
Es
Sequential Operations

Statements within processes are executed in the order in which
they are written.

The sequential statements we will look at are:

• Variable Assignment

• Signal Assignment*

• If Statement

• Case Statement

• Loops

• Next Statement

• Exit Statement

• Return Statement

• Null Statement

• Procedure Call

• Assertion Statement*

*Have both a sequential and concurrent form.
sential VHDL for ASICs 77

Es
Variable Declaration and Assignment

Variables can be used only within sequential areas.

Format:

VARIABLE var_name : type [:= initial_value];

Example:

VARIABLE spam : std_logic := ‘0’;

ARCHITECTURE example OF funny_gate IS
SIGNAL c : STD_LOGIC;
 BEGIN
 funny: PROCESS (a,b,c)
 VARIABLE temp : std_logic;
 BEGIN
 temp := a AND b;
 z <= temp OR c;
 END PROCESS funny;
 END ARCHITECTURE example;

Variables assume value instantly.

Variables simulate more quickly since they have no time
dimension.

Remember, variables and signals have different assignment
operators:

a <= new_value; --signal assignment
a := new_value; --variable assignment
sential VHDL for ASICs 78

Es
Sequential Operations - IF Statement

Provides conditional control of sequential statements.

Condition in statement must evaluate to a Boolean value.

Statements execute if boolean evaluates to TRUE.

Formats:

IF condition THEN --simple IF (latch)
-- sequential statements
END IF;

IF condition THEN --IF-ELSE
-- sequential statements
ELSE
-- sequential statements
END IF;

IF condition THEN --IF-ELSIF-ELSE
-- sequential statements
ELSIF condition THEN
-- sequential statements
ELSE
-- sequential statements
END IF;
sential VHDL for ASICs 79

Es
Sequential Operations - IF Statement

Examples:

--enabled latch
IF (a = ‘1’ AND b = ‘0’) THEN
 spud <= potato;
END IF;

--a very simple “gate”
IF (lucky = ‘1’) THEN
 buy_lottery_tickets <= ‘1’;
ELSE
 buy_lottery_tickets <= ‘0’;
END IF;

--a edge triggered 4-bit counter with enable
--and asynchronous reset
IF (reset = ‘1’) THEN
 cnt <= “0000”;
 ELSIF (clk’EVENT AND clk = ‘1’) THEN
 IF enable = ‘1’ THEN
 cnt <= cnt + 1;
 END IF ;
END IF;

A Hint: Only IF.....
 needsEND IF
sential VHDL for ASICs 80

Es
Synthesized example from previous page
sential VHDL for ASICs 81

Es

one
IF Implies Priority

The if statement implies a priority in how signals are assigned to the logic
synthesized. See the code segment below and the synthesized gates.

ARCHITECTURE tuesday OF example IS
 BEGIN
 wow: PROCESS (a, b, c, d, potato, carrot, beet, spinach, radish)
 BEGIN
 IF (a = ’1’) THEN
 vegatable <= potato;
 ELSIF (b = ’1’) THEN
 vegatable <= carrot;
 ELSIF (c = ’1’) THEN
 vegatable <= beet;
 ELSIF (d = ’1’) THEN
 vegatable <= spinach;
 ELSE
 vegatable <= radish;
 END IF;
 END PROCESS wow;
END ARCHITECTURE tuesday;

Note how signal with the smallest gate delay through the logic was the first
listed. You can use such behavior to your advantage. Note that use of
excessively nestedIF statements can yield logic with lots of gate delay.

Beyond about four levels ofIF statement, theCASE statement will typically
yield a faster implementation of the circuit.

what are the delays for each path?
sential VHDL for ASICs 82

Es

er of
is
Area and delay of nested IF statement

We can put reporting statements in our synthesis script to tell us the numb
gate equivalents and the delays through all the paths in the circuit. For th
example, we included the two statements:

report_area -cell area_report.txt
report_delay -show_nets delay_report.txt

In area_report.txt, we see:

Cell: example View: tuesday Library: work

 Cell Library References Total Area
 ao21 ami05_typ 2 x 1 2 gates
 mux21 ami05_typ 2 x 2 4 gates
 nor02 ami05_typ 2 x 1 2 gates

 Number of gates : 8

The delay_report.txt has the delay information:

 Critical Path Report
Critical path #1 spinach to vegatable 3.42ns
Critical path #2 radish to vegatable 3.41ns
Critical path #3 d to vegatable 3.31ns
Critical path #4 c to vegatable 2.88ns
Critical path #5 c to vegatable 2.57ns
Critical path #6 beet to vegatable 2.48ns
Critical path #7 carrot to vegatable 1.63ns
Critical path #8 b to vegatable 1.52ns
Critical path #9 a to vegatable 1.08ns
Critical path #10 a to vegatable 1.46ns
sential VHDL for ASICs 83

Es

s a
ck is

ned

 is
If implies priority (cont.)

The order in which the IF’s conditional statement are evaluated also make
difference in how the outputs value is assigned. For example, the first che
for (a = ‘1’). If this statement evaluates true, the output vegetable is assig
“potato” for any input combination where a= ‘1’.

If the first check fails, the possibilities narrow. If the second check (b= ‘1’)
true, then any combination where a is ‘0’ an b is ‘1’ will assign carrot to
vegetable.

If all prior checks fail, an ending ELSE catches all other possibilities.
sential VHDL for ASICs 84

Es
Relational Operators

The IF statement uses relational operators extensively.

Relational operators return Boolean values (true, false) as their
result.

OperatorOperation

= equal
/= not equal
< less than
<= less than or equal
> greater than
>= greater than or equal

The expression for signal assignment and less than or equal are
the same. They are distinguished by the usage context.
sential VHDL for ASICs 85

Es
CASE Statement

Controls execution of one or more sequential statements.

Format:

CASE expression IS
 WHEN expression_value0 => sequential_stmt;
 WHEN expression_value1 => sequential_stmt;
END CASE;

Example:

--a four to one mux
mux: PROCESS (sel, a, b, c, d)
BEGIN
 CASE sel IS
 WHEN “00” => out <= a;
 WHEN “01” => out <= b;
 WHEN “10” => out <= c;
 WHEN “11” => out <= d;
 WHEN OTHERS => out <= ‘X’;
 END CASE ;
END PROCESS mux;

Either every possible value ofexpression_value must be
enumerated, or the last choicemust contain an OTHERS clause.
sential VHDL for ASICs 86

Es

d to

ut

l

CASE Implies equal priority

TheCASE statement implies equal priority to how the signals are assigne
the circuit. For example, we will repeat the previousIF example usingCASE.
To do so, we combine the selection signals into a bus and make the outp
selection on the bus value as shown below.

ARCHITECTURE tuesday OF example IS
 SIGNAL select_bus : STD_LOGIC_VECTOR(3 DOWNTO 0);
 BEGIN
 select_bus <= (d & c & b & a); --make the select bus
 wow: PROCESS (select_bus, potato, carrot, beet, spinach, radish)
 BEGIN
 CASE select_bus IS
 WHEN "0001" => vegatable <= potato;
 WHEN "0010" => vegatable <= carrot;
 WHEN "0100" => vegatable <= beet;
 WHEN "1000" => vegatable <= radish;
 WHEN OTHERS => vegatable <= spinach;
 END CASE;
 END PROCESS wow;
END ARCHITECTURE tuesday;

With the exception of spinach, the number of gate delays from each signa
input to output is four. The gate delays in theIF example varied from 1 to 8
gate delays. However, this function for CASE could be coded better.
sential VHDL for ASICs 87

Es

code
ee

 Its
d

Using CASE more effectively

In the previous example, there were 5 choices to choose from. We can en
this more fully by using 3 bits. What we are creating now is a mux. Lets s
how this example can be coded more efficiently:

ARCHITECTURE tuesday OF example IS
 BEGIN
 wow: PROCESS (select_bus, potato, carrot, beet, spinach, radish)
 BEGIN
 CASE select_bus IS
 WHEN "000" => vegatable <= potato;
 WHEN "001" => vegatable <= carrot;
 WHEN "010" => vegatable <= beet;
 WHEN "011" => vegatable <= radish;
 WHEN "100" => vegatable <= spinach;
 WHEN OTHERS => vegatable <= ’X’;
 END CASE;
 END PROCESS wow;
END ARCHITECTURE tuesday;

The synthesized circuit looks like this:

This encoding of the desired function is much cleaner, faster and smaller.
seldom you get all three, so take it when you can. Examining the area an
delay numbers between this and theIF implementation shows the superiority
of CASE for this situation.

Be careful however, sometimesCASE may loose depending upon the
circumstances! Blanket statements about synthesis results with different
constructs should not be made. Examine each situation individually, and
THINK !
sential VHDL for ASICs 88

Es
Delay and area report: efficient CASE example

From area_report.txt:

Cell: example View: tuesday Library: work

 Cell Library References Total Area
 inv02 ami05_typ 1 x 1 1 gates
 mux21 ami05_typ 4 x 2 8 gates

Total accumulated area :
Number of gates: 8

From delay_report.txt
 Critical Path Report

Critical path #1, potato to vegatable 1.83

Critical path #2, beet to vegatable 1.83

Critical path #3, carrot to vegatable 1.82

Critical path #4, radish to vegatable 1.81

Critical path #5, select_bus(0) to vegatable 1.72

Critical path #6, select_bus(0) to vegatable 1.72

Critical path #7, select_bus(1) to vegatable 1.19

Critical path #8, spinach to vegatable 0.74

Critical path #9, select_bus(2) to vegatable 0.64

The comparison betweenIF andCASE for this example:

IF: area 8 gates, delay 3.42ns (worst path)
CASE: area 8 gates, delay 1.83ns (worst path)
sential VHDL for ASICs 89

Es

’
r the

is

be
wn

s

ut
t

ut
ic.

 a

hat
Use of OTHERS in MUXes

In the former example, theOTHERS clause assigned the output value of ‘X
for inputs other than those explicitly stated. There are two main reasons fo
use of ‘X’.

Simulation and debugging

Remember that we are using the 9 level logic type STD_LOGIC_1164. Th
type specifies that a signal can take on a “real world” set of values;
0,1,H,L,Z,X,W,U,-. All these values are included so that we simulate the
behavior or “real” circuits such as resistive pullups and pulldowns, tri-state
buffers and even initialized logic. An example of an uninitialized cell would
a flip flop output just after power is applied. Its output is considered unkno
or ‘U’ by the simulator while if its setup or hold time is violated, the flip flop’
output becomes unknown or ‘X’ immediately after the clock edge.

If a setup violation occurs during the simulation of a circuit, a flip flop’s outp
will go ‘X’. If the flip flop’s output forms the select input to a mux, what inpu
signal will be propagated to the output? In other words, if theselect_bussignal
becomes “0X1”, what input signal value willvegatabletake on. This is known
in polite circles as theX propagation issue.

If we chose another valid input for the OTHERS clause, the error (‘X’ outp
from a flip flop) in the simulation will not be propagated to downstream log
It will stop or be lost at the mux input because the select_bus value “0X1”
maps to a valid input. At the next clock cycle the flip flop may transition to
valid state, the simulation will continue and the error will go unnoticed. We
would rather have the ‘X’ propagate thorough the logic and “blow up” the
simulation so we can catch the error.

The code below is valid and wouldnot propagate the ‘X’ condition. It also
represents an “overly specified” circuit. It is overly specified in the sense t
surely all the possible values ofselect_bus should not map topotato. Giving
some degree of freedom actually produces a smaller gate realization.
sential VHDL for ASICs 90

Es

.

‘X’
Use of OTHERS (cont.)

--overly specified mux
CASE select_bus IS
 WHEN "000" => vegatable <= potato;
 WHEN "001" => vegatable <= carrot;
 WHEN "010" => vegatable <= beet;
 WHEN "011" => vegatable <= radish;
 WHEN "100" => vegatable <= spinach;
 -- output potato for all other cases
 WHEN OTHERS => vegatable <= potato;
END CASE;

If we synthesize this circuit we get the following:

The gate realization of this overly specified mux is obviously a little messy
This also seen in the reports from synthesis.

The worst case path from the delay_report.txt gives us:
Critical path #1, beet to vegatable, 2.17ns

The gate count from area_report.txt gives us:
Number of gates: 11

This less than optimal solution leads to the second reason for the use of
here; logic minimization.
sential VHDL for ASICs 91

Es

utput
‘X’

the
ed in

lue, ‘-

 but
be
e

Use of OTHERS (cont.)

Logic minimization

The synthesis tool must choose from a library of cells to create the circuit
described by the HDL code. In the case of using the statement:

WHEN OTHERS => vegatable <= ’X’;

What does the synthesis tool do? There is no gate that can produce a ‘X’ o
except when malfunctioning. How can it make a set of gates to produce an
output? The answer is that it doesn’t.

Thesynthesizer treats the ‘X’ in this case as adon’t care. This is just like the
don’t care in a Karnough map. It allow the synthesis to optimize (reduce)
gate count if possible. The simulator treats the X as a value to be propagat
simulation if an error happens.

In fact, we can use another value in the mux statement; the don’t care va
’. So we could have coded the mux as follows:

--don’t do this!
CASE select_bus IS
 WHEN "000" => vegatable <= potato;
 WHEN "001" => vegatable <= carrot;
 WHEN "010" => vegatable <= beet;
 WHEN "011" => vegatable <= radish;
 WHEN "100" => vegatable <= spinach;
 WHEN OTHERS => vegatable <= ’-’;
END CASE;

This would allow the same optimizations as the ‘X’ for the OTHERS case
the behavior of the simulation in the case of a ‘-’ being propagated could
library and simulator dependent. This wouldNOT be a be a good way to cod
a mux even though the synthesized circuit is identical to the mux with the
OTHERS statement using ‘X’.
sential VHDL for ASICs 92

Es

),

t, the
.

Use of OTHERS (conclusion)

By using the statement:

WHEN OTHERS => vegatable <= ’X’;

the synthesizer can create a small, fast circuit that behaves properly.

One basic premise of how we want to code our designs is that we want the
simulation of our code to act exactly as the gate implementation. If a real
mux had a metastable (think ‘X’) input, the output would be metastable (X
not some valid (0 or 1) state.

The proper use of the don’t care operator is found in creating complex
combinatorial logic and in state machine state assignments. In that contex
don’t care operator really shines. We will see some examples of this soon
sential VHDL for ASICs 93

Es
Loops

Sequences of statements that are executed repeatedly.

Types of loops:

• For (most common usage)

• While

• Loop with exit construct (we skip this)

General Format:

[loop_label:]
iteration_scheme --FOR, WHILE
LOOP
 --sequence_of_statements;
END LOOP[loop_label];
sential VHDL for ASICs 94

Es
For Loop

Statements are executed once for each value in the loop
parameter’s range

Loop parameter is implicitly declared and may not be modified
from within loop or used outside loop.

Format:

[label:] FOR loop_parameter IN discrete_range
LOOP
--sequential_statements

END LOOP[label];

Example:

PROCESS (ray_in)
BEGIN
 --connect wires in a two busses
 label: FOR index IN 0 TO 7
 LOOP
 ray_out(index) <= ray_in(index);
 END LOOP label;
END PROCESS;
sential VHDL for ASICs 95

Es
While Loop

Execution of statements within loop is controlled by Boolean
condition.

Condition is evaluated before each repetition of loop.

Format:

WHILE boolean_expression
LOOP
--sequential_expressions
END LOOP;

Example:

p1:
PROCESS (ray_in)
 VARIABLE index : integer := 0;
BEGIN
 from_in_to_out:
 WHILE index < 8
 LOOP
 ray_out(index) <= ray_in(index);
 index := index + 1;
 END LOOP from_in_to_out;
END PROCESS p1;
sential VHDL for ASICs 96

Es
Attributes

Attributes specify “extra” information about some aspect of a
VHDL model.

There are a number of predefined attributes provide a way to
query arrays, bit, and bit vectors.

Additional attributes may be defined by the user.

Format:

object_name’attribute_designator

The “ ‘ ” is referred to as “tick”.

Example:

ELSIF (clk’EVENT AND clk = ‘1’) THEN
sential VHDL for ASICs 97

Es
Predefined Signal Attributes

signal’EVENT - returns value “TRUE” or “FALSE” if event
occurred in present delta time period.

signal’ACTIVE - returns value “TRUE” or “FALSE” if activity
occurred in present delta time period.

signal’STABLE - returns a signal value “TRUE” or “FALSE”
based on event in (t) time units.

signal’QUIET - returns a signal value “TRUE” or “FALSE”
based on activity in (t) time units.

signal’TRANSACTION - returns an event whenever there is
activity on the signal.

signal’DELAYED(t) - returns a signal delayed (t) time units.

signal’LAST_EVENT - returns amount of time since last event.

signal’LAST_ACTIVE - returns amount of time since last activity.

signal’LAST_VALUE - returns value equal to previous value.
sential VHDL for ASICs 98

Es
Using Attributes

Rising clock edge:

clk’EVENT and clk = ‘1’

OR:

NOT clk’STABLE AND clk =’1’

Falling clock edge:

clk’EVENT AND clk = ‘0’

Checking for too short pulse width:

ASSERT (reset’LAST_EVENT >= 3ns)
 REPORT “reset pulse too short!”;

Checking stability of a signal:

signal’STABLE(10ns)
sential VHDL for ASICs 99

Es
Generic Clause

Generics may be used for readability, maintenance and
configuration.

They allow a component to be customized by creating a
parameter to be passed on to the architecture.

Format:

GENERIC (generic_name:type[:= default_value]);

If default_value is missing, it must be present when the
component is instantiated.

Example:

ENTITY half_adder IS
 GENERIC(
 tpd_result : delay := 4ns;
 tpd_carry : delay := 3ns);
 PORT(
 x IN : std_logic;
 y IN : std_logic;
 z OUT : std_ulogic);
END nand_gate;

ARCHITECTURE dataflow OF half_adder
 BEGIN
 I result <= x XOR y AFTER tpd_result;
 carry <= x AND y AFTER tpd_carry;
 END dataflow;
sential VHDL for ASICs 100

Es

mes
ial,

ing
e

igh,
Inferring Storage Elements

In our designs, we usually use flip-flops as our storage elements. Someti
we use latches, but not often. Latches are smaller in size, but create spec
often difficult situations for testing and static timing analysis.

Latches are inferred in VHDL by using the IF statement without its match
ELSE. This causes the synthesis to make the logical decision to “hold” th
value of a signal when not told to do anything else with it.

The inferred latch is a transparent latch. That is, for as long as enable is h
the q output “sees” the d input transparently.

--infer 4-bit wide latch
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_vector_arith.ALL;

ENTITY storage IS
 PORT (
 data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 enable : IN STD_LOGIC);
END storage;

ARCHITECTURE wed OF storage IS
 BEGIN
 infer_latch:
 PROCESS (enable, data_in)
 BEGIN
 IF enable = ‘1’ THEN
 data_out <= data_in;
 END IF; --look ma, no else!
 END PROCESS infer_latch;
END ARCHITECTURE wed;

When synthesized, we see the following structure:
sential VHDL for ASICs 101

Es

.
ng

s,

:

ey
Latch Inference

In our library, the enable is shown as going to the “CLK” input of the latch
This is misleading as the input should properly be called “EN” or somethi
like that. If I find the time maybe I’ll change these someday.

The small size of the latches is reflected in the area report:

Cell Library References Total Area
latch ami05_typ 4 x 2 10 gates

Number of gates : 10

This is of course relative to the size of a 2-input NAND gate. In other word
the area of each latch is about the same as 2, 2-input NAND gates!

When we synthesized, the transcript told of the impending latch inference

-- Compiling root entity storage(wed)
"/nfs/guille/u1/t/traylor/ece574/src/storage.vhd",line 8: Warning,
data_out is not always assigned. latches could be needed.

Always watch tool transcripts. They can be very informative. Sometime th
can save your bacon.
sential VHDL for ASICs 102

Es
Inferring D-type Flip Flops

Usually, we want to infer D-type, edge triggered flip flops. Here’s how.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_vector_arith.ALL;

ENTITY storage IS
 PORT (
 data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 clock : IN STD_LOGIC);
END storage;

ARCHITECTURE wed OF storage IS
 BEGIN
 infer_dff:
 PROCESS (clock, data_in)
 BEGIN
 IF (clock’EVENT AND clock = ‘1’) THEN
 data_out <= data_in;
 END IF; --look ma, still no else!.... what gives?
 END PROCESS infer_dff;
END ARCHITECTURE wed;
sential VHDL for ASICs 103

Es

the

uted

t the

 old
 by
Sometime back we stated that IF with ELSE infers a latch. Well... that is
usually true. Here is an exception. The line:

 IF (clock’EVENT AND clock = ‘1’) THEN

is special to the synthesis tool. The conditional statement for the IF uses
attribute which looks for a change in the signalclock(clock’EVENT). This is
ANDed with the condition thatclock is now ‘1’ (AND clock = ‘1’). The
conditional is looking for a rising edge of the signalclock.

Therefore, if there is a rising edge, the statement under the IF will be exec
and at no other time. So when the clock rises, data_out will get the value
present at data_in. Since a D flip-flop is the only cell that can satisfy this
condition and can hold the value once it is acquired it is used to implemen
circuit. The conditional(clock’EVENT AND clock = ‘1’) really forms the
recipe for a D-type rising edge flip flop.

A ELSE clause could be added to the IF statement that explicitly tells the
value to be held. This is not at all harmful, but is redundant and is ignored
the synthesis tool. An example of this is shown below:

 infer_dff:
 PROCESS (clock, data_in)
 BEGIN
 IF (clock’EVENT AND clock = ‘1’) THEN
 data_out <= data_in; --get new value
 ELSE
 data_out <= data_out; --hold old value...UNNECESSARY
 END IF;
 END PROCESS infer_dff;
sential VHDL for ASICs 104

Es

 the
ith
Adding an Asynchronous Reset

We almost never want a flip flop without a reset. Without a reset, how can
simulator determine initial state? It cannot. It is very rare to find flip-flops w
out a reset. Here is how to code a flip flop with a asynchronous reset:

ARCHITECTURE wed OF storage IS
 BEGIN
 infer_dff:
 PROCESS (reset_n, clock, data_in)
 BEGIN
 IF (reset_n = ‘0’) THEN
 data_out <= “0000”; --aysnc reset
 ELSIF (clock’EVENT AND clock = ‘1’) THEN
 data_out <= data_in;
 END IF;
 END PROCESS infer_dff;
END ARCHITECTURE wed;

When synthesized, we get:
sential VHDL for ASICs 105

Es

r)
How big is a flip flop/latch?

From the area_report.txt file we see:

Cell Library References Total Area
dffr ami05_typ 4 x 6 24 gates
inv02 ami05_typ 1 x 1 1 gates
Number of gates : 24

This looks a little fishy. 24 + 1 = 24? At any rate, (assuming round off erro
the flip flops are roughly 6 gates a piece.

So to summarize the relative sizes of latches and flip flops
:
CASE CELL SIZE
latch no reset latch 2 gates
latch with reset latchr 3 gates
flip flop with no reset dff 5 gates
flip flop with reset dffr 6 gates

These numbers are valid only for our library. Other libraries will vary.
However, the relative sizes are consistent with most any CMOS library.
sential VHDL for ASICs 106

	Sequential Operations
	Statements within processes are executed in the order in which they are written.
	The sequential statements we will look at are:
	• Variable Assignment
	• Signal Assignment*
	• If Statement
	• Case Statement
	• Loops
	• Next Statement
	• Exit Statement
	• Return Statement
	• Null Statement
	• Procedure Call
	• Assertion Statement*

	*Have both a sequential and concurrent form.

	Variable Declaration and Assignment
	Variables can be used only within sequential areas.
	Format:
	VARIABLE var_name : type [:= initial_value];

	Example:
	VARIABLE spam : std_logic := ‘0’;
	ARCHITECTURE example OF funny_gate IS SIGNAL c : STD_LOGIC; BEGIN funny: PROCESS (a,b,c) VARIABLE...

	Variables assume value instantly.
	Variables simulate more quickly since they have no time dimension.
	Remember, variables and signals have different assignment operators:
	a <= new_value; --signal assignment a := new_value; --variable assignment

	Sequential Operations - IF Statement
	Provides conditional control of sequential statements.
	Condition in statement must evaluate to a Boolean value.
	Statements execute if boolean evaluates to TRUE.
	Formats:
	IF condition THEN --simple IF (latch) -- sequential statements END IF;
	IF condition THEN --IF-ELSE -- sequential statements ELSE -- sequential statements END IF;
	IF condition THEN --IF-ELSIF-ELSE -- sequential statements ELSIF condition THEN -- sequential sta...

	Sequential Operations - IF Statement
	Examples:
	--enabled latch IF (a = ‘1’ AND b = ‘0’) THEN spud <= potato; END IF;
	--a very simple “gate” IF (lucky = ‘1’) THEN buy_lottery_tickets <= ‘1’; ELSE buy_lottery_tickets...
	--a edge triggered 4-bit counter with enable --and asynchronous reset IF (reset = ‘1’) THEN cnt <...

	A Hint: Only IF..... needs END IF

	Synthesized example from previous page
	IF Implies Priority
	The if statement implies a priority in how signals are assigned to the logic synthesized. See the...
	ARCHITECTURE tuesday OF example IS BEGIN wow: PROCESS (a, b, c, d, potato, carrot, beet, spinach,...

	Note how signal with the smallest gate delay through the logic was the first one listed. You can ...
	Beyond about four levels of IF statement, the CASE statement will typically yield a faster implem...

	Area and delay of nested IF statement
	We can put reporting statements in our synthesis script to tell us the number of gate equivalents...
	report_area -cell area_report.txt report_delay -show_nets delay_report.txt

	In area_report.txt, we see:
	*** Cell: example View: tuesday Library: work...

	The delay_report.txt has the delay information:
	Critical Path Report Critical path #1 spinach to vegatable 3.42ns Critical path #2 radish to vega...

	If implies priority (cont.)
	The order in which the IF’s conditional statement are evaluated also makes a difference in how th...
	If the first check fails, the possibilities narrow. If the second check (b= ‘1’) is true, then an...
	If all prior checks fail, an ending ELSE catches all other possibilities.

	Relational Operators
	The IF statement uses relational operators extensively. Relational operators return Boolean value...
	Operator Operation
	= equal /= not equal < less than <= less than or equal > greater than >= greater than or equal

	The expression for signal assignment and less than or equal are the same. They are distinguished ...

	CASE Statement
	Controls execution of one or more sequential statements.
	Format:
	CASE expression IS WHEN expression_value0 => sequential_stmt; WHEN expression_value1 => sequentia...

	Example:
	--a four to one mux mux: PROCESS (sel, a, b, c, d) BEGIN CASE sel IS WHEN “00” => out <= a; WHEN ...

	Either every possible value of expression_value must be enumerated, or the last choice must conta...

	CASE Implies equal priority
	The CASE statement implies equal priority to how the signals are assigned to the circuit. For exa...
	ARCHITECTURE tuesday OF example IS SIGNAL select_bus : STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN select...

	With the exception of spinach, the number of gate delays from each signal input to output is four...

	Using CASE more effectively
	In the previous example, there were 5 choices to choose from. We can encode this more fully by us...
	ARCHITECTURE tuesday OF example IS BEGIN wow: PROCESS (select_bus, potato, carrot, beet, spinach,...

	The synthesized circuit looks like this:
	This encoding of the desired function is much cleaner, faster and smaller. Its seldom you get all...
	Be careful however, sometimes CASE may loose depending upon the circumstances! Blanket statements...

	Delay and area report: efficient CASE example
	From area_report.txt:
	*** Cell: example View: tuesday Library: work...
	Total accumulated area : Number of gates: 8

	From delay_report.txt
	Critical Path Report
	Critical path #1, potato to vegatable 1.83
	Critical path #2, beet to vegatable 1.83
	Critical path #3, carrot to vegatable 1.82
	Critical path #4, radish to vegatable 1.81
	Critical path #5, select_bus(0) to vegatable 1.72
	Critical path #6, select_bus(0) to vegatable 1.72
	Critical path #7, select_bus(1) to vegatable 1.19
	Critical path #8, spinach to vegatable 0.74
	Critical path #9, select_bus(2) to vegatable 0.64
	The comparison between IF and CASE for this example:
	IF: area 8 gates, delay 3.42ns (worst path) CASE: area 8 gates, delay 1.83ns (worst path)

	Use of OTHERS in MUXes
	In the former example, the OTHERS clause assigned the output value of ‘X’ for inputs other than t...
	Simulation and debugging
	Remember that we are using the 9 level logic type STD_LOGIC_1164. This type specifies that a sign...
	If a setup violation occurs during the simulation of a circuit, a flip flop’s output will go ‘X’....
	If we chose another valid input for the OTHERS clause, the error (‘X’ output from a flip flop) in...
	The code below is valid and would not propagate the ‘X’ condition. It also represents an “overly ...

	Use of OTHERS (cont.)
	--overly specified mux CASE select_bus IS WHEN "000" => vegatable <= potato; WHEN "001" => vegata...
	If we synthesize this circuit we get the following:
	The gate realization of this overly specified mux is obviously a little messy. This also seen in ...
	The worst case path from the delay_report.txt gives us: Critical path #1, beet to vegatable, 2.17ns
	The gate count from area_report.txt gives us: Number of gates: 11
	This less than optimal solution leads to the second reason for the use of ‘X’ here; logic minimiz...

	Use of OTHERS (cont.)
	Logic minimization
	The synthesis tool must choose from a library of cells to create the circuit described by the HDL...
	The synthesizer treats the ‘X’ in this case as a don’t care. This is just like the don’t care in ...
	In fact, we can use another value in the mux statement; the don’t care value, ‘- ’. So we could h...
	--don’t do this! CASE select_bus IS WHEN "000" => vegatable <= potato; WHEN "001" => vegatable <=...
	This would allow the same optimizations as the ‘X’ for the OTHERS case but the behavior of the si...

	Use of OTHERS (conclusion)
	By using the statement: WHEN OTHERS => vegatable <= ’X’; the synthesizer can create a small, fast...
	One basic premise of how we want to code our designs is that we want the simulation of our code t...
	The proper use of the don’t care operator is found in creating complex combinatorial logic and in...

	Loops
	Sequences of statements that are executed repeatedly.
	Types of loops:
	• For (most common usage)
	• While
	• Loop with exit construct (we skip this)

	General Format:
	[loop_label:] iteration_scheme --FOR, WHILE LOOP --sequence_of_statements; END LOOP[loop_label];

	For Loop
	Statements are executed once for each value in the loop parameter’s range
	Loop parameter is implicitly declared and may not be modified from within loop or used outside loop.
	Format:
	[label:] FOR loop_parameter IN discrete_range LOOP --sequential_statements
	END LOOP[label];

	Example:
	PROCESS (ray_in) BEGIN --connect wires in a two busses label: FOR index IN 0 TO 7 LOOP ray_out(in...

	While Loop
	Execution of statements within loop is controlled by Boolean condition.
	Condition is evaluated before each repetition of loop.
	Format:
	WHILE boolean_expression LOOP --sequential_expressions END LOOP;

	Example:
	p1: PROCESS (ray_in) VARIABLE index : integer := 0; BEGIN from_in_to_out: WHILE index < 8 LOOP ra...

	Attributes
	Attributes specify “extra” information about some aspect of a VHDL model.
	There are a number of predefined attributes provide a way to query arrays, bit, and bit vectors.
	Additional attributes may be defined by the user.
	Format:
	object_name’attribute_designator

	The “ ‘ ” is referred to as “tick”.
	Example:
	ELSIF (clk’EVENT AND clk = ‘1’) THEN

	Predefined Signal Attributes
	signal’EVENT - returns value “TRUE” or “FALSE” if event occurred in present delta time period.
	signal’ACTIVE - returns value “TRUE” or “FALSE” if activity occurred in present delta time period.
	signal’STABLE - returns a signal value “TRUE” or “FALSE” based on event in (t) time units.
	signal’QUIET - returns a signal value “TRUE” or “FALSE” based on activity in (t) time units.
	signal’TRANSACTION - returns an event whenever there is activity on the signal.
	signal’DELAYED(t) - returns a signal delayed (t) time units.
	signal’LAST_EVENT - returns amount of time since last event.
	signal’LAST_ACTIVE - returns amount of time since last activity.
	signal’LAST_VALUE - returns value equal to previous value.

	Using Attributes
	Rising clock edge:
	clk’EVENT and clk = ‘1’

	OR:
	NOT clk’STABLE AND clk =’1’

	Falling clock edge:
	clk’EVENT AND clk = ‘0’

	Checking for too short pulse width:
	ASSERT (reset’LAST_EVENT >= 3ns) REPORT “reset pulse too short!”;

	Checking stability of a signal:
	signal’STABLE(10ns)

	Generic Clause
	Generics may be used for readability, maintenance and configuration.
	They allow a component to be customized by creating a parameter to be passed on to the architecture.
	Format:
	GENERIC (generic_name:type[:= default_value]);

	If default_value is missing, it must be present when the component is instantiated.
	Example:
	ENTITY half_adder IS GENERIC(tpd_result : delay := 4ns; tpd_carry : delay := 3ns); PORT (x IN :...
	ARCHITECTURE dataflow OF half_adder BEGIN I result <= x XOR y AFTER tpd_result; carry <= x AND y ...

	Inferring Storage Elements
	In our designs, we usually use flip-flops as our storage elements. Sometimes we use latches, but ...
	Latches are inferred in VHDL by using the IF statement without its matching ELSE. This causes the...
	The inferred latch is a transparent latch. That is, for as long as enable is high, the q output “...
	--infer 4-bit wide latch LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_ari...
	ENTITY storage IS PORT (data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0); data_out : OUT STD_LOGIC_VECT...

	When synthesized, we see the following structure:

	Latch Inference
	In our library, the enable is shown as going to the “CLK” input of the latch. This is misleading ...
	The small size of the latches is reflected in the area report:
	Cell Library References Total Area latch ami05_typ 4 x 2 10 gates Number of gates : 10

	This is of course relative to the size of a 2-input NAND gate. In other words, the area of each l...
	When we synthesized, the transcript told of the impending latch inference:
	-- Compiling root entity storage(wed) "/nfs/guille/u1/t/traylor/ece574/src/storage.vhd",line 8: W...

	Always watch tool transcripts. They can be very informative. Sometime they can save your bacon.

	Inferring D-type Flip Flops
	Usually, we want to infer D-type, edge triggered flip flops. Here’s how.
	LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_arith.ALL; ENTITY storage IS...
	Sometime back we stated that IF with ELSE infers a latch. Well... that is usually true. Here is a...
	Therefore, if there is a rising edge, the statement under the IF will be executed and at no other...
	A ELSE clause could be added to the IF statement that explicitly tells the old value to be held. ...
	infer_dff: PROCESS (clock, data_in) BEGIN IF (clock’EVENT AND clock = ‘1’) THEN data_out <= data_...

	Adding an Asynchronous Reset
	We almost never want a flip flop without a reset. Without a reset, how can the simulator determin...
	ARCHITECTURE wed OF storage IS BEGIN infer_dff: PROCESS (reset_n, clock, data_in) BEGIN IF (reset...

	When synthesized, we get:

	How big is a flip flop/latch?
	From the area_report.txt file we see:
	Cell Library References Total Area dffr ami05_typ 4 x 6 24 gates inv02 ami05_typ 1 x 1 1 gates Nu...

	This looks a little fishy. 24 + 1 = 24? At any rate, (assuming round off error) the flip flops ar...
	So to summarize the relative sizes of latches and flip flops : CASE CELL SIZE latch no reset latc...
	These numbers are valid only for our library. Other libraries will vary. However, the relative si...

