
Introduction to MIPS Assembly Programming

January 23–25, 2013

1 / 26

Outline

Overview of assembly programming
MARS tutorial
MIPS assembly syntax
Role of pseudocode

Some simple instructions
Integer logic and arithmetic
Manipulating register values

Interacting with data memory
Declaring constants and variables
Reading and writing

Performing input and output
Memory-mapped I/O, role of the OS
Using the systemcall interface

2 / 26

Assembly program template

Author: your name
Date: current date
Description: high-level description of your program

.data

Data segment:
• constant and variable definitions go here

.text

Text segment:
• assembly instructions go here

3 / 26

Components of an assembly program

Lexical category Example(s)

Comment # do the thing

Assembler directive .data, .asciiz, .global
Operation mnemonic add, addi, lw, bne
Register name $10, $t2
Address label (decl) hello:, length:, loop:
Address label (use) hello, length, loop
Integer constant 16, -8, 0xA4
String constant "Hello, world!\n"

Character constant ’H’, ’?’, ’\n’

4 / 26

Lexical categories in hello world

Author: Eric Walkingshaw
Date: Jan 18, 2013
Description: A simple hello world program!

.data # add this stuff to the data segment

load the hello string into data memory
hello: .asciiz "Hello, world!"

.text # now we’re in the text segment

li $v0, 4 # set up print string syscall
la $a0, hello # argument to print string
syscall # tell the OS to do the syscall
li $v0, 10 # set up exit syscall
syscall # tell the OS to do the syscall

5 / 26

Pseudocode

What is pseudocode?
• informal language
• intended to be read by humans

Useful in two different roles in this class:
1. for understanding assembly instructions
2. for describing algorithms to translate into assembly

Example of role 1: lw $t1, 8($t2)

Pseudocode: $t1 = Memory[$t2+8]

Pseudocode is not “real” code!
Just a way to help understand what an operation does

6 / 26

How to write assembly code

Writing assembly can be overwhelming and confusing

Strategy
1. develop algorithm in pseudocode
2. break it into small pieces
3. implement (and test) each piece in assembly

It is extremely helpful to annotate your assembly code with the
pseudocode it implements!
• helps to understand your code later
• much easier to check that code does what you intended

7 / 26

Outline

Overview of assembly programming
MARS tutorial
MIPS assembly syntax
Role of pseudocode

Some simple instructions
Integer logic and arithmetic
Manipulating register values

Interacting with data memory
Declaring constants and variables
Reading and writing

Performing input and output
Memory-mapped I/O, role of the OS
Using the systemcall interface

8 / 26

MIPS register names and conventions

Number Name Usage Preserved?
$0 $zero constant 0x00000000 N/A
$1 $at assembler temporary 7

$2–$3 $v0–$v1 function return values 7
$4–$7 $a0–$a3 function arguments 7

$8–$15 $t0–$t7 temporaries 7
$16–$23 $s0–$s7 saved temporaries 3
$24–$25 $t8–$t9 more temporaries 7
$26–$27 $k0–$k1 reserved for OS kernel N/A

$28 $gp global pointer 3
$29 $sp stack pointer 3
$30 $fp frame pointer 3
$31 $ra return address 3

(for reference)

9 / 26

Integer logic and arithmetic

Instruction # Meaning in pseudocode

add $t1, $t2, $t3 # $t1 = $t2 + $t3
sub $t1, $t2, $t3 # $t1 = $t2 - $t3
and $t1, $t2, $t3 # $t1 = $t2 & $t3 (bitwise and)
or $t1, $t2, $t3 # $t1 = $t2 | $t3 (bitwise or)

set if equal:
seq $t1, $t2, $t3 # $t1 = $t2 == $t3 ? 1 : 0

set if less than:
slt $t1, $t2, $t3 # $t1 = $t2 < $t3 ? 1 : 0

set if less than or equal:
sle $t1, $t2, $t3 # $t1 = $t2 <= $t3 ? 1 : 0

Some other instructions of the same form
• xor, nor
• sne, sgt, sge

10 / 26

Immediate instructions

Like previous instructions, but second operand is a constant
• constant is 16-bits, sign-extended to 32-bits
• (reason for this will be clear later)

Instruction # Meaning in pseudocode

add/subtract/and immediate:
addi $t1, $t2, 4 # $t1 = $t2 + 4
subi $t1, $t2, 15 # $t1 = $t2 - 15
andi $t1, $t2, 0x00FF # $t1 = $t2 & 0x00FF

set if less than immediate:
slti $t1, $t2, 42 # $t1 = $t2 < 42 ? 1 : 0

Some other instructions of the same form
• ori, xori

11 / 26

Multiplication

Result of multiplication is a 64-bit number
• stored in two 32-bit registers, hi and lo

Instruction # Meaning in pseudocode
mult $t1, $t2 # hi,lo = $t1 * $t2
mflo $t0 # $t0 = lo
mfhi $t3 # $t3 = hi

Shortcut (macro instruction):
mul $t0, $t1, $t2 # hi,lo = $t1 * $t2; $t0 = lo

Expands to:
mult $t1, $t2
mflo $t0

12 / 26

Integer division

Computes quotient and remainder and simultaneously
• stores quotient in lo, remainder in hi

Instruction # Meaning in pseudocode
div $t1, $t2 # lo = $t1 / $t2; hi = $t1 % $t2

13 / 26

Manipulating register values

Instruction # Meaning in pseudocode

copy register:
move $t1, $t2 # $t1 = $t2

load immediate: load constant into register (16-bit)
li $t1, 42 # $t1 = 42
li $t1, ’k’ # $t1 = 0x6B

load address into register
la $t1, label # $t1 = label

14 / 26

Outline

Overview of assembly programming
MARS tutorial
MIPS assembly syntax
Role of pseudocode

Some simple instructions
Integer logic and arithmetic
Manipulating register values

Interacting with data memory
Declaring constants and variables
Reading and writing

Performing input and output
Memory-mapped I/O, role of the OS
Using the systemcall interface

15 / 26

Declaring constants and variables

Parts of a declaration: (in data segment)
1. label: memory address of variable
2. directive: “type” of data

(used by assembler when initializing memory, not enforced)
3. constant: the initial value

.data

string prompt constant
prompt: .asciiz "What is your favorite number?: "

variable to store response
favnum: .word 0

No real difference between constants and variables!
All just memory we can read and write

16 / 26

Sequential declarations

Sequential declarations will be loaded sequentially in memory
• we can take advantage of this fact

Example 1: Splitting long strings over multiple lines
help text
help: .ascii "The best tool ever. (v.1.0)\n"

.ascii "Options:\n"

.asciiz " --h Print this help text.\n"

Example 2: Initializing an “array” of data
fibs: .word 0, 1, 1, 2, 3, 5, 8, 13, 21, 35, 55, 89, 144

17 / 26

Reserving space

Reserve space in the data segment with the .space directive
• argument is number of bytes to reserve
• useful for arrays of data we don’t know in advance

Example: Reserve space for a ten integer array
array: .space 40

array is the address of the 0th element of the array
• address of other elements:
array+4, array+8, array+12, . . . , array+36

(MARS demo: Decls.asm)

18 / 26

Reading from data memory

Basic instruction for reading data memory (“load word”):

lw $t1, 4($t2) # $t1 = Memory[$t2+4]

• $t2 contains the base address
• 4 is the offset

lw $t1, $t2 ⇒ lw $t1, 0($t2)

Macro instructions to make reading memory at labels nice:
• lw $t1, label # $t1 = Memory[label]

• lw $t1, label + 4 # $t1 = Memory[label+4]

19 / 26

Writing to data memory

Basic instruction for writing to memory (“store word”):

sw $t1, 4($t2) # Memory[$t2+4] = $t1

• $t2 contains the base address
• 4 is the offset

sw $t1, $t2 ⇒ sw $t1, 0($t2)

Macro instructions to make writing memory at labels nice:
• sw $t1, label # Memory[label] = $t1

• sw $t1, label + 4 # Memory[label+4] = $t1

(MARS demo: Add3.asm)

20 / 26

Sub-word addressing

Reading sub-word data
• lb: load byte (sign extend)
• lh: load halfword (sign extend)
• lbu: load byte unsigned (zero extend)
• lhu: load halfword unsigned (zero extend)

Remember, little-endian addressing:

7 6 5 4 11 10 9 8 15 14 13 122 1 03

(MARS demo: SubWord.asm)

21 / 26

Reading/writing data memory wrap up

Writing sub-word data
• sb: store byte (low order)
• sh: store halfword (low order)

Important: lw and sw must respect word boundaries!
• address (base+offset) must be divisible by 4

Likewise for lh, lhu, and sh

• address must be divisible by 2

22 / 26

Outline

Overview of assembly programming
MARS tutorial
MIPS assembly syntax
Role of pseudocode

Some simple instructions
Integer logic and arithmetic
Manipulating register values

Interacting with data memory
Declaring constants and variables
Reading and writing

Performing input and output
Memory-mapped I/O, role of the OS
Using the systemcall interface

23 / 26

Memory-mapped I/O

Problem: architecture must provide an interface to the world
• should be general (lots of potential devices)
• should be simple (RISC architecture)

Solution: Memory-mapped I/O
Memory and I/O share the same address space

A range of addresses are reserved for I/O:
• input: load from a special address
• output: store to a special address

So we can do I/O with just lw and sw!
(at least in embedded systems)

24 / 26

Role of the operating system

Usually, however:
• we don’t know (or want to know) the special addresses
• user programs don’t have permission to use them directly

Operating system (kernel)
• knows the addresses and has access to them
• provides services to interact with them
• services are requested through system calls
• (the operating system does a lot more too)

25 / 26

System calls

System calls are an interface for asking the OS to do stuff

How system calls work, from our perspective
1. syscall — “hey OS, I want to do something!”
2. OS checks $v0 to see what you want to do
3. OS gets arguments from $a0–$a3 (if needed)
4. OS does it
5. OS puts results in registers (if applicable)

MARS help gives a list of system call services

(MARS demo: Parrot.asm)

26 / 26

	Overview of assembly programming
	MARS tutorial
	MIPS assembly syntax
	Role of pseudocode

	Some simple instructions
	Integer logic and arithmetic
	Manipulating register values

	Interacting with data memory
	Declaring constants and variables
	Reading and writing

	Performing input and output
	Memory-mapped I/O, role of the OS
	Using the systemcall interface

