
Inf

mes
ial,

ing
e

igh,
Inferring Storage Elements

In our designs, we usually use flip-flops as our storage elements. Someti
we use latches, but not often. Latches are smaller in size, but create spec
often difficult situations for testing and static timing analysis.

Latches are inferred in VHDL by using the IF statement without its match
ELSE. This causes the synthesis to make the logical decision to “hold” th
value of a signal when not told to do anything else with it.

The inferred latch is a transparent latch. That is, for as long as enable is h
the q output “sees” the d input transparently.

--infer 4-bit wide latch
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_vector_arith.ALL;

ENTITY storage IS
 PORT (
 data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 enable : IN STD_LOGIC);
END storage;

ARCHITECTURE wed OF storage IS
 BEGIN
 infer_latch:
 PROCESS (enable, data_in)
 BEGIN
 IF enable = ‘1’ THEN
 data_out <= data_in;
 END IF; --look ma, no else!
 END PROCESS infer_latch;
END ARCHITECTURE wed;

When synthesized, we see the following structure:
erring Stroage Elements 1

Inf

.
ng

s,

:

ey
Latch Inference

In our library, the enable is shown as going to the “CLK” input of the latch
This is misleading as the input should properly be called “EN” or somethi
like that. If I find the time maybe I’ll change these someday.

The small size of the latches is reflected in the area report:

Cell Library References Total Area
latch ami05_typ 4 x 2 10 gates

Number of gates : 10

This is of course relative to the size of a 2-input NAND gate. In other word
the area of each latch is about the same as 2, 2-input NAND gates!

When we synthesized, the transcript told of the impending latch inference

-- Compiling root entity storage(wed)
"/nfs/guille/u1/t/traylor/ece574/src/storage.vhd",line 8: Warning,
data_out is not always assigned. latches could be needed.

Always watch tool transcripts. They can be very informative. Sometime th
can save your bacon.
erring Stroage Elements 2

Inf
Inferring D-type Flip Flops

Usually, we want to infer D-type, edge triggered flip flops. Here’s how.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_vector_arith.ALL;

ENTITY storage IS
 PORT (
 data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 data_out : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
 clock : IN STD_LOGIC);
END storage;

ARCHITECTURE wed OF storage IS
 BEGIN
 infer_dff:
 PROCESS (clock, data_in)
 BEGIN
 IF (clock’EVENT AND clock = ‘1’) THEN
 data_out <= data_in;
 END IF; --look ma, still no else!.... what gives?
 END PROCESS infer_dff;
END ARCHITECTURE wed;
erring Stroage Elements 3

Inf

the

uted

t the

 old
 by
Sometime back we stated that IF with ELSE infers a latch. Well... that is
usually true. Here is an exception. The line:

 IF (clock’EVENT AND clock = ‘1’) THEN

is special to the synthesis tool. The conditional statement for the IF uses
attribute which looks for a change in the signalclock(clock’EVENT). This is
ANDed with the condition thatclock is now ‘1’ (AND clock = ‘1’). The
conditional is looking for a rising edge of the signalclock.

Therefore, if there is a rising edge, the statement under the IF will be exec
and at no other time. So when the clock rises, data_out will get the value
present at data_in. Since a D flip-flop is the only cell that can satisfy this
condition and can hold the value once it is acquired it is used to implemen
circuit. The conditional(clock’EVENT AND clock = ‘1’) really forms the
recipe for a D-type rising edge flip flop.

A ELSE clause could be added to the IF statement that explicitly tells the
value to be held. This is not at all harmful, but is redundant and is ignored
the synthesis tool. An example of this is shown below:

 infer_dff:
 PROCESS (clock, data_in)
 BEGIN
 IF (clock’EVENT AND clock = ‘1’) THEN
 data_out <= data_in; --get new value
 ELSE
 data_out <= data_out; --hold old value...UNNECESSARY
 END IF;
 END PROCESS infer_dff;
erring Stroage Elements 4

Inf

 the
ith
Adding an Asynchronous Reset

We almost never want a flip flop without a reset. Without a reset, how can
simulator determine initial state? It cannot. It is very rare to find flip-flops w
out a reset. Here is how to code a flip flop with a asynchronous reset:

ARCHITECTURE wed OF storage IS
 BEGIN
 infer_dff:
 PROCESS (reset_n, clock, data_in)
 BEGIN
 IF (reset_n = ‘0’) THEN
 data_out <= “0000”; --aysnc reset
 ELSIF (clock’EVENT AND clock = ‘1’) THEN
 data_out <= data_in;
 END IF;
 END PROCESS infer_dff;
END ARCHITECTURE wed;

When synthesized, we get:
erring Stroage Elements 5

Inf

r)
How big is a flip flop/latch?

From the area_report.txt file we see:

Cell Library References Total Area
dffr ami05_typ 4 x 6 24 gates
inv02 ami05_typ 1 x 1 1 gates
Number of gates : 24

This looks a little fishy. 24 + 1 = 24? At any rate, (assuming round off erro
the flip flops are roughly 6 gates a piece.

So to summarize the relative sizes of latches and flip flops
:
CASE CELL SIZE
latch no reset latch 2 gates
latch with reset latchr 3 gates
flip flop with no reset dff 5 gates
flip flop with reset dffr 6 gates

These numbers are valid only for our library. Other libraries will vary.
However, the relative sizes are consistent with most any CMOS library.
erring Stroage Elements 6

	Inferring Storage Elements
	In our designs, we usually use flip-flops as our storage elements. Sometimes we use latches, but ...
	Latches are inferred in VHDL by using the IF statement without its matching ELSE. This causes the...
	The inferred latch is a transparent latch. That is, for as long as enable is high, the q output “...
	--infer 4-bit wide latch LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_ari...
	ENTITY storage IS PORT (data_in : IN STD_LOGIC_VECTOR(3 DOWNTO 0); data_out : OUT STD_LOGIC_VECT...

	When synthesized, we see the following structure:

	Latch Inference
	In our library, the enable is shown as going to the “CLK” input of the latch. This is misleading ...
	The small size of the latches is reflected in the area report:
	Cell Library References Total Area latch ami05_typ 4 x 2 10 gates Number of gates : 10

	This is of course relative to the size of a 2-input NAND gate. In other words, the area of each l...
	When we synthesized, the transcript told of the impending latch inference:
	-- Compiling root entity storage(wed) "/nfs/guille/u1/t/traylor/ece574/src/storage.vhd",line 8: W...

	Always watch tool transcripts. They can be very informative. Sometime they can save your bacon.

	Inferring D-type Flip Flops
	Usually, we want to infer D-type, edge triggered flip flops. Here’s how.
	LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_arith.ALL; ENTITY storage IS...
	Sometime back we stated that IF with ELSE infers a latch. Well... that is usually true. Here is a...
	Therefore, if there is a rising edge, the statement under the IF will be executed and at no other...
	A ELSE clause could be added to the IF statement that explicitly tells the old value to be held. ...
	infer_dff: PROCESS (clock, data_in) BEGIN IF (clock’EVENT AND clock = ‘1’) THEN data_out <= data_...

	Adding an Asynchronous Reset
	We almost never want a flip flop without a reset. Without a reset, how can the simulator determin...
	ARCHITECTURE wed OF storage IS BEGIN infer_dff: PROCESS (reset_n, clock, data_in) BEGIN IF (reset...

	When synthesized, we get:

	How big is a flip flop/latch?
	From the area_report.txt file we see:
	Cell Library References Total Area dffr ami05_typ 4 x 6 24 gates inv02 ami05_typ 1 x 1 1 gates Nu...

	This looks a little fishy. 24 + 1 = 24? At any rate, (assuming round off error) the flip flops ar...
	So to summarize the relative sizes of latches and flip flops : CASE CELL SIZE latch no reset latc...
	These numbers are valid only for our library. Other libraries will vary. However, the relative si...

