What about this Synthesis thing?

Simulation is great, but one of the foremost advantages of an HDL
IS its ability to create gate level designs thorough a different flavor
compilation....synthesis.

We can take the previous example, and synthesize the VHDL code
into a gate level design and represent it at a new structural VHDL
netlist or a schematic.

We will not go into the details of how synthesis is done but lets see
what happens anyway.

We usually synthesize VHDL designs using a script to direct the
synthesis tool. Using a GUI to do this would be very time
consuming.

Helpful Hint: Running a CAD tool is not like running a web
browser. Learn to use scripts and command line interfaces.

Essential VHDL for ASICs 24

What about this “Synthesis” thing? (cont.)

Here is a simple synthesis script foelsyn(a synthesis tool) that
synthesizes our behavioral design for the aoi4 gate.

#simple synthesis script

set vhdl_write_component_package FALSE

set vhdl_write_use_packages {library ieee,adk; use
ieee.std_logic_1164.all; use adk.all;}

set edifout_power_ground_style_is_net TRUE

set sdf write flat_netlist TRUE

set force_user_load values TRUE

set max_fanout_load 10

load_library amiO5_typ

analyze src/aoi4.vhd -format vhdl -work work
elaborate aoi4 -architecture data_flow -work work
optimize -ta amiO5_typ -effort standard -macro -area

write ./edif/aoi4.edf -format edif
write ./vhdlout/aoi4.vhd -format vhdl|

#to make a schematic do this in the edif directory
#edif2eddm aoi4.edf data_flow

What's important to understand here?

load_library amiO5_typ

The synthesis tool needs a known library of logic cells (gates) to build the

synthesized design from.

analyze src/aoi4.vhd -format vhdl -work work
Analyze (compile) the VHDL code and do initial processing.

elaborate aoi4 -architecture data_flow -work work
Create a generic gate description of the design.

optimize -ta ami05__typ -effort standard -macro -area _ _ _
Map the generic gates to the “best” ones in the library ami05.

write ./edif/aoi4.edf -format edif
write ./vhdlout/aoi4.vhd -format vhdl

Write out the results in EDIF and VHDL formats.

Essential VHDL for ASICs

25

How is the synthesis invoked?

The script is saved in a file called “script_simple”.
A work directory (if not already created) is created to put the
compiled images by typing:

vlib work

Create the edif and vhdlout directories where the edif and VHDL
netlist will be put.

mkdir edif
mldir vhdlout

Then, from the command line type:

elsyn

Eventually you get the prompt:
LEONARDO{1}:

Then type:

source script_simple

The tool elsynreads the script file and executes the commands in
the script.

Essential VHDL for ASICs 26

What does the output look like?

The synthesis tool puts a synthesized version of the design in two
directories, the vhdlout and edif directories. In the vhdlout
directory:

-- Definition of aoi4
-~ Wed Jul 18 12:31:05 2001
-- Leonardo Spectrum Level 3, v20001a2.72

library ieee,adk; use ieee.std logic_1164.all; use adk.all;

entity aoi4 is
port (

a : IN std_logic ;

b : IN std_logic ;

c : IN std_logic ;

d : IN std_logic ;

z : OUT std_logic) ;
end aoi4 ;

architecture data_flow of aoi4 is
component aoi22
port (
Y : OUT std_logic ;
AO : IN std_logic ;
Al : IN std_logic;
BO : IN std_logic ;
B1:IN std_logic) ;
end component ;
begin
iXx13 : aoi22 port map (Y=>z, AO=>a, A1=>b, BO=>c, B1=>d);
end data_flow ;

Essential VHDL for ASICs 27

Examine the gate level VHDL

We see that the synthesized aoi4 looks much like what we initially
wrote. The entity is exactly the same.

The architecture description isdifferent. The design aoi4 is now
described in a different way.

Under the architecture declarative section, a gate (aoi22) from the
library was declared:

component aoi22
port (
Y : OUT std_logic ;
AO : IN std_logic ;
Al : IN std_logic;
BO : IN std_logic ;
B1:IN std_logic) ;
end component ;

In the statement area, we see this gate is connected to the ports o
the entity with a component instantiation statement.

ix13 : aoi22 port map (Y=>z, AO=>a, Al=>b, BO=>c, B1=>d);
We will study component instantiation in more detail later.

Note also, the intermediate signals templ and temp2 have
optimized away.

f

Essential VHDL for ASICs 28

Examine the schematic created by synthesis

The EDIF netlist is converted to a Mentor schematic by executing

the command (in the edif directory):
edif2eddm aoi4.edf data_flow

When design architect is invoked upon the design we see the
following:

Schematic#2 aoid sheet Fiduup -

Here we can see the direct correspondence between the gate pin

and the entity pins in the statement:
ix13 : aoi22 port map (Y=>z, AO=>a, Al=>b, BO=>c, B1=>d);

The instance nameig13) is also evident.

Essential VHDL for ASICs

29

S

What you say is not what you get. (sometimes)

Looking at the VHDL code, one might expect something different.

BEGIN

templ <=a AND Db;

temp2 <= c AND d;

z <=templ NOR temp2;
END data_flow;

This code seems to imply two AND gates feeding a NOR gate.
However this is not the case. This description is a behavioral one.
It does not in any way dictate what gates to use.

Two AND gates and a NOR gate would be a fine implementation,
except for the fact that it isslower bigger and consumes more
powerthan the single aoi22 gate.

The synthesis tool finds the “best” implementation by trying most
possible implementations and choosing the optimum one.

What is a “best” implementation? Size, speed?

Essential VHDL for ASICs

30

Data Types

Data types identify a set of values an object may assume and the
operations that may be performed on it.

VHDL data type classifications:

« Scalar: numeric, enumeration and physical objects

« Composite: Arrays and records

« Access: Value sets that point to dynamic variables

 File: Collection of data objects outside the model

Certain scalar data types are predefined in packagecalled “std’
(standard) and do not require a type declaration statement.
Examples:

« boolean(true, false)

 bit (‘0, ‘1)

 integer (-2147483648 to 2147483647)

 real (-1.0E38 to 1.0E38)

« character (ascii character set)

« time (-2147483647 to 2147483647)

Type declarations are used through constructs calleplackages

We will use the package callegtd logic 1164n our class. It
contains the common types, procedures and functions we
normally need.

A packageis a group of related declarations and subprograms
that serve a common purpose and can be reused in different parts
of many models.

Essential VHDL for ASICs 31

Using std _logic_1164

The packagestd logic_1164s the package standardized by the
IEEE that represents a nine-state logic value system known as
MVLO.

To use the package we say:

LIBRARY ieee;
USE ieee.std logic_1164.ALL,;

The library clause makes a selected library containing desired
packages “visible” to a model.

The useclause makes the library packages visible to the model.

USE clause format:

USE symbolic_library.pkg _name.elements _to use

The nameieeeis asymbolicname. It is “mapped to:
/usr/local/apps/mti/current/modeltech/ieee

using the MTI utility vmap

You can see all the currently active mappings by typingZmap

We do not have to declare a library work. Its existence and
location “./work” is understood.

Essential VHDL for ASICs

32

Using std _logic_1164

The nine states of std_logic_1164:

(/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic.vhd)

PACKAGE std_logic 1164 IS

TYPE std_ulogic IS (
‘U’, -- Uninitialized; the default value
‘X’, -- Forcing Unknown; bus contention
‘0, -- Forcing O; logic zero
‘1’, -- Forcing 1; logic one
‘Z’, -- High Impedance; 3-state buffer
‘W', -- Weak Unknown; bus terminator
‘L’, -- Weak 0; pull down resistor
‘H’, -- Weak 1; pull up resistor

- -- Don’t care; used for synthesis);

Why would we want all these values for signals?

Essential VHDL for ASICs

33

VHDL Operators

Object type also identifies the operations that may be performed
on an object.

Operators defined for predefined data types in decreasing order
of precedence:

« Miscellaneous: **, ABS, NOT

« Multiplying Operators: *, /, MOD, REM

e Sign: +, -

- Adding Operators: +, -,&

« Shift Operators: ROL, ROR, SLA, SLL, SRA, SRL

- Relational Operators: =, /=, <, <=, >, >=

« Logical Operators: AND, OR, NAND, NOR, XOR, XNOR

Not all these operators are synthesizable.

Essential VHDL for ASICs

Overloading

Overloading allows standard operators to be applied to other
user-defined data types.

An example of overloading is the function “AND”, defined as:
(/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic.vhd)

FUNCTION “and” (I : std_logic; r : std_logic)
RETURN UXO01;

FUNCTION “and” (I, r: std_logic_vector)
RETURN std_logic_vector;

For Examples

SIGNAL resultO, signall, signal2 : std_logic;

SIGNAL resultl : std logic_vector(31 DOWNTO 0);
SIGNAL signal3 : std _logic_vector(31 DOWNTO 0);
SIGNAL signal4 : std logic_vector(31 DOWNTO 0);

BEGIN

resultO <= signall AND signal2; -- simple AND
resultl <= signal3 AND signal4; -- many ANDs
END;

If we synthesize this code, what gate realization will we get?

Essential VHDL for ASICs 35

Concurrency

To model reality, VHDL processes certain statements
concurrently.

Example:
a n N\
" > outl
0
T - > out?2
0
b .
) . > out3
/ 0

)) : . > outd
. | /JO ou

ARCHITETURE example of concurrent IS
BEGIN

outl <= a AND b;

out2 <= a NOR b;

out3 <=b OR ¢;

out4 <= b XOR c;
END example;

Essential VHDL for ASICs

36

Statement Activation

Signals connect concurrent statements.

Concurrent statements activate or “fire” when there is an event on
a signal “entering” the statement.

Example:

a C

0 o :> outl
H 0

ARCHITECTURE example OF concurrent IS
SIGNAL ¢ : std_logic;
BEGIN
c <=a NAND b; --nand gate
outl <= ¢ XOR b; --xor gate
END example;

o

The NAND statement is activated by a change on eitherthe aorb
inputs.

The XOR statement is activated by a change on either the b input
or signal c.

Note that additional signals (those not defined in the PORT
clause) are defined in the architecture’s declarative area.

Essential VHDL for ASICs 37

Concurrency Again

VHDL is inherently a concurrent language.
All VHDL processes execute concurrently.

Basic granularity of concurrency is theprocess

c <=aNANDb; --"one line process”
outl <=c XOR b; --"one line process”

VHDL statements execute sequentiallyvithin a process
ARCHITECTURE example OF concurrency IS

BEGIN
hmmm: PROCESS (a,b,c)
BEGIN
c <=aNAND b; --"do sequentially”
outl <=c¢ XOR b; --"do sequentially”

END PROCESS hmmm:

How much time did it take to do the stuff in the process
statement?

Concurrent signal assignments as actually one-line processes.

Essential VHDL for ASICs

38

Concurrency

The body of the ARCHITECTURE area is composed of one or
more concurrent statements. The concurrent statements we will
use are;:

« Process - the basic unit of concurrency
Assertion - a reporting mechanism

Signal Assignment - communication between processes
Component Instantiations - creating instances
Generate Statements - creating structures

Only concurrent statements may be in the body of the
architecture area.

ARCHITECTURE showoff OF concurrency_stmts IS
BEGIN

--BLOCK

--PROCESS

--ASSERT

--a <= NOT b;

--PROCEDURE

--Ul:nandl PORT MAP(X,y,z); --instantiation
--GENERATE

END showoff;

Essential VHDL for ASICs 39

Concurrent Statements - Signal Assignment

Signal assignment
We have seen the simple signal assignment statement
sig_a <= input_a AND input_b;

VHDL provides both a concurrent and a sequential signal assignment
statement. The two statements can have the same syntax, but they differ injhow
they execute.

Essential VHDL for ASICs 40

Signal Assignment with Busses

A bus is a collection of wires related in some way by function or
clock domain. Examples would be an address bus or data bus.

In VHDL we refer to busses as a vector. For example:

--8-bit bus consisting of 8 wires carrying signals of

-- type std_logic

--all these wires may be referred to by the name big_bus
SIGNAL big_bus : STD_LOGIC_VECTOR(7 DOWNTO 0);

This creates:
big_bus

big_bus(0)

When we define a bus as above, the width of the bus is defined by
“7 DOWNTO 0”. The position of the MSB is to the left of the
DOWNTO keyword. The LSB bit is to the right of DOWNTO.

The usual convention is to use DOWNTO. We will use this
convention. UPTO is seldom used.

Essential VHDL for ASICs 41

Signal Assignment with Busses (cont.)
Individual bits of a bus may be referred to like this:

SIGNAL one_bit: STD_LOGIC;

SIGNAL big_bus : STD_LOGIC_VECTOR(7 DOWNTO 0);
BEGIN

--wire called one_bit is connected to bit 6 of bus big_bus
one_bit <= big_bus(6); -- bus ripping example

Consider the following declarations and how they can be used.

SIGNAL back_seat, front_seat: STD LOGIC;
SIGNAL red_bus, yellow_bus, shift_bus

SIGNAL short_bus, tall_bus, : STD_LOGIC_VECTOR(3 DOWNTO 0);

red_bus
7.0\ Yyellow_bus , ,
— red_bus <= yellow_bus; -- connecting same size busses

red_bus

7:4 short_bus red bus <= short_bus & tall_bus: -- bus concatenation

--“&” is the concatenation operator

3.0 tall_bus -- MSB’s of red_bus come from left most signal

red_bus
2\ front_seat

_\—— front_seat <= red_bus(2); -- bus ripping
red_bus

MS short_bus <=red_bus(7 DOWNTO 4); -- bus to bus ripping

shift_bus red_bus

shift_bus <= red_bus(3 DOWNTO 0) & “0000";
-- one bus created from ripping of one bus and

-- concatenation of signals connected to ground
-- shift bus is red_bus multiplied by 16

. STD_LOGIC_VECTOR(7 DOWNTO 0);

Essential VHDL for ASICs

42

Bit Vector Usage

As we have seen the in the following examples VHDL has a convenient way
represent busses. A bit string literal allows us to specify the value of a bit
vector. For example, the number 2g@ould be represented as:

Binary format: B”"11111010”" B"1111 1010”
Hexadecimal format: X"FA”
Octal format: 0"372"

The binary format may include underscores to increase readability. The
underscores do not effect the value.

Values of bit string literals are inclosed in double quotes. For example: “1101”

Values of bit literals are inclosed in single quotes. For example: ‘Z’

Essential VHDL for ASICs 43

Conditional Concurrent Signal Assignment

The conditional concurrent signal assignment statement is
modeled after the “if statement” in software programming
languages.

The general format for this statement is:

target_signal <=valuel WHEN conditionl ELSE
value2 WHEN condition2 ELSE
value3 WHEN condition3 ELSE

valueN;

When one or more of the signals on the right-hand side change value, the
statement executes, evaluating the condition clauses in textual order from|top
to bottom. If a condition is found to be true, the corresponding expression s
executed and the values are assigned to the target signal.

The conditions must evaluate to a boolean value. i.e, True or False

Example:

z out<= a_input WHEN (select = “00”) ELSE
b_input WHEN (select = “01") ELSE
c_input WHEN (select = “10”) ELSE
d_input WHEN (select = “11") ELSE
“X"; -- what am 1?

Essential VHDL for ASICs 44

Conditional Concurrent Signal Assignment

What happens when we don’t completely specify all the choices?

First, lets do it right.

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std _logic_1164.ALL;

ENTITY mux5 1 1wide IS
PORT(
a_input :IN STD_LOGIC; --inputa
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --input e
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
z out :OUTSTD_LOGIC --data out
);
END mux5_1 1wide;
ARCHITECTURE beh OF mux5_1 1wide IS
BEGIN
Zz_out <= a_input WHEN (sel = “000") ELSE
b_input WHEN (sel = “001") ELSE
c_input WHEN (sel = “010") ELSE
d_input WHEN (sel = “011") ELSE
e_input WHEN (sel = “100”) ELSE
NG
END beh;

When synthesized, we get:

a_input [———
b i nput C————

2=
¥ , == out

e_input =

Essential VHDL for ASICs 45

Conditional Concurrent Signal Assignment

Now let's incompletely specify the choices.

ARCHITECTURE noelse OF mux5 1 l1wide IS
BEGIN
z_out <= a_input WHEN (sel = “000") ELSE
b_input WHEN (sel = “001") ELSE
c_input WHEN (sel = “010”) ELSE
d_input WHEN (sel = “011") ELSE
e_input WHEN (sel = “100"); -- no ending else
END beh;

When synthesized:

P 2
b imput - L

=

latch, not FF

4

=z ot

%jf
o
=

e_input[C>

What happened?

- How does a transparent latch operate?
- What is the truth table for the decoder to the latch “clk” pin?

sel(2:0) latch enable pin behavior
000 1 latch is transparent
001 1 ditto
010 1 ditto
011 1 ditto
100 1 ditto
101 0 latch is in “hold” state
110 0 hold state
111 0 hold state

Essential VHDL for ASICs 46

	What about this Synthesis thing?
	Simulation is great, but one of the foremost advantages of an HDL is its ability to create gate l...
	We can take the previous example, and synthesize the VHDL code into a gate level design and repre...
	We will not go into the details of how synthesis is done but lets see what happens anyway.
	We usually synthesize VHDL designs using a script to direct the synthesis tool. Using a GUI to do...
	Helpful Hint: Running a CAD tool is not like running a web browser. Learn to use scripts and comm...

	What about this “Synthesis” thing? (cont.)
	Here is a simple synthesis script for elsyn (a synthesis tool) that synthesizes our behavioral d...
	#simple synthesis script set vhdl_write_component_package FALSE set vhdl_write_use_packages {libr...
	load_library ami05_typ
	analyze src/aoi4.vhd -format vhdl -work work elaborate aoi4 -architecture data_flow -work work op...
	write ./edif/aoi4.edf -format edif write ./vhdlout/aoi4.vhd -format vhdl
	#to make a schematic do this in the edif directory #edif2eddm aoi4.edf data_flow

	What’s important to understand here?
	load_library ami05_typ The synthesis tool needs a known library of logic cells (gates) to build t...
	analyze src/aoi4.vhd -format vhdl -work work Analyze (compile) the VHDL code and do initial proce...
	elaborate aoi4 -architecture data_flow -work work Create a generic gate description of the design.
	optimize -ta ami05_typ -effort standard -macro -area Map the generic gates to the “best” ones in ...
	write ./edif/aoi4.edf -format edif write ./vhdlout/aoi4.vhd -format vhdl Write out the results in...

	How is the synthesis invoked?
	The script is saved in a file called “script_simple”.
	A work directory (if not already created) is created to put the compiled images by typing:
	vlib work

	Create the edif and vhdlout directories where the edif and VHDL netlist will be put.
	mkdir edif mldir vhdlout

	Then, from the command line type:
	elsyn

	Eventually you get the prompt:
	LEONARDO{1}:

	Then type:
	source script_simple

	The tool elsyn reads the script file and executes the commands in the script.

	What does the output look like?
	The synthesis tool puts a synthesized version of the design in two directories, the vhdlout and e...
	-- -- Definition of aoi4 -- -- Wed Jul 18 12:31:05 2001 -- Leonardo Spectrum Level 3, v20001a2.72...
	entity aoi4 is port (a : IN std_logic ; b : IN std_logic ; c : IN std_logic ; d : IN std_logic ;...

	Examine the gate level VHDL
	We see that the synthesized aoi4 looks much like what we initially wrote. The entity is exactly t...
	The architecture description is different. The design aoi4 is now described in a different way.
	Under the architecture declarative section, a gate (aoi22) from the library was declared:
	component aoi22 port (Y : OUT std_logic ; A0 : IN std_logic ; A1 : IN std_logic ; B0 : IN std_lo...

	In the statement area, we see this gate is connected to the ports of the entity with a component ...
	ix13 : aoi22 port map (Y=>z, A0=>a, A1=>b, B0=>c, B1=>d);

	We will study component instantiation in more detail later.
	Note also, the intermediate signals temp1 and temp2 have optimized away.

	Examine the schematic created by synthesis
	The EDIF netlist is converted to a Mentor schematic by executing the command (in the edif directo...
	When design architect is invoked upon the design we see the following:
	Here we can see the direct correspondence between the gate pins and the entity pins in the statem...
	ix13 : aoi22 port map (Y=>z, A0=>a, A1=>b, B0=>c, B1=>d);

	The instance name (ix13) is also evident.

	What you say is not what you get. (sometimes)
	Looking at the VHDL code, one might expect something different.
	BEGIN temp1 <= a AND b; temp2 <= c AND d; z <= temp1 NOR temp2; END data_flow;

	This code seems to imply two AND gates feeding a NOR gate. However this is not the case. This des...
	Two AND gates and a NOR gate would be a fine implementation, except for the fact that it is slowe...
	The synthesis tool finds the “best” implementation by trying most possible implementations and ch...
	What is a “best” implementation? Size, speed?

	Data Types
	Data types identify a set of values an object may assume and the operations that may be performed...
	VHDL data type classifications:
	• Scalar: numeric, enumeration and physical objects
	• Composite: Arrays and records
	• Access: Value sets that point to dynamic variables
	• File: Collection of data objects outside the model

	Certain scalar data types are predefined in a package called “std” (standard) and do not require ...
	Examples:
	• boolean (true, false)
	• bit (‘0’, ‘1’)
	• integer (-2147483648 to 2147483647)
	• real (-1.0E38 to 1.0E38)
	• character (ascii character set)
	• time (-2147483647 to 2147483647)

	Type declarations are used through constructs called packages.
	We will use the package called std_logic_1164 in our class. It contains the common types, procedu...
	A package is a group of related declarations and subprograms that serve a common purpose and can ...

	Using std_logic_1164
	The package std_logic_1164 is the package standardized by the IEEE that represents a nine-state l...
	To use the package we say:
	LIBRARY ieee; USE ieee.std_logic_1164.ALL;

	The library clause makes a selected library containing desired packages “visible” to a model.
	The use clause makes the library packages visible to the model.
	USE clause format:
	USE symbolic_library.pkg_name.elements_to_use

	The name ieee is a symbolic name. It is “mapped” to: /usr/local/apps/mti/current/modeltech/ieee u...
	You can see all the currently active mappings by typing: vmap
	We do not have to declare a library work. Its existence and location “./work” is understood.

	Using std_logic_1164
	The nine states of std_logic_1164: (/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic....
	PACKAGE std_logic_1164 IS --- -- logic state system (un...

	Why would we want all these values for signals?

	VHDL Operators
	Object type also identifies the operations that may be performed on an object.
	Operators defined for predefined data types in decreasing order of precedence:
	• Miscellaneous: **, ABS, NOT
	• Multiplying Operators: *, /, MOD, REM
	• Sign: +, -
	• Adding Operators: +, -,&
	• Shift Operators: ROL, ROR, SLA, SLL, SRA, SRL
	• Relational Operators: =, /=, <, <=, >, >=
	• Logical Operators: AND, OR, NAND, NOR, XOR, XNOR

	Not all these operators are synthesizable.

	Overloading
	Overloading allows standard operators to be applied to other user-defined data types.
	An example of overloading is the function “AND”, defined as: (/usr/local/apps/mti/current/modelte...
	FUNCTION “and” (l : std_logic; r : std_logic) RETURN UX01;
	FUNCTION “and” (l, r: std_logic_vector) RETURN std_logic_vector;

	For Examples
	SIGNAL result0, signal1, signal2 : std_logic; SIGNAL result1 : std_logic_vector(31 DOWNTO 0); SIG...

	If we synthesize this code, what gate realization will we get?

	Concurrency
	To model reality, VHDL processes certain statements concurrently.
	Example:
	ARCHITETURE example of concurrent IS BEGIN out1 <= a AND b; out2 <= a NOR b; out3 <= b OR c; out4...

	Statement Activation
	Signals connect concurrent statements.
	Concurrent statements activate or “fire” when there is an event on a signal “entering” the statem...
	Example:
	ARCHITECTURE example OF concurrent IS SIGNAL c : std_logic; BEGIN c <= a NAND b; --nand gate out1...

	The NAND statement is activated by a change on either the a or b inputs.
	The XOR statement is activated by a change on either the b input or signal c.
	Note that additional signals (those not defined in the PORT clause) are defined in the architectu...

	Concurrency Again
	VHDL is inherently a concurrent language.
	All VHDL processes execute concurrently.
	Basic granularity of concurrency is the process.
	Concurrent signal assignments as actually one-line processes.
	c <= a NAND b; --”one line process” out1 <= c XOR b; --”one line process”

	VHDL statements execute sequentially within a process.
	ARCHITECTURE example OF concurrency IS BEGIN hmmm: PROCESS (a,b,c) BEGIN c <= a NAND b; --”do seq...

	How much time did it take to do the stuff in the process statement?

	Concurrency
	The body of the ARCHITECTURE area is composed of one or more concurrent statements. The concurren...
	• Process - the basic unit of concurrency
	• Assertion - a reporting mechanism
	• Signal Assignment - communication between processes
	• Component Instantiations - creating instances
	• Generate Statements - creating structures

	Only concurrent statements may be in the body of the architecture area.
	ARCHITECTURE showoff OF concurrency_stmts IS BEGIN ------concurrent club members only---------- -...

	Concurrent Statements - Signal Assignment
	Signal assignment
	We have seen the simple signal assignment statement
	sig_a <= input_a AND input_b;
	VHDL provides both a concurrent and a sequential signal assignment statement. The two statements ...

	Signal Assignment with Busses
	A bus is a collection of wires related in some way by function or clock domain. Examples would be...
	In VHDL we refer to busses as a vector. For example:
	--8-bit bus consisting of 8 wires carrying signals of -- type std_logic --all these wires may be ...

	This creates:
	When we define a bus as above, the width of the bus is defined by “7 DOWNTO 0”. The position of t...
	The usual convention is to use DOWNTO. We will use this convention. UPTO is seldom used.

	Signal Assignment with Busses (cont.)
	Individual bits of a bus may be referred to like this:
	SIGNAL one_bit : STD_LOGIC; SIGNAL big_bus : STD_LOGIC_VECTOR(7 DOWNTO 0); BEGIN --wire called on...

	Consider the following declarations and how they can be used.
	SIGNAL back_seat, front_seat: STD_LOGIC; SIGNAL red_bus, yellow_bus, shift_bus : STD_LOGIC_VECTOR...

	Bit Vector Usage
	As we have seen the in the following examples VHDL has a convenient way to represent busses. A bi...
	Binary format: B”11111010” B”1111_1010”
	Hexadecimal format: X”FA”
	Octal format: O”372”
	The binary format may include underscores to increase readability. The underscores do not effect ...
	Values of bit string literals are inclosed in double quotes. For example: “1101”
	Values of bit literals are inclosed in single quotes. For example: ‘Z’

	Conditional Concurrent Signal Assignment
	The conditional concurrent signal assignment statement is modeled after the “if statement” in sof...
	The general format for this statement is: target_signal <= value1 WHEN condition1 ELSE value2 WHE...
	When one or more of the signals on the right-hand side change value, the statement executes, eval...
	The conditions must evaluate to a boolean value. i.e, True or False
	Example:
	z_out <= a_input WHEN (select = “00”) ELSE b_input WHEN (select = “01”) ELSE c_input WHEN (select...

	Conditional Concurrent Signal Assignment
	What happens when we don’t completely specify all the choices?
	First, lets do it right.
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...

	When synthesized, we get:

	Conditional Concurrent Signal Assignment
	Now let’s incompletely specify the choices.
	ARCHITECTURE noelse OF mux5_1_1wide IS BEGIN z_out <= a_input WHEN (sel = “000”) ELSE b_input WHE...

	When synthesized:
	What happened?
	- How does a transparent latch operate? - What is the truth table for the decoder to the latch “c...

