
Es

e
oice

ted).

al
f a
 if
 has
hen
Selected Concurrent Signal Assignment

The selected concurrent signal assignment statement is modeled
after the “case statement” in software programming languages.

The general form of this statement:

WITH discriminant SELECT
 target_signal <= value1 WHEN choice1,
 value2 WHEN choice2,
 value3 WHEN choice3,

 valueN WHEN choiceN;
 [default_value WHEN OTHERS];

This statement executes when any the discriminant, value or choice
expressions changes value. When it does execute, the choice clauses ar
evaluated. The target signal is assigned the value corresponding to the ch
that matches the discriminant.

Important points for this statement:

- The discriminant must have finite discrete values. (can be enumera
 ERROR: Expression must return a discrete value.

- You must use or list all possible values for “choice”.
 ERROR: Case statement only covers 5 out of 729 cases.

- Only one of the choices can match the discriminant.
 ERROR: Case choice has already been specified on line 32

About “OTHERS”

The keywordOTHERS can be powerfully used in many situations. In gener
it is used to allow matching to an unspecified number of possible values o
variable. There ay be only one alternative that uses the others choice and
included in a list, it must be the last choice. In essence, it says, if a match
not yet been found and the value of the variable is within range of its type, t
match withOTHERS.

We will see several other uses ofOTHERS in the future.
sential VHDL for ASICs 47

Es

l the
Selected Concurrent Signal Assignment

An example from “SPAM”

--2:1 mux, 16 bits wide

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY mux2_1_16wide IS
 PORT(
 in_a : IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input a
 in_b : IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input b
 sel : IN STD_LOGIC; --select input
 output : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) --data output
);
 END mux2_1_16wide;

ARCHITECTURE beh OF mux2_1_16wide IS
 BEGIN
 WITH sel SELECT
 output <= in_a WHEN ‘0’,
 in_b WHEN ‘1’,
 (OTHERS => ‘X’) WHEN OTHERS;
END beh;

OTHERS again

Here we seeOTHERS used to match cases where sel is not ‘1’ or ‘0’ in the
WHEN OTHERS clause. i.e.:

(OTHERS => ‘X’) WHEN OTHERS;

OTHERS is also used to provide a shorthand method of saying, “make al
bits of the target signal ‘X” for however many bits are in target signal.

(OTHERS => ‘X’) WHEN OTHERS;

Why was ‘X ‘assigned to output when sel was neither ‘0’ or ‘1’?
sential VHDL for ASICs 48

Es
Selected Concurrent Signal Assignment

A more simple example with synthesis results.
--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY mux5_1_1wide IS
 PORT(
 a_input : IN STD_LOGIC; --input a
 b_input : IN STD_LOGIC; --input b
 c_input : IN STD_LOGIC; --input c
 d_input : IN STD_LOGIC; --input d
 e_input : IN STD_LOGIC; --input e
 sel : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
 z_out : OUT STD_LOGIC --data out
);
END mux5_1_1wide;
ARCHITECTURE beh OF mux5_1_1wide IS
 BEGIN
 WITH sel SELECT
 z_out <= a_input WHEN “000”,
 b_input WHEN “001”,
 c_input WHEN “010”,
 d_input WHEN “011”,
 e_input WHEN “100”,
 ‘X’ WHEN OTHERS; --if sel could be be 110, 111? correct?
 END beh;

How will this circuit react to sel(2:0) values greater than “100”?
sential VHDL for ASICs 49

Es

ux

” or

e

Making Choices

When we want the same target signal assignment to happen for several
discriminant choices how do we specify it? Lets alter the function of our m
example as follows. The entity declaration is identical to before.

ARCHITECTURE beh OF mux5_1_1wide IS
 BEGIN
 WITH sel SELECT
 z_out <= a_input WHEN “000” | “001” | “111”,
 b_input WHEN “011” | “101”,
 c_input WHEN “010”,
 d_input WHEN “100”,
 e_input WHEN “110”,
 ‘X’ WHEN OTHERS;
 END beh;

The signal z_out gets the value of a_input when sel is equal to “000”, “001
“111”. Signal z_out gets the value of b_input when sel is equal to “011” or
“101”. The synthesized version of this mux looks like this:

As you can see, once a model is synthesized it can be hard to figur
out how it works.
sential VHDL for ASICs 50

Es

n

Concurrent Statements - Component
Instantiation

Another concurrent statement is known ascomponent
instantiation. Component instantiation can be used to connect
circuit elements at a very low level or most frequently at the top
level of a design.

VHDL written in this form is known as Structural VHDL.

 The instantiation statement connects a declared component to
signals in the architecture.

The instantiation has 3 key parts:

• Label - Identifies unique instance of component

• Component Type - Select the desired declared component

• Port Map - Connect component to signals in the architecture

Example:

When instantiating components:

• Local and actual must be of same data type.

• Local and actual must be of compatible modes.

Locally declared signals do not have an associated mode and ca
connect to a local port of any mode.

the pin “clk” on reg1

u1 : reg1 PORT MAP(d=>d0,clk=>clk,q=>q0);

label

component type
wire that pin “clock” is connected to
sential VHDL for ASICs 51

Es
Labels

Labels are used to provide internal documentation.

May be used with:

• Concurrent Assertion Statements

• Concurrent Signal Assignments

• Process Statements

• Loop Statements

• Generate Statements

Must be used with:

• Component Instantiation Statements
sential VHDL for ASICs 52

Es
Component Instantiation

5:1 mux using component instantiaion:

--5:1 mux, 1 bit wide
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY adk;
USE adk.all;

ENTITY mux5_1_1wide IS
 PORT(
 a_input : IN STD_LOGIC; --input a
 b_input : IN STD_LOGIC; --input b
 c_input : IN STD_LOGIC; --input c
 d_input : IN STD_LOGIC; --input d
 e_input : IN STD_LOGIC; --input e
 sel : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --sel input
 z_out : OUT STD_LOGIC --data out
);
END mux5_1_1wide;
ARCHITECTURE beh OF mux5_1_1wide IS

 SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;

 COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC;
 y : OUT STD_LOGIC); END COMPONENT;
 COMPONENT inv01 PORT(a : IN STD_LOGIC;
 y : OUT STD_LOGIC); END COMPONENT;
 BEGIN
 U1 : mux21 PORT MAP(a0 => a_input,
 a1 => b_input,
 s0 => sel(0),
 y => temp0);
 U2 : mux21 PORT MAP(a0 => c_input,
 a1 => d_input,
 s0 => sel(0),
 y => temp1);
 U3 : mux21 PORT MAP(a0 => temp0,
 a1 => temp1,
 s0 => sel(1),
 y => temp2);
 U4 : mux21 PORT MAP(a0 => temp2,
 a1 => e_input,
 s0 => sel(2),
 y => temp3);
 U5 : inv01 PORT MAP(a => temp3,
 y => z_out);
 END beh;
sential VHDL for ASICs 53

Es

it
DL
ly
to do
The synthesized structural 5:1 mux

The synthesized mux is a faithful representation of our structural VHDL. (
better be!) Actually the synthesis tools “hands” are tied. The structural VH
told exactly how the components were to be wired. It also specified exact
what logic cells were to be used. The synthesis tool actually had nothing
except make the edif netlist and schematic.
sential VHDL for ASICs 54

Es

e

e

e cell

al the

 the
Component Instantiation (cont.)

A few notes about the structural 5:1 mux code:

The logic cells used here were in a library calledadk. To access these cells th
declaration of this library was necessary at the top of the file.

LIBRARY adk;
USE adk.all;

Before we can use the cells in an instantiation statement, we must declar
them. This is seen in the statements:

COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC;
 y : OUT STD_LOGIC); END COMPONENT;
COMPONENT inv01 PORT(a : IN STD_LOGIC;
 y : OUT STD_LOGIC); END COMPONENT;

To wire the mux21 cells together, temporary signals,temp0, temp1, temp2and
temp3 were declared.

SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;

Finally, the component instantiations stitch the design together.

U1 : mux21 PORT MAP(a0 => a_input,
 a1 => b_input,
 s0 => sel(0),
 y => temp0);

The PORT MAP statement describes the connections between pins of th
and the signals. The connections are described by the format:

pin_on_module => signal_name,

The first name is the module pin name, the second is the name of the sign
pin is to be connected to. This format is callednamed association.

With named association, the order of associations is not required to be in
same order as port declaration in the component.
sential VHDL for ASICs 55

Es

ens
Named vs. Positional Association

As previously mentioned, pin/signal pairs used with a PORT MAP may be
associated by position. For example,

U1 : mux21 PORT MAP(a_input,b_input,sel(0),temp0);

This form is not preferred because any change in the port list (it often happ
in the design phase) will be difficult to incorporate. Try doing it for entities
with 50 or more signals and you’ll begin to appreciate the point.

For example, some real code.......
sential VHDL for ASICs 56

Es
Sample PORT MAP (w/named association)

dramfifo_0: dramfifo
PORT MAP(reg_data => reg_data ,
 dram_state_ps => dram_state_ps ,
 dram_cnt_ps => dram_cnt_ps ,
 dram_cycle_type => dram_cycle_type ,
 addr_adv => addr_adv ,
 line_shift => line_shift ,
 cycle_start => cycle_start ,
 done => done ,
 any_rdgnt => any_rdgnt ,
 any_wrgnt => any_wrgnt ,
 test_mode => test_mode ,
 scl_ratio_ack => scl_ratio_ack ,
 y_wrptrlo_wen => y_wrptrlo_wen ,
 y_wrptrhi_wen => y_wrptrhi_wen ,
 u_wrptrlo_wen => u_wrptrlo_wen ,
 u_wrptrhi_wen => u_wrptrhi_wen ,
 v_wrptrlo_wen => v_wrptrlo_wen ,
 v_wrptrhi_wen => v_wrptrhi_wen ,
 wrcntrlo_wen => wrcntrlo_wen ,
 wrcntrhi_wen => wrcntrhi_wen ,
 y_rdptrlo_wen => y_rdptrlo_wen ,
 y_rdptrhi_wen => y_rdptrhi_wen ,
 u_rdptrlo_wen => u_rdptrlo_wen ,
 u_rdptrhi_wen => u_rdptrhi_wen ,
 v_rdptrlo_wen => v_rdptrlo_wen ,
 v_rdptrhi_wen => v_rdptrhi_wen ,
 rdcntrlo_wen => rdcntrlo_wen ,
 rdcntrhi_wen => rdcntrhi_wen ,
 yeol_cntr_wen => yeol_cntr_wen ,
 ueol_cntr_wen => ueol_cntr_wen ,
 veol_cntr_wen => veol_cntr_wen ,
 line_length_wen => line_length_wen ,
 ptr_rollbit_wen => ptr_rollbit_wen ,
 clk_24 => clk_24 ,
 clk_48 => clk_48 ,
 rst_24 => rst_24 ,
 rst_48 => rst_48 ,
 s_capt_en => s_capt_en ,
 vsync => vsync ,
 even_fld => even_fld ,
 qual_hsync => qual_hsync ,
 sr_sel => sr_sel ,
 current_sr => current_sr ,
 allow_rdreq => allow_rdreq ,
 allow_wrreq => allow_wrreq ,
 wr_addr => wr_addr ,
 rd_addr => rd_addr ,
 last_line_segment => last_line_segment,
 start_of_video => start_of_video ,
 end_of_video => end_of_video ,
 line_length_rback => line_length_rback,
 dcu_status => dcu_status);
sential VHDL for ASICs 57

Es

ly
lly
port
ht
Same PORT MAP (w/positional association)

-- dram fifo address control
dramfifo_0: dramfifo
PORT MAP(reg_data, dram_state_ps, dram_cnt_ps, dram_cycle_type,
addr_adv, line_shift, cycle_start, done, any_rdgnt, any_wrgnt,
test_mode, scl_ratio_ack, y_wrptrlo_wen, y_wrptrhi_wen, u_wrptrlo_wen,
u_wrptrhi_wen, v_wrptrlo_wen, v_wrptrhi_wen, wrcntrlo_wen,
wrcntrhi_wen, y_rdptrlo_wen, y_rdptrhi_wen, u_rdptrlo_wen,
u_rdptrhi_wen, v_rdptrlo_wen, v_rdptrhi_wen, rdcntrlo_wen,
rdcntrhi_wen, yeol_cntr_wen, ueol_cntr_wen, veol_cntr_wen,
line_length_wen, ptr_rollbit_wen, clk_24, clk_48, rst_24, rst_48,
s_capt_en, vsync, even_fld, qual_hsync, sr_sel, current_sr,
allow_rdreq, allow_wrreq, wr_addr, rd_addr, last_line_segment,
start_of_video, end_of_video, line_length_rback, dcu_status);

Now, lets say you need to add an extra signal in the moduledramfifo. You want
to put it just afterueol_cntr_wen. But let’s say your signals do not necessari
have the same names as the pins. This means you would have to manua
count through the list of signals to find out where to put the new one in the
map in exactly the same order. How would you know for sure its in the rig
position? Count through the list again! Do you have time to do this?

The Moral of the Story:Use named association.
sential VHDL for ASICs 58

Es

 three
ts?

ort
d

ut

N.
ort
Association lists - Some last items...

Suppose you have a module that is a four to one mux, but you only need
inputs. What do you do with the unused input? What about unused outpu

If the module you are instantiating has a defineddefault port value, the
keywordOPEN can be used to allow the input to be assigned the default p
value. Thus the entity for a 4:1 mux with a defined default port value woul
look like this:

ENTITY mux41 IS
 PORT(
 a0 : IN STD_LOGIC := ‘0’; --input a0 can be left OPEN
 a1 : IN STD_LOGIC := ‘0’; --input a1 can be left OPEN
 a2 : IN STD_LOGIC := ‘0’; --input a2 can be left OPEN
 a3 : IN STD_LOGIC := ‘0’; --input a3 can be left OPEN
 sel : IN STD_LOGIC_VECTOR(1 DOWNTO 0); --sel input
 z_out : OUT STD_LOGIC --data out
);
END mux21;

The initalization expression “:= ‘0’” in the port declaration states that the inp
signalsa_input, b_input, c_inputandd_inputwill take on the default value’0’
if they are left unconnected by a component instantiation.

Thus we could instantiate the 4:1 mux as follows:

U1 : mux41 PORT MAP(a0 => a_input,
 a1 => b_input,
 a2 => c_input,
 a3 => OPEN, --a3 is assigned the value ‘0’
 sel => sel_input),
 z_out => data_out);

Unconnected output ports are also designated by using the keyword OPE
However, the associated design entity does not have to supply a default p
value. Here is an adder with a unused carry output.

U17 : adder PORT MAP(a_in => a_data,
 b_in => b_data,
 sum => output,
 carry_out => OPEN);
sential VHDL for ASICs 59

Es

 be
Association lists - Some last items...

What about inputs to a module that are tied constantly high or low?

As usual with VHDL there are several solutions.

--four to one mux with one input tied low
logic_zero <= ‘0’; --a ground signal
U1 : mux41 PORT MAP(a0 => a_input,
 a1 => b_input,
 a2 => c_input,
 a3 => logic_zero,
 sel => select,
 y => temp0);

This is a little cleaner:

--four to one mux with one input tied low
logic_zero <= ‘0’; --a ground signal
U1 : mux41 PORT MAP(a0 => a_input,
 a1 => b_input,
 a2 => c_input,
 a3 => ‘0’,
 sel => select,
 y => temp0);

However, you cannot do this:

--four to one mux with one input tied low
U1 : mux41 PORT MAP(a0 => a_input,
 a1 => b_input,
 a2 => c_input,
 a3 => (a_input AND c_input),
 sel => select,
 y => temp0);

The expressions supplied as connections to the module or cell pins must
constant values only.
sential VHDL for ASICs 60

	Selected Concurrent Signal Assignment
	The selected concurrent signal assignment statement is modeled after the “case statement” in soft...
	The general form of this statement:
	WITH discriminant SELECT target_signal <= value1 WHEN choice1, value2 WHEN choice2, value3 WHEN c...

	This statement executes when any the discriminant, value or choice expressions changes value. Whe...

	Important points for this statement:
	- The discriminant must have finite discrete values. (can be enumerated). ERROR: Expression must ...

	About “OTHERS”
	The keyword OTHERS can be powerfully used in many situations. In general it is used to allow matc...
	We will see several other uses of OTHERS in the future.

	Selected Concurrent Signal Assignment
	An example from “SPAM”
	--- --2:1 mux, 16 bits wide ---...
	ENTITY mux2_1_16wide IS PORT(in_a : IN STD_LOGIC_VECTOR(15 DOWNTO 0); --input a in_b : IN STD_LO...
	ARCHITECTURE beh OF mux2_1_16wide IS BEGIN WITH sel SELECT output <= in_a WHEN ‘0’, in_b WHEN ‘1’...

	OTHERS again
	Here we see OTHERS used to match cases where sel is not ‘1’ or ‘0’ in the WHEN OTHERS clause. i.e...
	OTHERS is also used to provide a shorthand method of saying, “make all the bits of the target sig...

	Why was ‘X ‘assigned to output when sel was neither ‘0’ or ‘1’?

	Selected Concurrent Signal Assignment
	A more simple example with synthesis results.
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...

	How will this circuit react to sel(2:0) values greater than “100”?

	Making Choices
	When we want the same target signal assignment to happen for several discriminant choices how do ...
	ARCHITECTURE beh OF mux5_1_1wide IS BEGIN WITH sel SELECT z_out <= a_input WHEN “000” | “001” | “...
	The signal z_out gets the value of a_input when sel is equal to “000”, “001” or “111”. Signal z_o...
	As you can see, once a model is synthesized it can be hard to figure out how it works.

	Concurrent Statements - Component Instantiation
	Another concurrent statement is known as component instantiation. Component instantiation can be ...
	VHDL written in this form is known as Structural VHDL.
	The instantiation statement connects a declared component to signals in the architecture.
	The instantiation has 3 key parts:
	• Label - Identifies unique instance of component
	• Component Type - Select the desired declared component
	• Port Map - Connect component to signals in the architecture

	Example:
	When instantiating components:
	• Local and actual must be of same data type.
	• Local and actual must be of compatible modes.

	Locally declared signals do not have an associated mode and can connect to a local port of any mode.

	Labels
	Labels are used to provide internal documentation.
	May be used with:
	• Concurrent Assertion Statements
	• Concurrent Signal Assignments
	• Process Statements
	• Loop Statements
	• Generate Statements

	Must be used with:
	• Component Instantiation Statements

	Component Instantiation
	5:1 mux using component instantiaion:
	--5:1 mux, 1 bit wide LIBRARY ieee; USE ieee.std_logic_1164.ALL;
	LIBRARY adk; USE adk.all;
	ENTITY mux5_1_1wide IS PORT(a_input : IN STD_LOGIC; --input a b_input : IN STD_LOGIC; --input b ...
	SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;
	COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC; y : OUT STD_LOGIC); END COMPONENT; COMPONENT inv01...

	The synthesized structural 5:1 mux
	The synthesized mux is a faithful representation of our structural VHDL. (it better be!) Actually...

	Component Instantiation (cont.)
	A few notes about the structural 5:1 mux code:
	The logic cells used here were in a library called adk. To access these cells the declaration of ...
	LIBRARY adk; USE adk.all;

	Before we can use the cells in an instantiation statement, we must declare them. This is seen in ...
	COMPONENT mux21 PORT(a0,a1,s0 : IN STD_LOGIC; y : OUT STD_LOGIC); END COMPONENT; COMPONENT inv01...

	To wire the mux21 cells together, temporary signals, temp0, temp1, temp2 and temp3 were declared.
	SIGNAL temp0, temp1, temp2, temp3 : STD_LOGIC;

	Finally, the component instantiations stitch the design together.
	U1 : mux21 PORT MAP(a0 => a_input, a1 => b_input, s0 => sel(0), y => temp0);

	The PORT MAP statement describes the connections between pins of the cell and the signals. The co...
	The first name is the module pin name, the second is the name of the signal the pin is to be conn...
	With named association, the order of associations is not required to be in the same order as port...

	Named vs. Positional Association
	As previously mentioned, pin/signal pairs used with a PORT MAP may be associated by position. For...
	U1 : mux21 PORT MAP(a_input,b_input,sel(0),temp0);

	This form is not preferred because any change in the port list (it often happens in the design ph...
	For example, some real code.......

	Sample PORT MAP (w/named association)
	dramfifo_0: dramfifo PORT MAP(reg_data => reg_data , dram_state_ps => dram_state_ps , dram_cnt_p...

	Same PORT MAP (w/positional association)
	-- dram fifo address control dramfifo_0: dramfifo PORT MAP(reg_data, dram_state_ps, dram_cnt_ps, ...
	Now, lets say you need to add an extra signal in the module dramfifo. You want to put it just aft...
	The Moral of the Story: Use named association.

	Association lists - Some last items...
	Suppose you have a module that is a four to one mux, but you only need three inputs. What do you ...
	If the module you are instantiating has a defined default port value, the keyword OPEN can be use...
	ENTITY mux41 IS PORT(a0 : IN STD_LOGIC := ‘0’; --input a0 can be left OPEN a1 : IN STD_LOGIC := ...

	The initalization expression “:= ‘0’” in the port declaration states that the input signals a_inp...
	Thus we could instantiate the 4:1 mux as follows:
	U1 : mux41 PORT MAP(a0 => a_input, a1 => b_input, a2 => c_input, a3 => OPEN, --a3 is assigned the...

	Unconnected output ports are also designated by using the keyword OPEN. However, the associated d...
	U17 : adder PORT MAP(a_in => a_data, b_in => b_data, sum => output, carry_out => OPEN);

	Association lists - Some last items...
	What about inputs to a module that are tied constantly high or low?
	As usual with VHDL there are several solutions.
	--four to one mux with one input tied low logic_zero <= ‘0’; --a ground signal U1 : mux41 PORT MA...

	This is a little cleaner:
	--four to one mux with one input tied low logic_zero <= ‘0’; --a ground signal U1 : mux41 PORT MA...

	However, you cannot do this:
	--four to one mux with one input tied low U1 : mux41 PORT MAP(a0 => a_input, a1 => b_input, a2 =>...

	The expressions supplied as connections to the module or cell pins must be constant values only.

