
Procedure Calls
(Part 2)

March 4, 2013

1 / 23

Schedule for the rest of the quarter . . .

Assignments
• PA3 – due tonight at 11:59pm!
• PA4 – posted tomorrow, due Wed, March 13
• HW2 – posted Friday, due in class Fri, March 15

(this will be very short)

Comprehensive final exam
• Tues, Mar 19, Noon-2pm
• in this room (STAG 203)
• review on Fri, March 15

2 / 23

Outline

Recursion

Memoization

Function pointers

Calling conventions review

3 / 23

Recursive algorithms

A recursive algorithm consists of two parts
1. base case(s)

• “trivial” cases — usually just return a value
2. recursive case

• “typical case” — defined in terms of a call to itself
• recursive call should make progress toward the base case

Example: Computing factorials
1. fact(0) ⇒ 1
2. fact(n) ⇒ n × fact(n − 1)

4 / 23

Functional view of recursion

Example: Computing factorials
1. fact(0) ⇒ 1
2. fact(n) ⇒ n × fact(n − 1)

fact(5)
5× fact(4)
5× 4× fact(3)
5× 4× 3× fact(2)
5× 4× 3× 2× fact(1)
5× 4× 3× 2× 1× fact(0)
5× 4× 3× 2× 1× 1 = 120

5 / 23

Imperative view of recursion

Factorial in pseudocode
int fact(int n) {
if (n == 0) return 1
return n * fact(n-1)
}

Expanded pseudocode
int fact(int n) {
if (n == 0) return 1
m = fact(n-1)
m = n * m
return m
}

system stack
main

...
fact(5)
fact(4)
fact(3)
fact(2)
fact(1)
fact(0)

...

Each recursive call pushes a new stack frame?

?can avoid with tail recursion

Really important to get calling conventions right!

6 / 23

Recursion in assembly

Recursive functions in assembly
• nothing special!

• just jal to the same procedure

• calling conventions doubly important
• potentially many stack frames
• procedure will step on its own toes

(MARS demo: FactRec.asm)

7 / 23

Outline

Recursion

Memoization

Function pointers

Calling conventions review

8 / 23

Memoization

An optimization technique for recursive functions
• maintain a global array of previously computed values
• on each procedure call, lookup in array

• if already computed, return it
• otherwise, proceed as usual and save result in array

Neat trick:
• can often handle base cases by just pre-initializing the first

few values in the array

9 / 23

Memoization strategy

Sketch of memoized recursive function
In data segment:
• declare array memo with length ≥ largest input
• possibly initialize base cases

Definition of fun(n) in text segment:
1. check if memo[n] is set

• if yes, return memo[n]

2. (no) compute fun(n) as usual
3. store result in memo[n]
4. return result

(MARS demo: FactMemo.asm)

10 / 23

Memoization grab bag

Can’t use memoization if . . .
• recursive function is not pure

• it does I/O, sets global variables, etc.
• input does not map onto array indexes

Gotcha: Can your function produce 0?
• if so, need a smarter check than if (memo[n] != 0)

Big win: memoize functions with multiple recursion
• fib(0) ⇒ 0
• fib(1) ⇒ 1
• fib(n) ⇒ fib(n − 2) + fib(n − 1)

11 / 23

Outline

Recursion

Memoization

Function pointers

Calling conventions review

12 / 23

Function pointers

• In MIPS, a procedure is identified by an address

• When we say, jal myProcedure, we’re saying:
“jump and link to the address at label myProcedure”

• We can jump and link to an address in a register too!
• example: jalr $t0

• can pass addresses around, store them in arrays,
or do whatever – they’re just like other values

13 / 23

Jump and link register

To call a function pointer: jalr $t5

jalr – “jump and link register”
1. sets $ra to PC+4 (just like jal)

• save the address of the next instruction of the caller
2. sets PC to the value in $t5 ($t5 can be any register)

• jump to the address of the first instruction of the callee

Otherwise, exactly like any other procedure call!

14 / 23

Function pointers in pseudocode

Syntax of a function pointer in C
• int (*foo)(int)

• *foo is a pointer to a function from int to int
• int x = (*foo)(n)

• apply the function foo points at to n

Example in C-like pseudocode
Pseudocode:
void test(int (*foo)(int), int n) {
int x = (*foo)(n)
printInt(x)
}
#
void main() {
test(&myProc, 5)
}

15 / 23

Function pointers in pseudocode

Syntax of a function pointer in C
• int (*foo)(int)

• *foo is a pointer to a function from int to int
• int x = (*foo)(n)

• apply the function foo points at to n

Kind of tricky to get right . . . OK to fudge it, as long as it’s clear

Example in simpler pseudocode
Pseudocode:
void test(foo, int n) {
x = foo(n)
printInt(x)
}

16 / 23

Example

(MARS demo: FunPointers.asm)

17 / 23

Outline

Recursion

Memoization

Function pointers

Calling conventions review

18 / 23

Subroutine linkage

The boilerplate code related to the calling conventions

start of caller

...
startup

jal myProcedure

cleanup
...

end of caller

start of callee
myProcedure:

prologue
...

(procedure body)
...

epilogue
jr $ra

end of callee

19 / 23

What to do in the caller

Caller startup sequence
1. save non-$s registers needed after call (local var section)
2. setup args to send to procedure ($a0–$a3, arg section)

Caller cleanup sequence
1. retrieve result of procedure ($v0–$v1)
2. restore non-$s registers saved in startup

Pseudocode: ... x = myProcedure(n) ...
Registers: n => $t0, x = $t1
...

sw $t0, 20($sp) # (startup) save n
move $a0, $t0 # setup arg = n
jal myProcedure # myProcedure(arg)
move $t1, $v0 # save result in x
lw $t0, 20($sp) # (cleanup) restore n
...

20 / 23

What to do in the callee

Callee procedure prologue
1. retrieve arguments from stack (prev arg section)
2. push new stack frame
3. save $s registers used in body (saved register section)
4. save $ra (return address)

Callee procedure epilogue
1. restore $s registers saved in prologue
2. restore $ra

3. pop stack frame

21 / 23

What to do in the callee

myProcedure:
addiu $sp, $sp, -24 # push stack frame
sw $ra, 20($sp) # save $ra
sw $s0, 16($sp) # save $s0
...
(procedure body that uses $s0)
...

lw $s0, 16($sp) # restore $s0
lw $ra, 20($sp) # restore $ra
addiu $sp, $sp, 24 # pop stack frame
jr $ra # return

22 / 23

Responsibilities of a procedure

Remember: non-leaf procedure can be both a callee and caller!

myProcedure:
(procedure prologue, as callee)
...
(caller startup)
jal subRoutine1
(caller cleanup)
...
(caller startup)
jal subRoutine2
(caller cleanup)
...
(procedure epilogue, as callee)
jr $ra

23 / 23

	Recursion
	Memoization
	Function pointers
	Calling conventions review

