Conditional Concurrent Signal Assignment

The conditional concurrent signal assignment statement is
modeled after the “if statement” in software programming
languages.

The general format for this statement is:

target_signal <=valuel WHEN conditionl ELSE
value2 WHEN condition2 ELSE
value3 WHEN condition3 ELSE

valueN;

When one or more of the signals on the right-hand side change value, the
statement executes, evaluating the condition clauses in textual order from|top
to bottom. If a condition is found to be true, the corresponding expression s
executed and the values is assigned to the target signal.

The conditions must evaluate to a boolean value. i.e, True or False

Example:

z out<= a_input WHEN (select = “00”) ELSE
b_input WHEN (select = “01") ELSE
c_input WHEN (select = “10”) ELSE
d_input WHEN (select = “11") ELSE
“X"; -- what am 1?

Essential VHDL for ASICs 1

Conditional Concurrent Signal Assignment

What happens when we don’t completely specify all the choices?

First, lets do it right.

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std _logic_1164.ALL;

ENTITY mux5 1 1wide IS
PORT(
a_input :IN STD_LOGIC; --inputa
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --input e
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
z out :OUTSTD_LOGIC --data out
);
END mux5_1 1wide;
ARCHITECTURE beh OF mux5_1 1wide IS
BEGIN
Zz_out <= a_input WHEN (sel = “000") ELSE
b_input WHEN (sel = “001") ELSE
c_input WHEN (sel = “010") ELSE
d_input WHEN (sel = “011") ELSE
e_input WHEN (sel = “100”) ELSE
NG
END beh;

When synthesized, we get:

a_input [———
b i nput C————

2=
¥ , == out

e_input =

Essential VHDL for ASICs

Conditional Concurrent Signal Assignment

Now let's incompletely specify the choices.

ARCHITECTURE noelse OF mux5 1 l1wide IS
BEGIN
z_out <= a_input WHEN (sel = “000") ELSE
b_input WHEN (sel = “001") ELSE
c_input WHEN (sel = “010”) ELSE
d_input WHEN (sel = “011") ELSE
e_input WHEN (sel = “100"); -- no ending else
END beh;

When synthesized:

P 2
b imput - L

=

latch, not FF

4

=z ot

%jf
o
=

e_input[C>

What happened?

- How does a transparent latch operate?
- What is the truth table for the decoder to the latch “clk” pin?

sel(2:0) latch enable pin behavior
000 1 latch is transparent
001 1 ditto
010 1 ditto
011 1 ditto
100 1 ditto
101 0 latch is in “hold” state
110 0 hold state
111 0 hold state

Essential VHDL for ASICs

Selected Concurrent Signal Assignment

The selected concurrent signal assignment statement is modeled
after the “case statement” in software programming languages.

The general form of this statement:

WITH discriminant SELECT
target_signal <= valuel WHEN choicel,
value2 WHEN choice?2,
value3 WHEN choice3,

valueN WHEN choiceN;
[default_value WHEN OTHERS];

This statement executes when any the discriminant, value or choice
expressions changes value. When it does execute, the choice clauses are
evaluated. The target signal is assigned the value corresponding to the choice
that matches the discriminant.

Important points for this statement:

- The discriminant must have finite discrete values. (can be enumerated).
ERROR: Expression must return a discrete value.

- You must use or list all possible values for “choice”.
ERROR: Case statement only covers 5 out of 729 cases.

- Only one of the choices can match the discriminant.
ERROR: Case choice has already been specified on line 32

About “OTHERS”

The keywordOTHERS can be powerfully used in many situations. In genera
it is used to allow matching to an unspecified number of possible values of a
variable. There ay be only one alternative that uses the others choice and |if
included in a list, it must be the last choice. In essence, it says, if a match has
not yet been found and the value of the variable is within range of its type, then
match withOTHERS.

We will see several other uses@fHERS in the future.

Essential VHDL for ASICs 4

Selected Concurrent Signal Assignment

An example from “SPAM”

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY mux2_1_16wide IS

PORT(
in_a :IN STD_LOGIC VECTOR(15 DOWNTO 0); --input a
in_b :IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input b
sel :IN STD_LOGIC; --select input
output : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) --data output
)i

END mux2_1 16wide;

ARCHITECTURE beh OF mux2_1_16wide IS
BEGIN
WITH sel SELECT
output <=in_a WHEN ‘0’,
in_b WHEN ‘1",
(OTHERS => ‘X') WHEN OTHERS;
END beh;

OTHERS again

Here we se®THERS used to match cases where sel is not ‘1’ or ‘O’ in the
WHEN OTHERS clause. i.e.:
(OTHERS => ‘X’) WHEN OTHERS;

OTHERS is also used to provide a shorthand method of saying, “make allthe
bits of the target signal ‘X” for however many bits are in target signal.
(OTHERS => ‘X") WHEN OTHERS;

Why was ‘X ‘assigned to output when sel was neither ‘O’ or ‘1'?

Essential VHDL for ASICs 5

Selected Concurrent Signal Assignment

A more simple example with synthesis results.

--5:1 mux, 1 bit wide
LIBRARY ieee;

USE ieee.std _logic_1164.ALL;

ENTITY mux5 1 1wide IS
PORT(

a_input :IN STD_LOGIC; --inputa
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --input e
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input

z out :OUTSTD_LOGIC --data out

);
END mux5_1 1wide;

ARCHITECTURE beh OF mux5_1_1wide IS

BEGIN
WITH sel SELECT

Zz_out <= a_input WHEN “000”,

b_input WHEN “001”,
c_input WHEN “010”,
d_input WHEN “011”,
e_input WHEN “100”,

‘X’ WHEN OTHERS; --if sel could be be 110, 1117 correct?

END beh;

a_input [
b_input /MM

e_ ihput

ggTE%r?Hfj

a_input =

v E)% [= z_out

How will this circuit react to sel(2:0) values greater than “100"?

Essential VHDL for ASICs

Making Choices

When we want the same target signal assignment to happen for several
discriminant choices how do we specify it? Lets alter the function of our mux
example as follows. The entity declaration is identical to before.

ARCHITECTURE beh OF mux5_1 1wide IS
BEGIN
WITH sel SELECT
Z_out <= a_input WHEN “000” | “001” | “111",
b_input WHEN “011” | “101",
c_input WHEN “010”,
d_input WHEN “100”,
e_input WHEN “110",
‘X" WHEN OTHERS;
END beh;

The signal z_out gets the value of a_input when sel is equal to “000”, “001”|or
“111”. Signal z_out gets the value of b_input when sel is equal to “011” or
“101". The synthesized version of this mux looks like this:

wirmt [el
(200 .-‘L—_
Birat [
ks |
L
l xod
-.irnJ-.J =
g
& ;_E. -
it _ L kil

As you can see, once a model is synthesized it can be hard to figure
out how it works.

v

Essential VHDL for ASICs 7

Concurrent Statements - Component
Instantiation

Another concurrent statement is known axomponent
instantiation. Component instantiation can be used to connect
circuit elements at a very low level or most frequently at the top
level of a design.

VHDL written in this form is known as Structural VHDL.

The instantiation statement connects a declared component to
signals in the architecture.

The instantiation has 3 key parts:

« Label- Identifies unigue instance of component

« Component Type Select the desired declared component

« Port Map- Connect component to signals in the architecture

Example:

ul: regl PORT MAP(d=>dO0,clk=>clk,g=>q0);

Ifz\vel \ the pin “clk” on reglf

wire that pin “clock” is connected to
component type

When instantiating components:
- Local and actual must be of same data type.
« Local and actual must be of compatible modes.

Locally declared signals do not have an associated mode and car
connect to a local port of any mode.

Essential VHDL for ASICs 8

Labels

Labels are used to provide internal documentation.

May be used with:

« Concurrent Assertion Statements
Concurrent Signal Assignments
Process Statements

Loop Statements

Generate Statements

Must be used with:
« Component Instantiation Statements

Essential VHDL for ASICs

Component Instantiation

5:1 mux using component instantiaion:

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY adk;
USE adk.all;

ENTITY mux5_1 1wide IS
PORT(

a_input :IN STD_LOGIC; --input a
b_input :IN STD_LOGIC; --inputb
c_input :IN STD_LOGIC; --inputc
d_input :IN STD_LOGIC; --inputd
e_input :IN STD_LOGIC; --inpute
sel :IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
z out :OUTSTD_LOGIC --data out
);

END mux5_1 1wide;

ARCHITECTURE beh OF mux5_1 1wide IS

SIGNAL temp0, templ, temp2, temp3 : STD_LOGIC,;

COMPONENT mux21 PORT(a0,al,s0:IN STD_LOGIC;
y : OUT STD_LOGIC); END COMPONENT;
COMPONENT inv01 PORT(a:IN STD_LOGIC;
y : OUT STD_LOGIC); END COMPONENT;
BEGIN
Ul : mux21 PORT MAP(a0 =>a_input,
al =>Db_input,
sO0 => sel(0),
y =>temp0);
U2 : mux21 PORT MAP(a0 => c_input,
al =>d_input,
sO0 => sel(0),
y =>templ);
U3 : mux21 PORT MAP(a0 => tempO,
al =>templ,
s0 => sel(1),
y =>temp2);
U4 : mux21 PORT MAP(a0 =>temp2,
al =>e_input,
sO0 =>sel(2),
y =>temp3);
U5 :inv0l PORT MAP(a =>temp3,
y =>z out);
END beh;

Essential VHDL for ASICs

10

The synthesized structural 5:1 mux

The synthesized mux is a faithful representation of our structural VHDL. (it
better be!) Actually the synthesis tools “hands” are tied. The structural VHDL
told exactly how the components were to be wired. It also specified exactly
what logic cells were to be used. The synthesis tool actually had nothing to do
except make the edif netlist and schematic.

a_input Co———
b_ input C—

u%;*lﬂ _Eﬁ;{: [= z_out

a_input [

Essential VHDL for ASICs 11

Component Instantiation (cont.)

A few notes about the structural 5:1 mux code:

The logic cells used here were in a library calstk To access these cells the
declaration of this library was necessary at the top of the file.

LIBRARY adk;
USE adk.all;

Before we can use the cells in an instantiation statement, we must declare
them. This is seen in the statements:
COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC;

y 1 OUT STD_LOGIC); END COMPONENT;

COMPONENT inv01 PORT(a:IN STD_LOGIC;
y : OUT STD_LOGIC); END COMPONENT;

To wire the mux21 cells together, temporary signempQ templ temp2and
temp3were declared.

SIGNAL temp0, templ, temp2, temp3 : STD_LOGIC,;

Finally, the component instantiations stitch the design together.

Ul : mux21 PORT MAP(a0 => a_input,
al =>Db_input,
sO0 => sel(0),
y =>temp0);

The PORT MAP statement describes the connections between pins of the cell
and the signals. The connections are described by the format:

pin_on_module => signal_name,

The first name is the module pin name, the second is the name of the signal the
pin is to be connected to. This format is calkedned association

With named association, the order of associations is not required to be in the
same order as port declaration in the component.

Essential VHDL for ASICs 12

Named vs. Positional Association

As previously mentioned, pin/signal pairs used with a PORT MAP may be
associated by position. For example,

Ul : mux21 PORT MAP(a_input,b_input,sel(0),temp0);

This form is not preferred because any change in the port list (it often happens
in the design phase) will be difficult to incorporate. Try doing it for entities
with 50 or more signals and you’ll begin to appreciate the point.

For example, some real code.......

Essential VHDL for ASICs 13

Sample PORT MAP (w/named association)

dramfifo_0: dramfifo

PORT MAP(reg_data
dram_state_ps

dram_cnt_ps

dram_cycle_type

addr_adv
line_shift
cycle_start
done
any_rdgnt
any_wrgnt
test_mode
scl_ratio_ack
y_wrptrlo_wen
y_wrptrhi_wen
u_wrptrlo_wen
u_wrptrhi_wen
v_wrptrlo_wen
v_wrptrhi_wen
wrcntrlo_wen
wrentrhi_wen
y_rdptrlo_wen
y_rdptrhi_wen
u_rdptrlo_wen
u_rdptrhi_wen
v_rdptrlo_wen
v_rdptrhi_wen
rdcntrlo_wen
rdcntrhi_wen
yeol_cntr_wen
ueol_cntr_wen
veol_cntr_wen

line_length_wen

=> reg_data ,

=> dram_state_ps
=> dram_cnt_ps

=> addr_adv
=> line_shift
=> cycle_start
=> done

=> any_rdgnt

=> any_wrgnt

=> test_mode

=> dram_cycle_type ,

1

=> scl_ratio_ack ,
=> y wrptrlo_wen
=> y wrptrhi_wen ,
=> u_wrptrlo_wen
=> u_wrptrhi_wen
=> v_wrptrlo_wen ,
=> v_wrptrhi_wen ,
=> wrcntrlo_wen
=> wrcntrhi_wen
=> y rdptrlo_wen
=> y rdptrhi_wen
=> u_rdptrlo_wen
=> u_rdptrhi_wen
=> v_rdptrlo_wen ,
=> v_rdptrhi_wen ,
=> rdcntrlo_wen
=> rdcntrhi_wen
=> yeol_cntr_wen ,
=> ueol_cntr_wen ,
=> veol_cntr_wen ,

=> line_length_wen ,

ptr_rollbit_wen => ptr_rollbit_wen ,
clk_24 => clk_24 ,

clk 48 => clk_48 ,
rst_24 => rst 24 ,
rst_48 => rst_48 ,
s_capt_en => s_capt_en ,
vsync => vsync ,
even_fld => even_fld ,
qual_hsync => qual_hsync ,
sr_sel => sr_sel ,
current_sr => current_sr ,
allow_rdreq => allow_rdreq ,
allow_wrreq => allow_wrreq ,
wr_addr => wr_addr ,
rd_addr => rd_addr ,

last_line_segment => last_line_segment,
start_of video => start_of video ,

end_of_video => end_of video ,
line_length_rback => line_length_rback,
dcu_status => dcu_status);

Essential VHDL for ASICs

14

Same PORT MAP (w/positional association)

-- dram fifo address control

dramfifo_0: dramfifo

PORT MAP(reg_data, dram_state_ps, dram_cnt_ps, dram_cycle_type,
addr_adv, line_shift, cycle_start, done, any_rdgnt, any_wrgnt,
test_mode, scl_ratio_ack, y_wrptrlo_wen, y_wrptrhi_wen, u_wrptrlo_wen,
u_wrptrhi_wen, v_wrptrlo_wen, v_wrptrhi_wen, wrcntrlo_wen,
wrentrhi_wen, y_rdptrlo_wen, y_rdptrhi_wen, u_rdptrlo_wen,
u_rdptrhi_wen, v_rdptrlo_wen, v_rdptrhi_wen, rdcntrlo_wen,
rdcntrhi_wen, yeol_cntr_wen, ueol_cntr_wen, veol_cntr_wen,
line_length_wen, ptr_rollbit_wen, clk_24, clk_48, rst_24, rst_48,
s_capt_en, vsync, even_fld, qual_hsync, sr_sel, current_sr,
allow_rdreq, allow_wrreq, wr_addr, rd_addr, last_line_segment,
start_of video, end_of video, line_length_rback, dcu_status);

Now, lets say you need to add an extra signal in the modhamfifa You want
to put it just afteueol_cntr_wen But let’s say your signals do not necessarily
have the same names as the pins. This means you would have to manually
count through the list of signals to find out where to put the new one in the port
map in exactly the same order. How would you know for sure its in the right
position? Count through the list again! Do you have time to do this?

The Moral of the StorylJse named association.

Essential VHDL for ASICs 15

Association lists - Some last items...

Suppose you have a module that is a four to one mux, but you only need three
inputs. What do you do with the unused input? What about unused outputs?

If the module you are instantiating has a defigefdult port valuethe

keywordOPEN can be used to allow the input to be assigned the default port

value. Thus the entity for a 4:1 mux with a defined default port value would

look like this:

ENTITY mux41 IS
PORT(

a0 :INSTD_LOGIC:
al :INSTD_LOGIC:

‘0’; --input a0 can be left OPEN
‘0’; --input al can be left OPEN
a2 :INSTD_LOGIC :='0’; --input a2 can be left OPEN
a3 :INSTD_LOGIC :='0’; --input a3 can be left OPEN
sel :INSTD_LOGIC VECTOR(1 DOWNTO 0); --sel input
z out: OUT STD_LOGIC --data out

);
END mux21;

The initalization expression “:= ‘0" in the port declaration states that the input
signalsa_input, b_input c_inputandd_inputwill take on the default value’0’
if they are left unconnected by a component instantiation.

Thus we could instantiate the 4:1 mux as follows:

Ul: mux4l PORT MAP(a0 =>a_input,
al =>b_input,
a2 =>c_input,
a3 =>OPEN, --a3is assigned the value ‘0’
sel =>sel_input),
z_out =>data_out);

Unconnected output ports are also designated by using the keyword OPEN.
However, the associated design entity does not have to supply a default port
value. Here is an adder with a unused carry output.
Ul7 : adder PORT MAP(a_in => a_data,

b in =>b_data,

sum => output,
carry_out => OPEN);,

Essential VHDL for ASICs 16

Association lists - Some last items...

What about inputs to a module that are tied constantly high or low?

As usual with VHDL there are several solutions.

--four to one mux with one input tied low
logic_zero <="'0"; --a ground signal
Ul : mux41l PORT MAP(a0 => a_input,
al =>b_input,
a2 =>c_input,
a3 =>logic_zero,
sel => select,
y =>temp0);

This is a little cleaner:

--four to one mux with one input tied low
logic_zero <="'0"; --a ground signal
Ul : mux41l PORT MAP(a0 => a_input,
al =>Db_input,
a2 =>c_input,
a3 =>'0’,
sel => select,
y =>temp0);

However, you cannot do this:

--four to one mux with one input tied low
Ul : mux41l PORT MAP(a0 => a_input,
al =>Db_input,
a2 =>c_input,
a3 => (a_input AND c_input),
sel => select,
y =>temp0);

The expressions supplied as connections to the module or cell pins must
constant values only.

Essential VHDL for ASICs 17

	Conditional Concurrent Signal Assignment
	The conditional concurrent signal assignment statement is modeled after the “if statement” in sof...
	The general format for this statement is: target_signal <= value1 WHEN condition1 ELSE value2 WHE...
	When one or more of the signals on the right-hand side change value, the statement executes, eval...
	The conditions must evaluate to a boolean value. i.e, True or False
	Example:
	z_out <= a_input WHEN (select = “00”) ELSE b_input WHEN (select = “01”) ELSE c_input WHEN (select...

	Conditional Concurrent Signal Assignment
	What happens when we don’t completely specify all the choices?
	First, lets do it right.
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...

	When synthesized, we get:

	Conditional Concurrent Signal Assignment
	Now let’s incompletely specify the choices.
	ARCHITECTURE noelse OF mux5_1_1wide IS BEGIN z_out <= a_input WHEN (sel = “000”) ELSE b_input WHE...

	When synthesized:
	What happened?
	- How does a transparent latch operate? - What is the truth table for the decoder to the latch “c...

	Selected Concurrent Signal Assignment
	The selected concurrent signal assignment statement is modeled after the “case statement” in soft...
	The general form of this statement:
	WITH discriminant SELECT target_signal <= value1 WHEN choice1, value2 WHEN choice2, value3 WHEN c...

	This statement executes when any the discriminant, value or choice expressions changes value. Whe...

	Important points for this statement:
	- The discriminant must have finite discrete values. (can be enumerated). ERROR: Expression must ...

	About “OTHERS”
	The keyword OTHERS can be powerfully used in many situations. In general it is used to allow matc...
	We will see several other uses of OTHERS in the future.

	Selected Concurrent Signal Assignment
	An example from “SPAM”
	--- --2:1 mux, 16 bits wide ---...
	ENTITY mux2_1_16wide IS PORT(in_a : IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input a in_b : IN STD_LO...
	ARCHITECTURE beh OF mux2_1_16wide IS BEGIN WITH sel SELECT output <= in_a WHEN ‘0’, in_b WHEN ‘1’...

	OTHERS again
	Here we see OTHERS used to match cases where sel is not ‘1’ or ‘0’ in the WHEN OTHERS clause. i.e...
	OTHERS is also used to provide a shorthand method of saying, “make all the bits of the target sig...

	Why was ‘X ‘assigned to output when sel was neither ‘0’ or ‘1’?

	Selected Concurrent Signal Assignment
	A more simple example with synthesis results.
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...

	How will this circuit react to sel(2:0) values greater than “100”?

	Making Choices
	When we want the same target signal assignment to happen for several discriminant choices how do ...
	ARCHITECTURE beh OF mux5_1_1wide IS BEGIN WITH sel SELECT z_out <= a_input WHEN “000” | “001” | “...
	The signal z_out gets the value of a_input when sel is equal to “000”, “001” or “111”. Signal z_o...
	As you can see, once a model is synthesized it can be hard to figure out how it works.

	Concurrent Statements - Component Instantiation
	Another concurrent statement is known as component instantiation. Component instantiation can be ...
	VHDL written in this form is known as Structural VHDL.
	The instantiation statement connects a declared component to signals in the architecture.
	The instantiation has 3 key parts:
	• Label - Identifies unique instance of component
	• Component Type - Select the desired declared component
	• Port Map - Connect component to signals in the architecture

	Example:
	When instantiating components:
	• Local and actual must be of same data type.
	• Local and actual must be of compatible modes.

	Locally declared signals do not have an associated mode and can connect to a local port of any mode.

	Labels
	Labels are used to provide internal documentation.
	May be used with:
	• Concurrent Assertion Statements
	• Concurrent Signal Assignments
	• Process Statements
	• Loop Statements
	• Generate Statements

	Must be used with:
	• Component Instantiation Statements

	Component Instantiation
	5:1 mux using component instantiaion:
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	LIBRARY adk; USE adk.all;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...
	SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;
	COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC; y : OUT STD_LOGIC); END COMPONENT; COMPONENT inv01...

	The synthesized structural 5:1 mux
	The synthesized mux is a faithful representation of our structural VHDL. (it better be!) Actually...

	Component Instantiation (cont.)
	A few notes about the structural 5:1 mux code:
	The logic cells used here were in a library called adk. To access these cells the declaration of ...
	LIBRARY adk; USE adk.all;

	Before we can use the cells in an instantiation statement, we must declare them. This is seen in ...
	COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC; y : OUT STD_LOGIC); END COMPONENT; COMPONENT inv01...

	To wire the mux21 cells together, temporary signals, temp0, temp1, temp2 and temp3 were declared.
	SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;

	Finally, the component instantiations stitch the design together.
	U1 : mux21 PORT MAP(a0 => a_input, a1 => b_input, s0 => sel(0), y => temp0);

	The PORT MAP statement describes the connections between pins of the cell and the signals. The co...
	The first name is the module pin name, the second is the name of the signal the pin is to be conn...
	With named association, the order of associations is not required to be in the same order as port...

	Named vs. Positional Association
	As previously mentioned, pin/signal pairs used with a PORT MAP may be associated by position. For...
	U1 : mux21 PORT MAP(a_input,b_input,sel(0),temp0);

	This form is not preferred because any change in the port list (it often happens in the design ph...
	For example, some real code.......

	Sample PORT MAP (w/named association)
	dramfifo_0: dramfifo PORT MAP(reg_data => reg_data , dram_state_ps => dram_state_ps , dram_cnt_p...

	Same PORT MAP (w/positional association)
	-- dram fifo address control dramfifo_0: dramfifo PORT MAP(reg_data, dram_state_ps, dram_cnt_ps, ...
	Now, lets say you need to add an extra signal in the module dramfifo. You want to put it just aft...
	The Moral of the Story: Use named association.

	Association lists - Some last items...
	Suppose you have a module that is a four to one mux, but you only need three inputs. What do you ...
	If the module you are instantiating has a defined default port value, the keyword OPEN can be use...
	ENTITY mux41 IS PORT(a0 : IN STD_LOGIC := ‘0’; --input a0 can be left OPEN a1 : IN STD_LOGIC := ...

	The initalization expression “:= ‘0’” in the port declaration states that the input signals a_inp...
	Thus we could instantiate the 4:1 mux as follows:
	U1 : mux41 PORT MAP(a0 => a_input, a1 => b_input, a2 => c_input, a3 => OPEN, --a3 is assigned the...

	Unconnected output ports are also designated by using the keyword OPEN. However, the associated d...
	U17 : adder PORT MAP(a_in => a_data, b_in => b_data, sum => output, carry_out => OPEN);

	Association lists - Some last items...
	What about inputs to a module that are tied constantly high or low?
	As usual with VHDL there are several solutions.
	--four to one mux with one input tied low logic_zero <= ‘0’; --a ground signal U1 : mux41 PORT MA...

	This is a little cleaner:
	--four to one mux with one input tied low logic_zero <= ‘0’; --a ground signal U1 : mux41 PORT MA...

	However, you cannot do this:
	--four to one mux with one input tied low U1 : mux41 PORT MAP(a0 => a_input, a1 => b_input, a2 =>...

	The expressions supplied as connections to the module or cell pins must be constant values only.

