
Implementing Procedure Calls

February 18–22, 2013

1 / 39

Outline

Intro to procedure calls
Caller vs. callee
Procedure call basics

Calling conventions

The stack
Interacting with the stack
Structure of a stack frame

Subroutine linkage

2 / 39

What is a procedure?

Procedure – a reusable chunk of code in your program
• used to do the same thing in different places (reuse)
• used to logically organize your program (decomposition)
• like a method in Java, or a procedure/function in C

Can make a distinction between:
• procedure – does not return a result
• function – does return a result

(but don’t worry too much about that)

Procedures can call other procedures
• including themselves! (recursion)

3 / 39

What happens when you call a procedure?

Caller vs. callee
• caller the code that calls the procedure
• callee the code that implements the procedure

Procedure call – high-level view
1. caller calls callee

• caller stops executing
• control is passed to callee

2. callee does its thing
3. callee returns to the caller

• callee stops executing
• caller resumes executing from the place of the call

caller callee

procedure call

return

4 / 39

Calling and returning from a procedure

To call a procedure: jal label

jal – “jump and link”
1. sets $ra to PC+4 ($ra – “return address”)

• save the address of the next instruction of the caller
2. sets PC to label

• jump to the address of the first instruction of the callee

To return from a procedure: jr $ra

jr – “jump to register”
• jumps back to the next instruction of the caller

(MARS demo: ProcJoke.asm)

5 / 39

Arguments and return values

By convention . . .
• put first four arguments to procedure in $a0 – $a3

• put return value(s) in $v0 and $v1

Note: this is a very incomplete picture!

Our view so far only works when . . .
• four or fewer arguments
• every procedure is a leaf

• i.e. it doesn’t call any other procedures

6 / 39

Arguments and return values

Procedure definition
Pseudocode:
int sumOfSquares(int a, int b) {
return a*a + b*b
}
Registers: a => $a0, b => $a1, res => $v0
sumOfSquares:

mult $t0, $a0, $a0 # tmp1 = a*a
mult $t1, $a1, $a1 # tmp2 = b*b
add $v0, $t0, $t1 # res = tmp1 + tmp2
jr $ra # return res

Procedure use
Pseudocode:
c = sumOfSquares(3,5)
Registers: c => $t2

li $a0, 3 # (set up arguments)
li $a1, 5
jal sumOfSquares # (call procedure)
move $t2, $v0 # (get result)

7 / 39

Outline

Intro to procedure calls
Caller vs. callee
Procedure call basics

Calling conventions

The stack
Interacting with the stack
Structure of a stack frame

Subroutine linkage

8 / 39

The need for calling conventions (pt. 1)

What’s wrong with this code?
Pseudocode:
c = sumOfSquares(x,y)
c = c - x
Registers: x => $t0, y => $t1, c => $t2

move $a0, $t0 # (set up arguments)
move $a1, $t1
jal sumOfSquares # (call procedure)
move $t2, $v0 # (get result)
sub $t2, $t2, $t0 # c = c - x

Pseudocode:
int sumOfSquares(int a, int b) {
return a*a + b*b
}
Registers: a => $a0, b => $a1, res => $v0
sumOfSquares:

mult $t0, $a0, $a0 # tmp1 = a*a
mult $t1, $a1, $a1 # tmp2 = b*b
add $v0, $t0, $t1 # res = tmp1 + tmp2
jr $ra # return res

sumOfSquares
changed $t0!

Whose job is it to
preserve it?

(Caller or callee?)

9 / 39

The need for calling conventions (pt. 2)

What’s wrong with this code?
Pseudocode:
void question() {
print(quest)
waitForGiveUp()
return
}
question:

li $v0, 4 # print(quest)
la $a0, quest
syscall

jal waitForGiveUp # waitForGiveUp()

jr $ra # return

Pseudocode:
void waitForGiveUp() { ... }
waitForGiveUp:

...
jr $ra # return

jal changes $ra!

Whose job is it to
preserve it?

(Caller or callee?)

10 / 39

Summary of issues that need to be agreed on

How do we pass data to/from procedures?
• partial solution:

• put arguments $a0 – $a3
• put results $v0 and $v1

• what about more arguments?

Registers are “global” variables
• are the values we need after the procedure call still there?
• is $ra correct after calling another procedure?

The data segment is also “global” memory
• what if a procedure needs its own space in memory?

• i.e. local variables!

• can’t just declare a global space for it because of recursion

11 / 39

What are calling conventions?

A set of conventions that programmers follow
• to ensure their code is well-behaved
• so that it can cooperate with code written by others

Calling conventions answer the following questions:
• how do we pass data to/from procedures?
• what are the responsibilities of the caller?
• what are the responsibilities of the callee?
• where do we store variables local to a procedure?

None of this is implemented in MIPS!

There are multiple conventions to choose from
(we’ll be using the most common)

12 / 39

Who is responsible for saving which registers?

Number Name Usage Preserved?
$0 $zero constant 0x00000000 N/A
$1 $at assembler temporary N/A

$2–$3 $v0–$v1 function return values 7
$4–$7 $a0–$a3 function arguments 7

$8–$15 $t0–$t7 temporaries 7
$16–$23 $s0–$s7 saved temporaries 3
$24–$25 $t8–$t9 more temporaries 7
$26–$27 $k0–$k1 reserved for OS kernel N/A

$28 $gp global pointer 3
$29 $sp stack pointer 3
$30 $fp frame pointer 3
$31 $ra return address 3

7= caller is responsible 3= callee is responsible

13 / 39

Outline

Intro to procedure calls
Caller vs. callee
Procedure call basics

Calling conventions

The stack
Interacting with the stack
Structure of a stack frame

Subroutine linkage

14 / 39

Motivating the stack

When we need to save a register, where do we put it?
• a variable in the data segment?
• in another register?

What happens when we call another procedure? and another?

These places are not extensible

15 / 39

Overview of the stack

The stack
• a place in memory
• composed of stack frames
• each frame stores stuff specific to one procedure call
• each call can generate a new stack frame

• stack is extensible!

Note that the stack may contain many frames for the same
procedure if it is called multiple times!

16 / 39

Overview of a stack frame

Things we can store in a stack frame
• additional arguments to a procedure
• the values of saved registers
• the value of $ra
• local variables (e.g. local strings and arrays)

Gory details on stack frames later!

Calling conventions dictate:
• how to manage the stack
• how to structure a stack frame

17 / 39

How the stack works

LIFO – Last In, First Out
• at start of a procedure push a new stack frame
• at end of a procedure pop that stack frame

Frame of current procedure is always at the “top” of the stack

Analogy: a stack of scratch paper
• can only write on the top piece of paper
• at start of procedure, put a new piece of paper on top
• at end of procedure, throw the paper away

18 / 39

The stack in memory

“The stack” is just a region of memory
• text segment: program machine code
• data segment: constants and global vars
• the stack: supports procedure calls

• local vars, arg passing, register backup

Memory layout
• data and stack share an address space
• stack starts at highest address
• data segment starts at lowest address
• stack grows “downward”

• top of stack is at the “bottom”

high addresses
frame 1
frame 2
frame 3

...
frame N

...

...

...

data segment

low addresses

19 / 39

How to use the stack in assembly

The stack pointer – register $sp
• contains the address of the top of the stack
• OS initializes $sp when your program is loaded
• after that, it is your responsibility!

Push stack frame
myProcedure: # start of procedure

addiu $sp, $sp, -24 # allocate 6 words on the stack

... # procedure body

Pop stack frame
addiu $sp, $sp, 24 # deallocate 6 words on the stack
jr $ra # return

20 / 39

How to use the stack in assembly

Reading and writing to the stack
• just like reading and writing to the data segment!
• e.g. use sw to write, lw to read

Example stack usage
Registers: myVar => $t0
myProcedure: # start of procedure

addiu $sp, $sp, -24 # push a new stack frame (6 words)
sw $ra, 20($sp) # save return address
...
sw $t0, 16($sp) # save myVar
jal subProcedure # call sub-procedure
lw $t0, 16($sp) # restore myVar
...
lw $ra, 20($sp) # restore return address
addiu $sp, $sp, 24 # pop stack frame
jr $ra # return

21 / 39

Stack frames

In the previous example, we saved:
• $t0 in 16($sp)

• $ra in 20($sp)

How did we determine these offsets?

Why didn’t we use offsets 0, 4, 8, or 12?

Calling conventions dictate the structure of a stack frame

22 / 39

Anatomy of a stack frame

. . .  previous stack frame
(arg 3)
(arg 2)
(arg 1)

sp+fsize→ (arg 0)

sp+fsize-4→ local var m
 local variable section. . .

local var 0
(empty) ← padding (if needed)

return address ← return address
saved reg k

 saved register section. . .
saved reg 0

arg n 
argument section

. . .
16+sp→ arg 4
12+sp→ (arg 3)
8+sp→ (arg 2)
4+sp→ (arg 1)

sp→ (arg 0)
top of stack

23 / 39

Argument section (probably the most confusing section)

local var m
. . .

local var 0
(empty)

return address
saved reg k

. . .
saved reg 0

arg n
. . .

arg 4
(arg 3)
(arg 2)
(arg 1)
(arg 0)

top of stack

Used for passing arguments to subroutines
• procedures called by this procedure

First four words (arg 0 – arg 3)
• 0($sp), 4($sp), 8($sp), 12($sp)
• must always be allocated!

(even if no subroutine takes four args)

• never used by this procedure
• place for subroutines to store $a0–$a3

(and for interfacing with other calling conventions)

24 / 39

Argument section (probably the most confusing section)

local var m
. . .

local var 0
(empty)

return address
saved reg k

. . .
saved reg 0

arg n
. . .

arg 4
(arg 3)
(arg 2)
(arg 1)
(arg 0)

top of stack

Used for passing arguments to subroutines
• procedures called by this procedure

Remaining words (arg 4 – arg n)
• used to pass more args to subroutines
• written to by this procedure (caller)
• read by subroutine (callee)

What about args passed to this procedure?
• at the top of previous stack frame
• read before pushing this stack frame

25 / 39

Using the argument section

Pseudocode: myProcedure(a,b,c,d,e)
Registers: a,b,c,d => $a0-$a3, e => $s0
myProcedure:

lw $s0, 16($sp) # retrieve e from prev stack frame
addiu $sp, $sp, -32 # push new stack frame
...
... # put first four args in $a0--$a3
sw $s1, 16($sp) # store j for subroutine
sw $s2, 20($sp) # store k for subroutine
jal subRoutine # call subRoutine
...

Pseudocode: subRoutine(f,g,h,i,j,k) { ... }
Registers: f,g,h,i => $a0-$a3, j => $t0, k => $t1
subRoutine:

lw $t0, 16($sp) # retrieve j from prev stack frame
lw $t1, 20($sp) # retrieve k from prev stack frame
...

26 / 39

Size of argument section

How much space do we need for the argument section?
1. look at all of the subroutines this procedure calls
2. let n be the largest number of args to any subroutine
3. need max(n,4) words

If we call any subroutines, we need at least 4 words!

27 / 39

Saved register section

local var m
. . .

local var 0
(empty)

return address
saved reg k

. . .
saved reg 0

arg n
. . .

arg 4
(arg 3)
(arg 2)
(arg 1)
(arg 0)

top of stack

Initial values of saved registers ($s0–$s7)
that are used in this procedure
• so we can restore them at the end

How to use
• at beginning of procedure, save each $s

register used in the body
• at end of procedure, restore values

This is our responsibility as a callee!
(even if you “know” caller doesn’t use them)

28 / 39

Using the saved register section

Registers: a => $s0, b => $s1
myProcedure:

... # maybe retrieve args
addiu $sp, $sp, -32 # push new stack frame
sw $s0, 16($sp) # save $s0
sw $s1, 20($sp) # save $s1
...
(body of procedure) # (uses $s0 and $s1)
...
lw $s0, 16($sp) # restore $s0
lw $s1, 20($sp) # restore $s1
addiu $sp, $sp, 32 # pop stack frame
jr $ra # return

29 / 39

Return address

local var m
. . .

local var 0
(empty)

return address
saved reg k

. . .
saved reg 0

arg n
. . .

arg 4
(arg 3)
(arg 2)
(arg 1)
(arg 0)

top of stack

Save $ra, so we can restore it later
• needed if we call any subroutines

How to use
• at beginning of procedure, save $ra

• at end of procedure, restore $ra

30 / 39

Padding

local var m
. . .

local var 0
(empty)

return address
saved reg k

. . .
saved reg 0

arg n
. . .

arg 4
(arg 3)
(arg 2)
(arg 1)
(arg 0)

top of stack

Another seemingly arbitrary rule
• $sp must always be a multiple of 8!

• reason: double-length args passed in
$a0+$a1, $a2+$a3

If size of stack frame is a multiple of 4,
the empty word of padding goes here

31 / 39

Local variable section

local var m
. . .

local var 0
(empty)

return address
saved reg k

. . .
saved reg 0

arg n
. . .

arg 4
(arg 3)
(arg 2)
(arg 1)
(arg 0)

top of stack

Place to save:
• values of temp registers ($t0–$t9)

(during subroutine calls)

• local variables in memory

How to use
• save temps before procedure call
• restore temps after procedure call
• local variables – just like data segment

except not initialized

32 / 39

How much space do you need for your stack frame?

Three kinds of procedures:

Simple leaf
=⇒ no stack frame!

no subroutines or local data

Leaf w/ data
=⇒ however much you need

no subroutines, local data

Non-leaf
=⇒ most sections of stack frame

calls subroutines

Minimum size: 6 words (24 bytes)
• arg 0 – arg 3 (4)
• return address (1)
• padding (1)

33 / 39

Calculating non-leaf stack frame size

To determine number of words, calculate:

1. size of argument section
• look at all of the subroutines this procedure calls
• let n be the largest number of args to any subroutine
• need max(n,4) words

2. + size of saved register section
• number of $s registers your procedure uses

3. + 1 for return address
4. + 1 for padding, if needed to make frame size multiple of 8
5. + size of local variable section

• number of $t registers your procedure uses both before
and after a subroutine

• + space needed for local memory variables

. . . then multiply by 4 to get frame size

34 / 39

Outline

Intro to procedure calls
Caller vs. callee
Procedure call basics

Calling conventions

The stack
Interacting with the stack
Structure of a stack frame

Subroutine linkage

35 / 39

Subroutine linkage

Definition
The “boilerplate” code needed to:
• satisfy the calling conventions
• manage the stack

This is the same stuff you’ve
already seen organized in a

different way

Caller
1. startup sequence
2. call procedure
3. cleanup sequence

Callee
1. procedure prologue
2. procedure body
3. procedure epilogue

36 / 39

Caller responsibilities

Caller startup sequence
1. save $t registers needed after call (local var section)
2. setup args to send to procedure ($a0–$a3, arg section)

(procedure call)

Caller cleanup sequence
1. retrieve result of procedure ($v0–$v1)
2. restore $t registers saved in startup

37 / 39

Callee responsibilities

Callee procedure prologue
1. retrieve arguments from stack (prev arg section)
2. push new stack frame
3. save $s registers used in body (saved register section)
4. save $ra (return address)

(procedure body)

Callee procedure epilogue
1. restore $s registers saved in prologue
2. restore $ra

3. pop stack frame

38 / 39

Responsibilities of a procedure

Remember: non-leaf procedure can be both a callee and caller!

myProcedure:
(procedure prologue, as callee)
...
(caller startup)
jal subRoutine1
(caller cleanup)
...
(caller startup)
jal subRoutine2
(caller cleanup)
...
(procedure epilogue, as callee)
jr $ra

39 / 39

	Intro to procedure calls
	Caller vs. callee
	Procedure call basics

	Calling conventions
	The stack
	Interacting with the stack
	Structure of a stack frame

	Subroutine linkage

