

The choice of which to use is not based solely on technical
capability, but on:

personal preferences

EDA tool availability

commercial business and marketing issues

We use VHDL because
strong typing keeps students from getting into trouble
if you know VHDL, Verilog can be picked up in few weeks
If you know Verilog, learning VHDL can take several month

The Bottom line...Either language is viable.

S

Essential VHDL for ASICs 6

VHDL - Origins

Roots of VHDL are in the Very High Speed Integrated Circuit
(VHSIC) Program launched in 1980 by the US Department of

Defense (DOD).

The VHSIC program was an initiative by the DOD to extend
integration levels and performance capabilities for military integrated circuits
to meet or exceed those available in commercial ICs.

The project was successful in that very large, high-speed circuits were
able to be fabricated successfully. However, it became clear that there was a
need for a standard programming language to describe and document the
function and structure of these very complex digital circuits.

Therefore, under the VHSIC program, the DOD launched another
program to create a standard hardware description language. The result was the
VHSIC hardware description language or VHDL.

The rest is history...

In 1983, IBM, Tl and Intermetrics were awarded the contract to
develop VHDL.

In 1985, VHDL V7.2 released to government.
In 1987, VHDL became IEEE Standard 1076-1987.

In 1993, VHDL restandardized to clarify and enhance the
language resulting in VHDL Standard 1076-1993.

In 1993, development began on the analog extension to VHDL,
(VHDL-AMS).

Extends VHDL to non-digital devices and micro electromechanical
components. This includes synthesis of analog circuits.

Essential VHDL for ASICs 7

Some Facts of Life (For ASIC designers)

The majority of costs are determined by decisions made early in
the design process.

“Hurry up and make all the mistakes. Get them out of the way!”
“Typical” ASIC project: concept to first silicon about 9 months.
95% of designs work as the specification states.

60% of designs fail when integrated into the system.
The design was not the right one, but it “works”.

Technology is changing so fast, the only competitive advantage is
to learn faster than your competitors.

To design more “stuff” faster, your level of abstraction in design
must increase.

Using HDLs will help to make digital designers successful. (and
employed!)

Essential VHDL for ASICs 8

VHDL Modeling

A VHDL models consist of anEntity Declarationand a
Architecture Body

The entity defines theinterface, the architecture defines the
function.

The entity declaration names the entity and defines the interface
to its environment.

Entity Declaration Format:

ENTITY entity_name IS
[GENERIC (generic_list);]
[PORT (port_list);]

END ENTITY [entity _name];

There is a direct correspondence between a ENTITY and a block
diagram symbol. For example:

ENTITY nand_gate IS
PORT(
a:in std_logic;
b:in std _logic;
c:in std _logic;
z . out std_logic);
END ENTITY nand_gate;
nand_gate

—.a

Essential VHDL for ASICs 9

Port Statement

The entitiesport statement identifies the ports used by the entity
to communicate with its environment

Port Statement Format:

PORT(
name_list : mode type;
name_list : mode type;
name_list : mode type;
name_list : mode type);

This is legal but poor form:

ENTITY nand_gate IS
PORT(a,d,e,f: in std_logic;
b,j,q.,l,y,v : in std_logic;
w,k :in std_logic;
z . out: std_logic);
END nand_gate;

This is much less error prone:

Use one line per signal. This allows adequate comments.
Capitalize reserved names.

ENTITY nand_gate IS
PORT(
a:IN STD _LOGIC; --ainput
b:IN STD_LOGIC; --binput
c:IN STD LOGIC; --cinput
z . OUT STD_LOGIC); --nand output
END ENTITY nand_gate;

Essential VHDL for ASICs

10

Port Mode:

All ports must have an identified mode.

Allowable Modes:

(mode: inout)

- data -

L

|dentifies the direction of data flow through the port.

(mode:out)
ram_wr_n

« IN Flow is into the entity

« OUT Flow is out of the entity

« INOUT Flow may be either in or out

- BUFFER An OUTPUT that can be read from

bobs_block
_>
.>
(mode: in)
clock o | o

(mode: buffer)
state 0

The PORT statement is optional. At the top level, none is needed.

Essential VHDL for ASICs

11

Architecture Body

The architecture body describes the operation of the component.

Format:

ARCHITECTURE body name OF entity name IS
--this is the ->declarative area<-
--declare signals, variables, components,
--subprograms

BEGIN
--this is the ->statement area<-

--in here go statements that describe

--organization or functional operation of

--the component

--this is the “execution part” of the model
END [body name]

The entity_name in the architecture statement must be the same
as the entity declaration that describes the interface to the outside
world.

ENTITY entity name IS

\

ARCHITECTURE body name OF entity nhame 1S

The “body _name” is a user-defined name that should uniquely
describe the particular architecture model.

ARCHITECTURE beh OF nand_gate IS
ARCHITECTURE struct OF nand_gate IS

Note: multiple architectures are allowed.

Essential VHDL for ASICs 12

Commenting Code

A double hyphen (--) indicates everything from that point on in
that line is to be treated as a comment.

ARCHITECTURE example OF xor_gate IS
--The following is a silly example of how

--to write comments in VHDL.

BEGIN
--comment from the beginning of a line
a <= b XOR c; --or...comment from here on
--each line must have its own
--comment marker unlike “C”

END [body name]

--this is the end and there ain’'t no more!

Comments can be put anywhere except in the middle of a line of

code.

Essential VHDL for ASICs

13

Entity and Architecture for a NAND gate Model

--the following is a behavioral description of
--a three input NAND gate.

ENTITY nand3 IS
PORT(

a :IN std _logic;

b :IN std logic;

c :IN std_logic;

z . OUT std_logic);
END ENTITY nands3;

ARCHITECTURE beh OF nand3 IS
BEGIN
z <=1 WHEN a="0" AND b=0’ ELSE

‘1" WHEN a="0' AND b=1’ ELSE
‘1’ WHEN a='1" AND b=‘0’ ELSE
‘0 WHEN a="1" AND b='1" ELSE
X

END ARCHITECTURE beh;

You can create VHDL source code in any directory.

VHDL source code file may be anything......but,
Use the name of the design entity with the extensionvhd’

The above example would be in the file: nand3.vhd

Question: Why the ‘X’ in the above code?

Essential VHDL for ASICs

14

Signal Assignment

The assignment operator (<=) is used to assign a waveform value
to asignal.

Format:

target_object <= waveform,;

Examples:

my_signal <= ‘0’; --ties my_signal to “ground”
his_signal <= my_signal; --connects two wires

--vector signal assignment

data bus <= “0010"; -- note double quote
bigger bus <= X"a5"; -- hexadecimal numbers

Essential VHDL for ASICs 15

Declaring Objects

Declaration Format:
OBJECT_CLASS identifier: TYPE [:=init_val];

Examples:

CONSTANT delay : TIME:=10ns;
CONSTANT size : REAL:=5.25;
VARIABLE sum : REAL;
VARIABLE voltage : INTEGER:=0;
SIGNAL clock : BIT,;

SIGNAL spam : std logic:="X’;

Objects in the port statement are classified as signals by default.

Objects may be initialized at declaration time.

If an object is not initialized, it assumes the left-most or minimum
value for the type

Essential VHDL for ASICs

16

Naming Objects

Valid characters:

« alpha characters (a-z)

« numeric characters (0-9)
« underscore ()

Names must consist of any number of alpha, numeric, or
underline characters.

Underscore must be proceeded and followed by alpha or numeric
characters.

The underscore can be used to separate adjacent digits in bit
strings:

CONSTANT big 0: STD _LOGIC VECTOR(15 DOWNTO 0) :=
B"0000_0000 0000 _0000";

Names are not case sensitive. (be consistent!, use lowercase!)

Coding hints:

Use good names that are meaningful to others. If your code is good,
somebody else will want to read it.

Name signals by their function. For example, if you have a multiplexor
select line that selects addresses, give it a name éilldress_select ”
instead of Sel 32a”

Name blocks by their function. If a block generates control signals for a
DRAM controller, call the blockdram_ctl ” not something obscure like
“block_d .

Essential VHDL for ASICs 17

A Simple Example to Recap

--and-or-invert gate model
--Jane Engineer

--3/13/01

--version 0.5

LIBRARY ieee;

USE ieee.std logic_1164.ALL;

ENTITY aoi4 IS

PORT(
a :IN std _logic;
b :IN std _logic;
c :IN std logic;
d :IN std logic;
z : OUT std _logic);

END ENTITY aoi4;

ARCHITECTURE data_flow OF aoi4 IS
SIGNAL templ, temp2 : std _logic;
BEGIN

templ <=a AND b;
temp2 <=c AND d;
z <=templ NOR temp2;

END ARCHITECTURE data_flow;

Essential VHDL for ASICs

18

	Essential VHDL for ASICs
	A brief introduction to design with VHDL for ASIC design.
	Roger Traylor
	9/7/01
	Version 0.2
	All rights reserved. No part of this publication may be reproduced, without the prior written per...
	Copyright „ 2001, Roger Traylor

	Revision Record
	rev 0.1 : Initial rough entry of material. 9/7/01 RLT rev 0.2 : Started entering JMMs revisions 4...

	HDL Design
	Traditionally, digital design was done with schematic entry.
	In today’s very competitive business environment, building cost- effective products in an quick f...
	shift_register: PROCESS (clk_50, reset_n, data_ena, serial_data, parallel_data) BEGIN IF (reset_n...

	HDLs - Motivation
	Increased productivity shorter development cycles, more features, but........ still shorter time-...
	Flexible modeling capabilities. can represent designs of gates or systems description can be very...
	Design reuse is enabled. packages, libraries, support reusable, portable code
	Design changes are fast and easily done convert a 8-bit register to 64-bits........ four key stro...
	Use of various design methodologies. top-down, bottom-up, complexity hiding (abstraction)
	Technology and vendor independence. same code can be targeted to CMOS, ECL, GaAs same code for: T...
	Enables use of logic synthesis which allows a investigation of the area and timing space. ripple ...
	HDLs can leverage software design environment tools. source code control, make files
	Using a standard language promotes clear communication of ideas and designs. schematic standards?...

	HDLs - What are they? How do we use them?
	A Hardware Description Language (HDL) is a programming language used to model the intended operat...
	An HDL can facilitate: abstract behavioral modeling -no structural or design aspect involved hard...
	In this class we will use an HDL to describe the structure of a hardware design.
	When we use an HDL, we will do so at what is called the Register Transfer Language level (RTL). A...
	When programming at the RTL level, we are not describing an algorithm which some hardware will ex...
	Without knowing beforehand what the structure is we want to build, use of an HDL will probably pr...
	You must know what you want to build before you describe it in an HDL.
	Knowing an HDL does not relieve you of thoroughly understanding digital design.

	HDL’s- VHDL or Verilog
	We will use VHDL as our HDL.
	VHDL more capable in modeling abstract behavior more difficult to learn strongly typed 85% of FPG...
	Verilog easier and simpler to learn weakly typed 85% of ASIC designs done with Verilog (1993)
	The choice of which to use is not based solely on technical capability, but on: personal preferen...
	We use VHDL because strong typing keeps students from getting into trouble if you know VHDL, Veri...
	The Bottom line...Either language is viable.

	VHDL - Origins
	Roots of VHDL are in the Very High Speed Integrated Circuit (VHSIC) Program launched in 1980 by t...
	The project was successful in that very large, high-speed circuits were able to be fabricated suc...
	Therefore, under the VHSIC program, the DOD launched another program to create a standard hardwar...

	The rest is history...
	In 1983, IBM, TI and Intermetrics were awarded the contract to develop VHDL.
	In 1985, VHDL V7.2 released to government.
	In 1987, VHDL became IEEE Standard 1076-1987.
	In 1993, VHDL restandardized to clarify and enhance the language resulting in VHDL Standard 1076-...
	In 1993, development began on the analog extension to VHDL, (VHDL-AMS). Extends VHDL to non-digit...

	Some Facts of Life (For ASIC designers)
	The majority of costs are determined by decisions made early in the design process. “Hurry up and...
	“Typical” ASIC project: concept to first silicon about 9 months.
	95% of designs work as the specification states.
	60% of designs fail when integrated into the system. The design was not the right one, but it “wo...
	Technology is changing so fast, the only competitive advantage is to learn faster than your compe...
	To design more “stuff” faster, your level of abstraction in design must increase.
	Using HDLs will help to make digital designers successful. (and employed!)

	VHDL Modeling
	A VHDL models consist of an Entity Declaration and a Architecture Body.
	The entity defines the interface, the architecture defines the function.
	The entity declaration names the entity and defines the interface to its environment.
	Entity Declaration Format:
	ENTITY entity_name IS [GENERIC (generic_list);] [PORT (port_list);] END ENTITY [entity_name];

	There is a direct correspondence between a ENTITY and a block diagram symbol. For example:
	ENTITY nand_gate IS PORT(a : in std_logic; b : in std_logic; c : in std_logic; z : out std_logic...

	Port Statement
	The entities port statement identifies the ports used by the entity to communicate with its envir...
	Port Statement Format:
	PORT(name_list : mode type; name_list : mode type; name_list : mode type; name_list : mode type);

	This is legal but poor form:
	ENTITY nand_gate IS PORT (a,d,e,f : in std_logic; b,j,q,l,y,v : in std_logic; w,k : in std_logic;...

	This is much less error prone: Use one line per signal. This allows adequate comments. Capitalize...
	ENTITY nand_gate IS PORT (a : IN STD_LOGIC; --a input b : IN STD_LOGIC; --b input c : IN STD_LOG...

	Port Mode:
	Identifies the direction of data flow through the port.
	The PORT statement is optional. At the top level, none is needed.
	All ports must have an identified mode.
	Allowable Modes:
	• IN Flow is into the entity
	• OUT Flow is out of the entity
	• INOUT Flow may be either in or out
	• BUFFER An OUTPUT that can be read from

	Architecture Body
	The architecture body describes the operation of the component.
	Format:
	ARCHITECTURE body_name OF entity_name IS --this is the ->declarative area<- --declare signals, va...

	The entity_name in the architecture statement must be the same as the entity declaration that des...
	ENTITY entity_name IS ARCHITECTURE body_name OF entity_name IS

	The “body_name” is a user-defined name that should uniquely describe the particular architecture ...
	ARCHITECTURE beh OF nand_gate IS
	ARCHITECTURE struct OF nand_gate IS

	Note: multiple architectures are allowed.

	Commenting Code
	A double hyphen (--) indicates everything from that point on in that line is to be treated as a c...
	ARCHITECTURE example OF xor_gate IS --The following is a silly example of how --to write comments...

	Comments can be put anywhere except in the middle of a line of code.

	Entity and Architecture for a NAND gate Model
	-- --the following is a behavioral description of --a three input NAND gate. -- ENTITY nand3 IS P...
	ARCHITECTURE beh OF nand3 IS BEGIN z <= ‘1’ WHEN a=’0’ AND b=‘0’ ELSE ‘1’ WHEN a=’0’ AND b=‘1’ EL...
	You can create VHDL source code in any directory.
	VHDL source code file may be anything......but, Use the name of the design entity with the extens...
	The above example would be in the file: nand3.vhd
	Question: Why the ‘X’ in the above code?

	Signal Assignment
	The assignment operator (<=) is used to assign a waveform value to a signal.
	Format:
	target_object <= waveform;

	Examples:
	my_signal <= ‘0’; --ties my_signal to “ground” his_signal <= my_signal; --connects two wires
	--vector signal assignment
	data_bus <= “0010”; -- note double quote bigger_bus <= X”a5”; -- hexadecimal numbers

	Declaring Objects
	Declaration Format:
	OBJECT_CLASS identifier : TYPE [:= init_val];

	Examples:
	CONSTANT delay : TIME:= 10ns; CONSTANT size : REAL:=5.25; VARIABLE sum : REAL; VARIABLE voltage :...

	Objects in the port statement are classified as signals by default.
	Objects may be initialized at declaration time.
	If an object is not initialized, it assumes the left-most or minimum value for the type

	Naming Objects
	Valid characters:
	• alpha characters (a-z)
	• numeric characters (0-9)
	• underscore (_)

	Names must consist of any number of alpha, numeric, or underline characters.
	Underscore must be proceeded and followed by alpha or numeric characters.
	The underscore can be used to separate adjacent digits in bit strings: CONSTANT big_0 : STD_LOGIC...
	Names are not case sensitive. (be consistent!, use lowercase!)
	Coding hints:
	Use good names that are meaningful to others. If your code is good, somebody else will want to re...
	Name signals by their function. For example, if you have a multiplexor select line that selects a...
	Name blocks by their function. If a block generates control signals for a DRAM controller, call t...

	A Simple Example to Recap
	-- --and-or-invert gate model --Jane Engineer --3/13/01 -...
	ARCHITECTURE data_flow OF aoi4 IS SIGNAL temp1, temp2 : std_logic; BEGIN temp1 <= a AND b; temp2 ...

