
Machine Code
-and-

How the Assembler Works

Mar 8–13, 2013

1 / 32

Outline

What is machine code?
RISC vs. CISC
MIPS instruction formats

Assembling basic instructions
R-type instructions
I-type instructions
J-type instructions

Macro instructions

2 / 32

Assembly language vs. machine code

Assembler translates assembly code to machine code

loop: lw $t3, 0($t0)
 lw $t4, 4($t0)
 add $t2, $t3, $t4
 sw $t2, 8($t0)
 addi $t0, $t0, 4
 addi $t1, $t1, -1
 bgtz $t1, loop

0x8d0b0000
0x8d0c0004
0x016c5020
0xad0a0008
0x21080004
0x2129ffff
0x1d20fff9

Assembler

Assembly program (text file)
source code

Machine code (binary)
object code

3 / 32

What is machine code?

Machine code is the interface between software and hardware

The processor is “hardwired” to implement machine code
• the bits of a machine instruction are direct inputs to the

components of the processor

This is only true for RISC architectures!

4 / 32

Decoding an instruction (RISC)

5 / 32

What about CISC?

Main difference between RISC and CISC
• RISC – machine code implemented directly by hardware
• CISC – processor implements an even lower-level

instruction set called microcode

Translation from machine code to microcode is “hardwired”
• written by an architecture designer
• never visible at the software level

6 / 32

RISC vs. CISC

Advantages of CISC
• an extra layer of abstraction from the hardware
• easy to add new instructions
• can change underlying hardware without changing the

machine code interface

Advantages of RISC
• easier to understand and teach :-)
• regular structure make it easier to pipeline
• no machine code to microcode translation step

No clear winner . . . which is why we still have both!

7 / 32

How does the assembler assemble?

loop: lw $t3, 0($t0)
 lw $t4, 4($t0)
 add $t2, $t3, $t4
 sw $t2, 8($t0)
 addi $t0, $t0, 4
 addi $t1, $t1, -1
 bgtz $t1, loop

0x8d0b0000
0x8d0c0004
0x016c5020
0xad0a0008
0x21080004
0x2129ffff
0x1d20fff9

Assembler

Assembly program (text file)
source code

Machine code (binary)
object code

8 / 32

MIPS instruction formats

Every assembly language instruction is translated into a
machine code instruction in one of three formats

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R 000000 rs rt rd shamt funct

I op rs rt address/immediate

J op target address

= 32 bits

• Register-type • Immediate-type • Jump-type

9 / 32

Example instructions for each format

Register-type instructions
arithmetic and logic
add $t1, $t2, $t3
or $t1, $t2, $t3
slt $t1, $t2, $t3

mult and div
mult $t2, $t3
div $t2, $t3

move from/to
mfhi $t1
mflo $t1

jump register
jr $ra

Immediate-type instructions
immediate arith and logic
addi $t1, $t2, 345
ori $t1, $t2, 345
slti $t1, $t2, 345

branch and branch-zero
beq $t2, $t3, label
bne $t2, $t3, label
bgtz $t2, label

load/store
lw $t1, 345($t2)
sw $t2, 345($t1)
lb $t1, 345($t2)
sb $t2, 345($t1)

Jump-type instructions
unconditional jump # jump and link
j label jal label

10 / 32

Outline

What is machine code?
RISC vs. CISC
MIPS instruction formats

Assembling basic instructions
R-type instructions
I-type instructions
J-type instructions

Macro instructions

11 / 32

Components of an instruction

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R 000000 rs rt rd shamt funct

I op rs rt address/immediate

J op target address

Component Description

op, funct codes that determine operation to perform
rs, rt, rd register numbers for args and destination
shamt, imm, addr values embedded in the instruction

12 / 32

Assembling instructions

Assemble: translate from assembly to machine code
• for our purposes: translate to a hex representation of the

machine code

How to assemble a single instruction
1. decide which instruction format it is (R, I, J)
2. determine value of each component
3. convert to binary
4. convert to hexadecimal

13 / 32

Determining the value of register components

Number Name Usage Preserved?
$0 $zero constant 0x00000000 N/A
$1 $at assembler temporary N/A

$2–$3 $v0–$v1 function return values 7
$4–$7 $a0–$a3 function arguments 7

$8–$15 $t0–$t7 temporaries 7
$16–$23 $s0–$s7 saved temporaries 3
$24–$25 $t8–$t9 more temporaries 7
$26–$27 $k0–$k1 reserved for OS kernel N/A

$28 $gp global pointer 3
$29 $sp stack pointer 3
$30 $fp frame pointer 3
$31 $ra return address N/A

14 / 32

Components of an R-type instruction

R: 000000 rs rt rd shamt funct

R-type instruction
• op 6 bits always zero!
• rs 5 bits 1st argument register
• rt 5 bits 2nd argument register
• rd 5 bits destination register
• shamt 5 bits used in shift instructions (for us, always 0s)
• funct 6 bits code for the operation to perform

32 bits

Note that the destination register is third in the machine code!

15 / 32

Assembling an R-type instruction

add $t1, $t2, $t3

000000 rs rt rd shamt funct

rs = 10 ($t2 = $10)
rt = 11 ($t3 = $11)
rd = 9 ($t1 = $9)

funct = 32 (look up function code for add)
shamt = 0 (not a shift instruction)

000000 10 11 9 0 32

000000 01010 01011 01001 00000 100000

0000 0001 0100 1011 0100 1000 0010 0000

0x014B4820

16 / 32

Exercises

R: 0 rs rt rd sh fn

Assemble the following instructions:
• sub $s0, $s1, $s2

• mult $a0, $a1

• jr $ra

Name Number
$zero 0

$v0–$v1 2–3
$a0–$a3 4–7
$t0–$t7 8–15
$s0–$s7 16–23
$t8–$t9 24–25

$sp 29
$ra 31

Instr fn
add 32
sub 34
mult 24
div 26
jr 8

17 / 32

Components of an I-type instruction

I: op rs rt address/immediate

I-type instruction
• op 6 bits code for the operation to perform
• rs 5 bits 1st argument register
• rt 5 bits destination or 2nd argument register
• imm 16 bits constant value embedded in instruction

32 bits

Note the destination register is second in the machine code!

18 / 32

Assembling an I-type instruction

addi $t4, $t5, 67

op rs rt address/immediate

op = 8 (look up op code for addi)
rs = 13 ($t5 = $13)
rt = 12 ($t4 = $12)

imm = 67 (constant value)

8 13 12 67

001000 01101 01100 0000 0000 0100 0011

0010 0001 1010 1100 0000 0000 0100 0011

0x21AC0043

19 / 32

Exercises

R: 0 rs rt rd sh fn

I: op rs rt addr/imm

Assemble the following instructions:
• or $s0, $t6, $t7

• ori $t8, $t9, 0xFF

Name Number
$zero 0

$v0–$v1 2–3
$a0–$a3 4–7
$t0–$t7 8–15
$s0–$s7 16–23
$t8–$t9 24–25

$sp 29
$ra 31

Instr op/fn
and 36
andi 12
or 37
ori 13

20 / 32

Conditional branch instructions

beq $t0, $t1, label

I: op rs rt address/immediate

I-type instruction
• op 6 bits code for the comparison to perform
• rs 5 bits 1st argument register
• rt 5 bits 2nd argument register
• imm 16 bits jump offset embedded in instruction

32 bits

21 / 32

Calculating the jump offset

Jump offset
Number of instructions from the next instruction

(nop is an instruction that does nothing)

beq $t0, $t1, skip
nop # 0 (start here)
nop # 1
nop # 2

skip: nop # 3!
...

offset = 3

loop: nop # -5
nop # -4
nop # -3
nop # -2
beq $t0, $t1, loop
nop # 0 (start here)

offset = -5

22 / 32

Assembling a conditional branch instruction

beq $t0, $t1, label
nop
nop

label: nop

op rs rt address/immediate

op = 4 (look up op code for beq)
rs = 8 ($t0 = $8)
rt = 9 ($t1 = $9)

imm = 2 (jump offset)

4 8 9 2

000100 01000 01001 0000 0000 0000 0010

0001 0001 0000 1001 0000 0000 0000 0010

0x11090002

23 / 32

Exercises

R: 0 rs rt rd sh fn

I: op rs rt addr/imm

Assemble the following program:
Pseudocode:
do {
i++
} while (i != j);
loop: addi $s0, $s0, 1

bne $s0, $s1, loop

Name Number
$zero 0

$v0–$v1 2–3
$a0–$a3 4–7
$t0–$t7 8–15
$s0–$s7 16–23
$t8–$t9 24–25

$sp 29
$ra 31

Instr op/fn
add 32
addi 8
beq 4
bne 5

24 / 32

J-type instructions

J: op target address

Only two that we care about: j and jal

• remember, jr is an R-type instruction!

Relative vs. absolute addressing
Branch instructions – offset is relative:

PC = PC + 4 + offset × 4

Jump instructions – address is absolute:
PC = (PC & 0xF0000000) | (address × 4)

“Absolute” relative to a 256Mb region of memory
(MARS demo: AbsVsRel.asm)

25 / 32

Determining the address of a jump

0x4000000 j label
.
0x40000A4 label: nop
.
0x404C100 j label

Address component of jump instruction
1. Get address at label in hex 0x40000A4
2. Drop the first hex digit 0x 0000A4 = 0xA4
3. Convert to binary 10100100
4. Drop the last two bits 101001

26 / 32

Assembling a jump instruction

0x4000000 j label
.
0x40000A4 label: nop
.
0x404C100 j label

op target address

op = 2 (look up opcode for j)
addr = 101001 (from previous slide)

2 101001

0000 10 00 0000 0000 0000 0000 0010 1001

0x08000029

27 / 32

Comparison of jump/branch instructions

Conditional branches – beq, bne
• offset is 16 bits

• effectively 18 bits, since × 4
• range: 218 = PC ± 128kb

Unconditional jumps – j, jal
• address is 26 bits

• effectively 28 bits, since × 4
• range: any address in current 256Mb block

Jump register – jr

• address is 32 bits (in register)
• range: any addressable memory location (4GB)

28 / 32

Outline

What is machine code?
RISC vs. CISC
MIPS instruction formats

Assembling basic instructions
R-type instructions
I-type instructions
J-type instructions

Macro instructions

29 / 32

Basic instructions vs. macro instructions

Basic assembly instruction
• has a corresponding machine code instruction

• can find the name in the op/funct table
• always assembles into one machine code instruction
• part of the MIPS instruction set

• will work with any assembler

30 / 32

Basic instructions vs. macro instructions

Macro assembly instruction
• does not have a corresponding machine code instruction

• can’t find the name in the op/funct table
• may assemble into multiple machine code instructions

• can use the $at register as a temp to support this
• may be assembler specific!

Examples of macro instructions we’ve been using all quarter:
• la, li, move, mul, blt, bgt, ble, bge

31 / 32

Some example macro instructions

mul $t0, $t1, $t2 ⇒ mult $t1, $t2
mflo $t0

li $t0, 0xABCD ⇒ ori $t0, $zero, 0xABCD

li $t0, 0x1234ABCD ⇒ lui $at, 0x1234
ori $t0, $at, 0xABCD

32 / 32

	What is machine code?
	RISC vs. CISC
	MIPS instruction formats

	Assembling basic instructions
	R-type instructions
	I-type instructions
	J-type instructions

	Macro instructions

