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ABSTRACT 
 
Convention dictates that the design of a language begins with its syntax. We argue that early emphasis 
should be placed instead on the identification of general, compositional semantic domains, and that 
grounding the design process in semantics leads to languages with more consistent and more extensible 
syntax.  We demonstrate this semantics-driven design process through the design and implementation of a 
DSL for defining and manipulating calendars, using Haskell as a metalanguage to support this discussion. 
We emphasize the importance of compositionality in semantics-driven language design, and describe a set 
of language operators that support an incremental and modular design process. 
 
 
INTRODUCTION 
 
Despite the lengthy history and recent popularity of domain-specific languages, the task of actually 
designing DSLs remains a difficult and under-explored problem. This is evidenced by the admission of 
DSL guru Martin Fowler, in his recent book on DSLs, that he has no clear idea of how to design a good 
language (2010, p. 45). Instead, recent work has focused mainly on the implementation of DSLs and 
supporting tools, for example, through language workbenches (Pfeiffer & Pichler, 2008). This focus is 
understandable—implementing a language is a structured and well-defined problem with clear quality 
criteria, while language design is considered more of an art than an engineering task. Furthermore, since 
DSLs have limited scope and are often targeted at domain experts rather than professional programmers, 
general-purpose language design criteria may not always be applicable to the design of DSLs, 
complicating the task even further (Mernik et al., 2005). 

Traditionally, the definition of a language proceeds from syntax to semantics. That is, first a syntax is 
defined, then a semantic model is decided upon, and finally the syntax is related to the semantic model. 
This widespread view is reflected in the rather categorical statement by Felleisen et al. that the 
specification of a programming language starts with its syntax (2009, p. 1). This view has been similarly 
echoed by Fowler, who lists defining the abstract syntax as the first step of developing a language (2005) 
(although he puts more emphasis on the role of a “semantic model” in his recent book (2010)). 

In this chapter we argue for an inversion of this process for denotationally defined DSLs, where the 
semantic domain of the language is identified first, then syntax is added incrementally and mapped onto 
this domain. We argue that this semantics-driven approach to DSL design leads to more principled, 
consistent, and extensible languages.  Initial ideas for semantics-driven DSL design were developed in 
our previous work (2011). This chapter expands these ideas and explains the process and the individual 
steps in detail. 
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Syntax-driven design 
 
We begin by demonstrating the traditional syntax-driven approach, both for reference and to demonstrate 
how it can lead to a rigid and idiosyncratic language definition. Consider the design of a simple calendar 
DSL for creating and managing appointments. We first enumerate some operations that the DSL should 
support, such as adding, moving, and deleting appointments. It should also support basic queries like 
checking to see whether an appointment is scheduled at a particular time, or determining what time an 
appointment is scheduled for. One advantage of the syntax-driven approach is that it is easy to get off the 
ground; we simply invent syntax to represent each of the constructs we have identified. A syntax for the 
basic calendar operations is given below, where Appt represents appointment information (given by 
strings, say) and Time represents time values. 
 

Op   ::=  add Appt at Time 
          |    move entry at Time to Time 
          |    delete Time entry 

 
The add … at … operation adds an appointment at the specified time, move entry at … to … resche-
dules the appointment at the first time to the second, and delete . . . entry removes the appointment at 
the given time from the calendar. A program defining a calendar consists of a sequence of such operations. 
 

Prog  ::=  Op* 
 
With an initial syntax for our calendar DSL in place, we turn our attention to defining its (denotational) 
semantics. This process consists of finding a semantic domain that we can map our syntax onto, then 
defining a valuation function that represents this mapping. Looking at our syntax, we can observe that an 
array-based representation of calendars will yield constant-time implementations of each of our basic 
operations. Therefore we choose dynamic arrays (Schmidt, 1986, Ch. 3) as a semantic domain. A 
dynamic array is a function that maps elements of a discrete domain to some element type that contains an 
error (or undefined) element, say ε. In our example, we use the type Cal as an instance of dynamic arrays 
in which the discrete domain is Time, and the element is appointment information Appt. The semantic 
domain of dynamic arrays is a semantic algebra that offers operations for accessing and updating arrays. 
Accessing an element at position t in an array c means to apply the function that represents the array and 
is thus simply written as c(t). The semantic update operation is defined as follows.  
 

update : Time × Appt × Cal → Cal 
update(t, a, c) = c − {(t, c(t))}∪{(t, a)} 

 
The semantics of an operation Op is a function from one calendar array to another and is captured by a 
valuation function [[·]] : Op → (Cal → Cal), which is defined using the operations from the semantic 
algebra. 
 

[[add a at t]] c = update(t, a, c) 
[[move entry at t to t′]] c = update(t′, c(t), update(t, ε, c)) 
[[delete t entry]] c = update(t, ε, c) 

 
The semantics of a calendar program is then defined as the accumulation of the effects of the individual 
calendar operations, applied to the initial array that is undefined everywhere, that is, [[·]] : Prog → Cal.  
 

[[o1, o2, …, on]] = [[on]] (… [[o2]] ([[o1]] {(t, ε) | t ∈ Time}) …) 
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The array representation works very well as a semantic domain for the syntax we have defined. It also 
supports the queries we identified at the start: checking whether an appointment is scheduled at a 
particular time is just an index into the calendar array, and looking up the scheduled time of an 
appointment is a linear search. Its weaknesses only become apparent as we extend the language with new 
syntax and functionality. 

First, we consider an extension of the language with a notion of appointment lengths, which will 
allow us to more accurately determine whether a particular time is available. To do this, we add an extra 
value to the add construct, an integer representing the number of time slots the appointment will last. 

 
Op   ::=  add Appt at Time with length Int 
          |    … 
 

The semantics of the modified add operation can then be defined by assigning the appointment to each 
time slot in the calendar that the appointment occupies. 
 

[[add a at t with length n]] c = update(t + n − 1, a , … update(t + 1, a, update(t, a, c)) …) 
 

Note that although we have not changed the structure of our semantic domain, its use is now sufficiently 
changed that we have to redefine the valuation function of both other operations in our DSL as well since 
one appointment now will generally occupy several array slots. In other words, this extension is not 
modular, requiring a complete redefinition of our DSL’s semantics. 

As a second example, consider the extension of the DSL to support overlapping appointments. Note 
that this extension can be supported perfectly well by our existing syntax, but not by the flat appointment-
array representation we have chosen as its semantic domain. We might update our semantic domain to 
support this feature by considering a calendar to be a time-indexed array of lists of appointments. Instead 
of directly assigning appointments to the array, our valuation function now adds and removes 
appointments from the list at each time slot. Again, this extension forces us to reconsider our semantics 
and completely redefine our valuation function. 

That both of these seemingly minor extensions cannot be implemented in a modular way suggests that 
our initial calendar DSL was not very extensible. The problem lies mainly in our choice of semantic 
domain, which was chosen because it supported a nice and efficient implementation of our initial syntax. 
Ultimately, the semantic domain we choose has a profound impact on the quality of the language going 
forward—it gives terms in the language meaning, and so is the foundation on which the syntax is built. In 
the syntax-driven approach, this important decision is relegated to supporting an after-the-fact definition 
of some possibly idiosyncratic initial syntax. 

 
 

Semantics-driven design 
 
The semantics-driven approach begins instead with the identification of a small, compositional semantics 
core, then systematically equips it with syntax. We argue that considering the semantic domain of a 
language first leads to a more principled language design, in part, because it forces language designers to 
begin by carefully considering the essence of what their language represents. With the proper semantics 
basis, the language can be systematically extended with new syntax as new features are added. 

It is of course still possible to identify a poor semantic domain when beginning with semantics, just as 
beginning with syntax does not doom one to a poor language design. The semantics-driven approach we 
describe in this chapter is not mechanical and still requires creativity and insight on the part of the DSL 
designer. It does, however, provide much-needed structure to the language design process, and 
emphasizes the importance of compositionality, reuse, and extensibility in DSL design. 

Semantics-driven design is fundamentally incremental and domain-focused, while syntax-driven 
design is more monolithic and feature-focused. In the syntax-driven approach, designers begin by 
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anticipating use cases and inventing syntax to implement corresponding features. This is problematic 
since it is difficult to foresee all cases, leading to an incomplete syntax and idiosyncratic semantics that 
must be extended in an ad hoc way. In the semantics-driven approach, designers begin by trying to 
identify a more general representation of the domain, then extend this in a structured way to support 
specific features. 

Semantics-driven language design is also a mostly compositional process that leads naturally to com-
positional languages. That is, bigger languages can be defined by systematically composing or extending 
existing smaller languages. This supports the incremental development of DSLs and promotes the reuse 
of small DSLs in larger ones. Moreover, it supports the decomposition of a DSL’s domain into simpler 
subdomains, making it easier to reason about and identify good semantics domains. Compositionality also 
makes semantics-driven design less ad hoc than the traditional approach. Compositional development 
produces a clear account of the individual components of the language and how they are related, making 
the design easier to reuse, extend, and maintain. This process also produces, as a byproduct, a library of 
smaller DSLs that can be reused in future language designs. Compositionality is especially important in 
the context of DSLs since the final language must often be integrated with other languages and tools. 
 
 
Rest of this chapter 
 
Our research background is programming languages and functional programming, and we therefore 
approach and discuss the problem of DSL design from a different perspective than the majority of the 
chapters in this book. In the next section we take some time to describe the programming language view 
of DSLs and language design, and establish the terminology that will be used throughout the chapter. This 
will hopefully make the chapter accessible to as wide an audience as possible. We also introduce in this 
section the strongly-typed functional language Haskell (Peyton Jones, 2003) as a metalanguage for DSL 
design (Thompson, 2011). 

In the third section we use these tools to describe semantics-driven DSL design in detail. We first 
present a high-level overview of the design process, then proceed by example, demonstrating the 
(re)design of the calendar DSL using the semantics-driven approach. We do this by first describing the 
process of decomposing and defining the semantic domain, which is followed by incrementally adding 
syntax. 

The compositional nature of semantics-driven design leads to a view of the language design space in 
which languages are composed of smaller, mini-DSLs. The relationships of these mini-DSLs and the 
ways that they can be composed can be captured in language operators, which are discussed in the fourth 
section. The use of language operators supports a structured approach to language design and promotes 
language reuse. 

In Related Work, we relate semantics-driven design to other language design strategies and also 
discuss other related work not discussed in the main body of the chapter. Conclusions will be presented in 
the final section. 

 
 
BACKGROUND 
 
Research on DSLs has been pursued mainly by two different communities: the modeling community and 
the programming languages (PL) community. Each brings a different background to the area and has 
developed its own specific views on DSLs. This often involves specialized terminology, a distinctive 
focus on particular goals, and consequently the use of different methods. Together these two approaches 
may provide deeper insights through a diversity of perspectives, but it also balkanizes the research area, 
making it harder for the different groups to talk to one another and potentially limiting progress in the 
field as a whole. 
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The purpose of this section is to explain the basic elements of the PL approach to DSLs and to 
acquaint the reader with the corresponding terminology and methods. This is necessary since the model-
based view seems more dominant today—it is the view taken by Fowler (2010) and also the one found in 
most of the chapters in this book. This section will therefore explain the idiosyncrasies of the PL 
approach, in order to make this chapter accessible to a broader audience. 

 
 

Language Structure of DSLs and the Role of Metalanguages 
 
The two major aspects of any language are its syntax and semantics. (Language pragmatics is also an 
important aspect, but is probably less relevant in the design phase of languages.) In the PL approach, the 
syntax of a DSL is usually described by a context-free grammar, rather than by a metamodel. The 
semantics can be defined in several different ways. Two widely used methods are operational (Pierce, 
2002) and denotational (Mitchell, 1998) semantics. A denotational semantics (which we focus on here) 
consists of two parts: (1) the semantic domain, which is a collection of semantic values and operations, 
and (2) the valuation function (or just valuation), which is a mapping from the syntax to the semantic 
domain (Schmidt, 1986). A semantic domain is, in principle, very similar to the notion of a semantic 
model as described in (Fowler, 2010). 

Except for purely theoretical treatments of languages, the syntax and semantics of a DSL are 
commonly expressed in terms of a programming language that effectively acts as a metalanguage with 
respect to the defined DSL. In this case, the DSL syntax and semantics are defined using constructs of the 
metalanguage. Exactly how this is done and which constructs are used depends not only on the chosen 
metalanguage, but also on the implementation style of the DSL. An external DSL is a standalone 
language, which is parsed and interpreted by the metalanguage. In contrast, an internal DSL exists within 
the metalanguage itself, using metalanguage constructs as DSL syntax directly. Internal DSLs are also 
called domain-specific embedded languages (DSELs) (Hudak, 1998) and can be further classified into 
two embedding styles, deep or shallow. This will be described in detail later and is also explained in 
Chapter 19.3 of Simon Thompson’s book (2011). 

The purpose of this section is not to give a comprehensive overview and comparison of all possible 
variations on this theme, but only to provide the necessary background and context for the particular 
language-based approach employed in this chapter. We will therefore consider in the following only 
internal DSLs (DSELs) and their denotational semantics. Moreover, we will describe the perspective from 
the point of view of a typed, functional metalanguage. 

For concreteness, we use Haskell (Peyton Jones, 2003) as our metalanguage; it has a long tradition as 
a metalanguage and has been used extensively and successfully to define a wide range of DSLs. We 
discuss some examples of these in the Related Work section, and many other examples are listed in the 
Additional Reading section at the end of this chapter. However, much of the discussion applies also to 
other languages. 

 
 

Types as Semantic Domains 
 
The values of the semantic domain are naturally given by values of the metalanguage. These values are 
elements of predefined or user-defined types or data types, and these types therefore define the semantic 
domain of the DSEL. The meaning of a type such as Int is obvious, but the meaning of a data type might 
not be so widely known. A data type consists of a set of constructors that each have a name and zero or 
more argument types. For example, the following definition introduces a data type with three constructors 
for representing pictures containing lines and circles. 
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type Point = (Int,Int) 
 
data Pic = Line Point Point  
         | Circle Point Int 
         | Pic :+: Pic 

 
The type definition simply introduces a new name Point for the type of integer pairs. This type is used as 
an argument type in two of the constructor definitions. Each of the shown constructors takes values as 
indicated by the argument types and builds a value of type Pic. For example, the first constructor Line 
builds a picture consisting of a single straight-line segment given by two endpoints. The second 
constructor Circle builds a picture consisting of a circle with the given point value as center and the 
integer value as its radius. Finally, the symbolic infix constructor :+: builds a Pic value by overlaying 
two other pictures. 

A semantic domain, such as Pic, together with its operations (Line, Circle, :+:, and the pairing 
operation of points) forms a semantic algebra (Schmidt, 1986). Below is an example semantic value (a 
value of the Pic data type) that represents a picture consisting of two concentric circles and an 
intersecting line. 

 
ctr :: Point 
ctr = (3,2) 
 
pic :: Pic 
pic = Line (1,0) (5,3) :+: Circle ctr 4 :+: Circle ctr 5 

 
The definition consists of two smaller definitions. First, a point value is bound to a variable ctr. Second, 
a picture value is bound to pic, using ctr as the center for the two circles in the picture. The first line of 
each variable definition is optional and indicates the type of the defined variable (if omitted, it will be 
inferred by the type checker). The second line provides the definition of the variable. 

Built-in and user-defined types and data types are employed as semantic domains in the definition of 
DSELs. The semantics of the DSEL is then given by a valuation from the syntax to the semantics domain. 
What this syntax looks like, and how this mapping is realized, depends on the embedding style of the 
DSL. 
 
 
An Embedding-Dependent Notion of Syntax 
 
As mentioned above, internal DSLs can be either deeply or shallowly embedded (Thompson, 2011, Ch. 
19.3). While semantic domains and semantic values are represented the same in either style of embedding, 
the representation of DSL syntax is quite different. 

 
 

Deep embedding 
 

In a deep embedding, the (abstract) syntax of a DSEL is represented explicitly by a data type. Each 
constructor represents a grammar production (that is, an operation) of the language, and its argument 
types correspond to nonterminals that occur on the right-hand side of the production. Constructors 
without arguments represent terminal symbols, and constructors with basic type arguments (such as Int) 
form the link to the lexical syntax. The semantic domain of the represented language is captured by a 
separate (data) type, and some function sem acts as the valuation function, mapping syntactic values to 
semantic values. 

Consider, for example, a DSL for describing pictures that contains commands for drawing lines and 
right triangles. The syntax for this DSL can be described by a context-free grammar. In the following, 
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Cmd is the non-terminal ranging over drawing commands, while Point and Num range over points and 
integers, respectively. 
 

Cmd   ::=  line from Point to Point 
            |    triangle at Point width Num height Num 
            |    Cmd; Cmd 
            |    … 

 
This grammar excerpt can be directly translated into the following data type. 
 

data Cmd = Line’ Point Point 
         | Tri Point Int Int 
         | Seq Cmd Cmd 

 
The constructor Line’ represents a line between the given points,1 the constructor Triangle represents 
the triangle, and the constructor Seq represents the sequential composition of commands. Note how the 
argument types of the constructors mirror the nonterminals in the corresponding grammar productions. A 
constructor name together with its the argument types distills the essential components of a grammar 
production and omits keywords such as from or height. In this way, data types represent the abstract 
syntax of languages, rather than the concrete syntax. 

To define the semantics of the picture language, we employ the data type Pic as the semantic domain, 
then define a valuation function sem. We define sem by equation, using pattern matching. Each equation 
maps a case of the syntax (a constructor of Cmd) onto a corresponding semantic value (of type Pic). 

 
sem :: Cmd -> Pic 
sem (Line’ p1 p2)     = Line p1 p2 
sem (Tri p@(x,y) w h) = Line p (x,y+h) :+: Line p (x+w,h) :+: Line (x,y+h) (x+w,y) 
sem (Seq d d’)        = sem d :+: sem d’ 

 
The first equation is trivial, directly mapping a syntactic line onto a semantic one. In the second equation 
we have used a so-called “as-pattern” p@(x,y) that matches the complete point value to p and at the same 
time matches the components of the pair to the variables x and y. The valuation maps a triangle to three 
lines that are combined into one Pic value using the overlay constructor. Finally, a sequence of drawing 
commands is mapped to an overlay of the corresponding Pic values obtained for the two commands. 
 
 
Shallow embedding 
 
In a shallow embedding, we do not define a data type for the syntax at all, but rather take the constructors 
of the semantic domain immediately as operations of the DSL. For example, in our picture-drawing 
DSEL we have as part of the semantic domain the constructor Line, which represents a semantic value 
and can thus be used directly as an operation of the DSL. If we are not satisfied with this syntax, we can 
always introduce a function definition to change the syntax. 

Suppose we want the syntax to be closer to the concrete syntax given in the grammar, enforcing the 
use of keywords. We can define a function line that takes additional keyword arguments, as follows. 
First we define the keywords that we need as strings of the same name. 

 
type KW = String 
from = "from" 
to = "to" 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  We cannot use the constructor name Line since it has been used already in the Pic data type.	  

	  	  	  	  



	   8 

 
 
 
Then we extend the function definition for line to take additional KW arguments and check, using pattern 
matching, that the correct keywords have been used in a call of line. 
 

line :: KW -> Point -> KW -> Point -> Pic 
line "from" p "to" q = Line p q 
line "to" p "from" q = Line q p 
line _ _ _ _ = error "Incorrect keyword!" 

 
As illustrated in the function definition, it is very easy in this approach to extend the syntax on the fly, for 
example, with alternative orderings of arguments. (It is also easy to extend this definition to produce more 
elaborate error messages that report the incorrect keywords.) If we write a command for drawing a line 
we have to use the keywords from and to. If we do, a semantic Line value is produced correctly, if we 
don’t, the function reports a syntax error. 
 

> line from (1,1) to ctr 
Line (1,1) (3,2) 
 
> line to (1,1) to ctr 
*** Exception: Incorrect keyword! 

 
In addition to the constructor names of the semantic domain (and potentially added syntactic sugar), we 
also introduce function definitions for those operations of the DSL that are not directly represented by 
constructors of the semantic domain. The operation for drawing triangles is such an example. The 
corresponding function definition looks as follows.  

 
triangle :: Point -> Int -> Int -> Pic 
triangle p@(x,y) w h = Line p (x,y+h) :+: Line p (x+w,h) :+: Line (x,y+h) (x+w,y) 

 
As with the command for drawing lines, we could extend the above function definition by arguments 
representing keywords to enrich the concrete syntax. 

The important observation here is that these function definitions are comprised of two parts that 
combine the definition of DSEL syntax and semantics. First, the function head, that is, the left-hand sides 
of the equations, with the name of the function and its argument patterns, defines the DSEL syntax. 
Second, the expressions on the right-hand sides of the equations define the semantics of that particular 
syntactic construct. Since we obtain different function definitions for different operations of the DSEL, 
the valuation function from syntactic elements to values in the semantic domain is spread across several 
function definitions. 

A summary of the preceding discussion is presented in Figure 1. 
 
 

Representation in Metalanguage Language Aspect 
Deep Embedding Shallow Embedding 

syntax L data type L function LHS f pat :: T 

program p ∈ L value p :: L expression p :: D 

semantic domain D (data) type D (data) type D 

semantic value v ∈ D value v :: D value v :: D 

valuation [[·]] : L → D function sem :: L -> D function RHS rhs :: D 

syntax 
+ semantics (L, [[·]]) data type 

+ function 
(L,sem) function f :: T -> D 

f pat = rhs 

Figure 1: Summary of the language-based view of DSLs and the representation of internal DSLs within 
a typed, functional metalanguage. 
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Which Embedding for Semantics-Driven Design? 
 
The semantics-driven design process can be used with either implementation strategy, although there are 
many trade-offs involved. The biggest trade-off between the two embedding styles is in the dimension of 
extensibility. Deep embeddings directly support the addition of new semantic interpretations of the 
language. For example, we might want to perform some static analyses on our language or generate a 
visualization of the program. A new semantic interpretation can be added by simply identifying the type 
of the new semantic domain, D’, and writing a new valuation function that maps values of L onto values 
of D’. However, extending a deep embedding with new syntactic constructs is relatively difficult—not 
only must we extend the L data type with new constructors, but we must extend the definition of every 
function that manipulates or interprets L as well. 

Conversely, adding new syntax to a shallow embedding is very easy—we just add a new function that 
generates a value of the semantic domain D. Adding new semantic interpretations, on the other hand, is 
much more difficult in a shallow embedding (and is often incorrectly described as impossible). In order to 
add a new interpretation onto a type D’, we must first extend the semantics domain of the language from D 
to the product of D and D’, then extend every syntactic function to produce values of this new type. We 
can then obtain the desired semantic interpretation by simple projections.2 

We will use the shallow embedding strategy in this chapter since it supports a more incremental style 
of language development and more closely matches the compositional process described here. Semantics-
driven design forces us to carefully consider the semantic domain at the start, after which it remains 
relatively fixed while we incrementally extend the language with new syntax—this is exactly the strength 
of a shallow embedding. Syntactic flexibility is especially important during the early phases of semantics-
driven design, while the language is evolving rapidly. Once the syntax is relatively stable, if a deep 
embedding is desired, it can be obtained from a shallow embedding by identifying a minimal set of core 
syntactic constructs (operations implemented as functions), replacing these by a corresponding data type L, 
and merging the original function bodies into a new function implementing the valuation from L to D. The 
remaining, non-core syntax functions remain as syntactic sugar that produce values of the abstract syntax 
L. 
 
 
THE SEMANTICS-DRIVEN DESIGN PROCESS 
 
In this section we will describe the semantics-driven design process in some detail. We will illustrate and 
discuss each step through the incremental development of a calendar DSL. 

The semantics-driven design process consists of two major parts. The first part is concerned with the 
modeling of the semantic domain, which is based on the identification of basic semantic objects and their 
relationships. The second part consists of the design of the language’s syntax, which is about finding 
good ways of constructing and combining elements of the semantic domain. Before delving into the 
details of semantics-driven design, however, we provide a high-level overview of the entire process. This 
will allow us to explain how concepts in the three involved realms—domain, language, and 
metalanguage—are related and combine to facilitate the semantics-driven design process. 

 
 
 
 
 

 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Another strategy that is available in Haskell specifically is to overload functions using Haskell’s type classes to produce 
different semantics (Carette et al., 2009).	  
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Figure 2: Schematic illustration of the steps in the semantics-driven design process and their 
relationships. The two steps “Domain Decomposition” and “Domain Modeling” taken together comprise 
the Semantic Modeling part of the design process. The Syntactic Design step can be further distinguished 
as Inter- and Intra-DSL Syntax Design. 
 
 
Process Overview 
 
Semantics-driven design leads from a problem domain to a domain-specific language that is described, or 
implemented, by a metalanguage. The process consists of three major steps, which are illustrated in 
Figure 2. 

The first step decomposes the problem domain into smaller subdomains and identifies the 
relationships between them. In Figure 2 we find two subdomains D1 and D2 and a relationship R between 
them. This decomposition determines the semantic domain of our DSL. This step happens completely 
within the problem realm. No metalanguage concepts are invoked yet. 

The second step concerns the modeling of the decomposed semantic domain in the metalanguage. 
Each subdomain forms the basis of (that is, is the semantic domain for) a little language called a micro 
DSL. The identified relationships between subdomains are modeled as language schemas. In Figure 2 we 
observe that each domain Di is modeled as a micro DSL Li and that the relationship R is modeled as 
language schema S. This step takes the DSL design from the problem realm into the metalanguage realm. 
In terms of Haskell, domain modeling means to define types to represent the semantics domains of 
languages and type constructors to represent the semantic domains of language schemas. 

These first two steps taken together comprise the semantic design part of the DSL design process. All 
decisions regarding the semantics of the DSL happen in this part, which will be illustrated with the help 
of an example in the next subsection on “Semantic Design”. 

The third step in the design process is the design of the syntax of the DSL. This step can also be 
broken down into two parts. Specifically, we can distinguish between the syntactic design of each micro 
DSL and the design of syntax that spans several of these micro DSLs, leading to constructs that build 
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relationships between these elementary objects. We have not specifically illustrated the separate parts of 
syntactic design in Figure 2 since this happens completely within the metalanguage. We will talk about 
this in detail in the subsection on “Syntactic Design” and also discuss how the design of syntax is guided 
by the already defined semantics. 

 
 
Semantic Design 
 
At the core of semantic design is the identification of the essential objects that the language must 
construct, refer to, and manipulate. This process consists of two parts: identifying and decomposing the 
semantic domain into smaller (sub)domains, then modeling each domain as a micro DSL within the 
metalanguage. 

In the first part, each decomposition of a domain into subdomains can be described by an equation 
that shows the relationship between the decomposed domain and its subdomains. That is, a domain is 
modeled and decomposed by a set of equations of the following form. 

 
Di = Rj(Dk,…) 

 
In the second part, these equations are directly translated into a set of type definitions. Each such 
definition forms the semantic basis for a micro DSL, and the relationships between the DSLs is captured 
through the application of type constructors that implement language schemas. 
 

type L_i = S_i L_k ... 
 
In the following we will demonstrate and explain these two parts in detail. 
 
 
Domain identification and decomposition 
 
As an illustrative example, we consider again the design of a small calendar DSL. The existence of many 
competing calendar tools with different feature sets reveal that this is no trivial domain. That some 
calendar functionality is often performed by external tools (such as scheduling meetings with Doodle) 
suggests room for improvement. 

To identify the domains involved in the language we first ask ourselves, what are the essential objects 
involved? The basic purpose of a calendar is to define (and remind of) appointments at particular times. 
We recognize two separate components in this description, “times” and “appointments”. Each of these 
will be a subdomain of calendars, leading to two domain models and two micro DSLs in the subsequent 
steps. 

Decomposing the calendar domain into these subdomains involves identifying the relationship 
between times and appointments in calendars. In this case, we observe that times are mapped to appoint-
ments. This mapping from the subdomain of times to that of appointments captures the essence of 
calendars. The mapping relationship corresponds on the language level to a language schema. A language 
schema represents a whole class of related languages and can be obtained from a language by 
parameterizing some of its parts. We can produce a language from a language schema by substituting 
languages for its parameters. The language schema for mapping one domain to another obviously has two 
parameters, representing the domain and range of the mapping. 

In Haskell, we can represent the result of the domain identification and decomposition step with a 
simple type definition. In the following, the types Time and Appointment represent the subdomains we 
identified for the calendar application, while the two-parameter type constructor Map represents the 
language schema that relates them. 
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type Calendar = Map Time Appointment 
 
The type Calendar represents the calendar DSL and is composed of the Time and Appointment micro 
DSLs. 

Note that we can also leave some aspects of the domain parameterized, producing a class of related 
DSLs that can be instantiated for different subdomains; that is, we can define our DSL itself as a language 
schema. For example, suppose we want to define the semantic domain of a range of calendar DSLs that 
can work for many different types of appointments. We partially instantiate the Map language schema only 
with the subdomain for Time, defining a parameterized domain for calendars. This can be implemented in 
the metalanguage as follows. 

 
type CalT a = Map Time a 

 
We can produce the original Calendar semantics by instantiating this schema as CalT Appointment.  

Having identified and decomposed the domain of calendars, we recursively consider the Time subdo-
main. We quickly realize that clock time alone is not sufficient since we want to also be able to define 
appointments on different dates. We might choose an abstract representation of time that incorporates this 
information, like seconds since January 1, 1970, but this is not very evocative from a language 
perspective. Instead, we choose a compositional representation based on the above description—we want 
to define appointments in terms of a date and (clock) time, so we will decompose the domain on the left-
hand side of the calendar mapping further into the subdomains of Date and Time. The relationship 
between these domains can be captured by a language schema with two parameters that represents pairs. 
In the metalanguage, we will use Haskell’s special syntax (Date,Time) to represent the application of the 
pairing schema to the Date and Time subdomains, and define a new calendar language schema as follows. 
 

type CalDT a = Map (Date,Time) a 
 

This decomposition results in semantic values that are quite redundant, however. Whenever we schedule 
appointments on the same date, the corresponding Date value will be repeated in the semantics. As a 
solution, we will reconsider the decomposition of our semantic domain in order to factor out the redun-
dancy. We do this by creating a new language schema for date-only calendars, CalD, that maps dates to an 
arbitrary domain. Then we compose the CalD and CalT schemas to produce a date calendar of time 
calendars; that is, a mapping from dates to a nested mapping from times to some appointment domain. 
 

type CalD a = Map Date a 
type Cal  a = CalD (CalT a) 

 
This example demonstrates the compositional power of language schemas. We will consider Cal to be the 
primary decomposition of the calendar semantics domain going forward, although we will sometimes also 
refer to other calendar domains by their name in the metalanguage. 

Note that we could also have chosen to compose CalD and CalT in the opposite order, producing a 
mapping first from time and then to date. Rather than localizing all appointments on the same date, this 
semantics would localize appointments at the same time (but on different dates). This would also serve to 
reduce redundancy, but violates the natural hierarchical structure of dates and times, and so does not seem 
to accurately reflect the meaning of a calendar. 

Language schemas also provide a simple solution to the problem posed in the Introduction, of 
extending the language to incorporate a notion of appointment length. We can simply add a Time value to 
each appointment by (partially) instantiating the Cal domain in the following way. 

 
type CalL a = Cal (a,Time) 
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This defines a calendar domain in which each appointment is a pair of some arbitrary appointment value 
and a time value representing the length of the appointment. This extension is modular in the sense that 
the change to the semantic domain is localized, allowing us to directly reuse any syntax or operations that 
are polymorphic in the appointment subdomain (that is, that have types like Cal a). Recall that in the 
syntax-driven language from the Introduction, this extension led to an entirely new domain representation 
and forced changes to existing, unrelated parts of the language definition. 

As the derivation of Cal demonstrates, identifying the best semantic domain is typically an iterative 
process. Although we present the steps linearly, often domain identification interacts with domain 
modeling, as the precise modeling of a semantic domain can lead to new insights about its decomposition. 
 
 
Domain modeling 
 
Having identified the required domains and relationships for the calendar DSL, we can now start to model 
them, in detail, in our metalanguage. We begin with the Map language schema. Depending on the choice 
of metalanguage, generic language schemas might already exist in libraries.3 Of course, if a required 
schema does not exist, or if we want more control over the representation, we have to define it ourselves. 
We employ the following definition. (Here and in the following we omit some Haskell-specific details, 
such as the definition of standard class instances.) 
 

data Map a b = a :-> b | Map a b :&: Map a b 
 
This definition provides two infix constructors to build maps, one for building individual associations  
(:->), and one for composing two maps into a bigger map (:&:). 

Next we consider the representation of our subdomains of Date and Time. A date consists of a month 
and a day, so we model the Date domain in the following straightforward way.4 
 

data Month = Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec 
type Day = Int 
data Date = D Month Day 

 
We model the Time domain in an equally obvious way. 
 

type Hour = Int 
type Minute = Int 
data Time = T Hour Minute 

 
That these definitions are so straightforward is a good thing. By simplifying the language design process 
through systematic decomposition, we make it less surprising and ad hoc and thus more comprehensible. 

Note that we can consider both Date and Time to be composite domains. For example, we can 
decompose Time into the extremely simple domains of Hour and Minute. We combine these domains in 
Haskell within a data type, but if we wanted to make the decomposition explicit, we could instead use the 
pairing schema to model the domain as (Hour,Minute). We choose the given data type representation of 
Time because it allows us to enforce syntactic constraints with the Haskell type system. That is, we can 
define operations that take Time values as arguments and ensure that they can only be applied to times 
and not to arbitrary pairs of integers (as the pair representation would allow). It is not uncommon for 
aspects of the metalanguage to influence minor design decisions in this way. 

Finally, in order to instantiate the Cal language schema and write actual calendar programs, we need 
to identify and model an appointment domain. We can imagine several more or less complicated 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 For example, we could reuse Data.Map from the Haskell standard libraries. 
4 We omit years from dates just for simplicity in this chapter. 
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representations that vary depending on the context and kinds of information we need to track. To keep the 
discussion focused on more interesting aspects of the design, we assume appointments are given by plain 
strings and write our first program in the calendar DSL as follows. 
 

week52 :: Cal String 
week52 = D Dec 30 :-> (T 8 0 :-> "Work") :&: D Dec 31 :-> (T 22 0 :-> "Party") 

 
While we can express calendars by directly building semantic values in this way, it is not very convenient. 
The need to use the D and T constructors is annoying, and there is no way to directly express high-level 
concepts like repeating or relative appointments—entering such appointments manually is not only 
inconvenient but also error prone. Both of these shortcomings can be addressed by extending the DSL 
with new syntax. 
 
 
Syntactic Design 
 
Having realized a semantic core for our language, we now focus on building up its concrete syntax 
through the identification and implementation of new operations. Although we argue for designing the 
semantics first, this should not be misunderstood as devaluing the importance of syntax. On the contrary, 
the syntax of a language is extremely important. Good syntax has a significant impact on the usability of a 
language. Syntax can facilitate the expression of recurring patterns or templates, and be used to impose 
constraints on what can be expressed to help avoid erroneous programs. 

Although each step of the semantics-driven design process provides feedback that may alter decisions 
made earlier, it is important that the design of syntax comes conceptually after the development of the 
semantics core. Adding new operations is an inherently ad hoc process since it is impossible to foresee all 
desired features and use cases. Building on a solid semantics core ensures that (1) these syntactic 
extensions are implemented in a consistent and principled way, and (2) the particular selection of 
operations does not fundamentally alter the expressiveness of the language. In a shallow embedding in 
Haskell, we can see that these two features are enforced by the fact that (1) all operations will be 
implemented as Haskell functions that produce values of the semantic domain, and (2) we can always 
build a value of the semantics domain directly, if a desired operation does not exist. 

As we have seen in the previous section, given our choice of a shallow embedding in Haskell, the 
constructors of the data types Map, Date, and Time, which make up the semantic domain, serve directly as 
syntax in the DSL. Although these constructs are maximally expressive—they can obviously produce any 
calendar, date, or time captured by our semantic domain—they are also very nonspecific and low level. 
Through the addition of new operations, we can make the syntax more descriptive (and hence more 
usable and understandable) and raise the level of abstraction with new high-level operations that produce 
complex combinations of the low-level constructors. 

One of the biggest advantages of the semantics-driven process is that it decomposes the difficult task 
of designing a DSL into several smaller and more manageable subproblems. At the level of semantic 
domains, as we saw in the previous sections, this process is completely modular: we identified the 
subdomains, decomposed the problem, and then tackled each one separately. We can perform a similar 
decomposition by subdomains at the syntactic level, developing syntax for the reusable micro DSLs for 
dates and times. However, we will also want syntax that spans and integrates multiple subdomains within 
the larger domain of calendars. 

In the rest of this section, we will demonstrate the design and structured implementation of both 
syntactic levels. First, we develop the micro DSLs for dates and times. Then we develop syntax that 
integrates these languages into the larger calendar DSL. 
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Micro DSL syntax 
 
Syntax that is specific to a particular subdomain is modular in the sense that, combined with its semantic 
domain, it forms a micro DSL that can be reused in other, completely unrelated languages. Therefore, 
throughout the syntax development process, it is important to identify which subdomains new operations 
affect and associate the syntax accordingly. In Haskell, our new operations are implemented as functions, 
so determining the affected domains is as simple as examining their types. 

When working with DSLs in Haskell, one of simplest, yet often tremendously useful syntactic 
extensions is the introduction of so-called smart constructors. These are values or functions that supply 
constructors of a data type with some or all of their arguments. For example, in the Date micro DSL, we 
can introduce a function for each month as follows. 

 
[jan,feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec] = map D [Jan .. Dec] 

 
With these smart constructors we can now build dates more conveniently. For example, we can write 
more shortly dec 31 for D Dec 31, hiding the D constructor of the Date data type. In addition, we can 
introduce all kinds of functions for constructing, say lists of individual dates (for example, the federal 
holidays) or ranges of dates. We can define addition or subtraction of dates or, if we had the year 
information, a weekday predicate or filter. The decision of which operations to define depends, of course, 
on the requirements of the concrete application. 

For the Time DSL we define several similar operations as Haskell smart constructors. The hours 
operation specializes the more general T constructor and is used for producing times on the hour. The am 
and pm operations add support for 12-hour clocks by translating their arguments into 24-hour time. 

 
hours h = T h 0 
am h = hours h 
pm h = hours (h+12) 
 

Finally, we add operations before and after that support the definition of relative times by adding and 
subtracting times from each other. 

 
before t t' = t'-t 
after  t t' = t'+t 
 

We also add another specializing operation mins that produces a Time value containing only minutes, 
useful for computing relatives times. 

 
mins m = T 0 m 

 
A nice feature of Haskell as a metalanguage is that it offers a fairly high degree of syntactic flexibility for 
the development of DSLs. As an example of this, the above operations for expressing relative times are 
intended to be used infix, such as hours 3 ‘after‘ pm 2 which produces a time corresponding to three 
hours after 2pm, or T 17 0. Ideally we would refine this even further to make the hours, mins, am, and pm 
operations postfix. Okasaki (2002) demonstrates how such an effect can be achieved in Haskell. 

The very small amount of subdomain-specific syntax provided here for our two micro DSLs is by no 
means comprehensive. But since the semantics-driven approach and our shallow embedding in Haskell 
directly support the incremental and compositional extension of languages with new syntax, this is not a 
problem. We can just add new operations to the languages later, as needed. This syntax is also necessarily 
still quite low-level since the domains themselves are very constrained. In the next step we will encounter 
more complex operations by considering operations that integrate multiple semantic subdomains. 
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Domain integration syntax 
 
Syntax that associates or combines multiple subdomains is necessarily less modular than the micro DSLs 
developed in the previous step. Domain integration syntax represents higher-level operations associated 
with larger DSLs that are made up of multiple subdomains. The compositional design of semantics-driven 
DSLs means that such syntax can also easily be developed for the solution of some particular problem. 

For the purposes of this section it will be useful to separate the notion of schedules and calendars. In 
fact, we have already defined the corresponding semantic domain of schedules—mappings from clock 
times to appointments—as the CalT language schema. The Cal language schema can then be equivalently 
defined as a mapping from dates to schedules. 

 
type Sched a = CalT a 
type Cal   a = Map Date (Sched a) 

 
The most fundamental example of domain integration syntax in the calendar DSL is the mapping 
operator :->. In the context of schedules, this operator integrates the domain of Time with the 
parameterized appointment domain a, bringing them into the domain of schedules. In the context of 
calendars, the operator integrates the Date and Sched a domains into calendars. 

As a higher-level example, consider an operation wakeAt that captures the schedule of a morning 
routine. This is something we might want to add to a calendar regularly if we’re either especially 
disciplined or forgetful. The argument to this operation is the time to wake up and the result is a schedule. 
 

wakeAt :: Time -> Sched String 
wakeAt t = t :-> "Shower" :&: mins 20 `after` t :-> "Breakfast" 

 
So wakeAt (hours 7) would produce the following schedule. 
 

T 7 0 :-> "Shower" :&: T 7 20 :-> "Breakfast" 
 
The type of the wakeAt function reveals that the operation integrates times into schedules. We can com-
bine this schedule with a date to produce a calendar using the :-> operator, for example jan 1 :-> 
wakeAt (pm 1). 

Now, suppose we want to define a schedule that repeats indefinitely. Since we represent calendar 
domains as explicit mappings, this may seem at first impossible. But this is another case where the 
specifics of our metalanguage can influence the design of our DSL. Lazy evaluation in Haskell allows us 
to define such an operation by enumerating the infinite stream of dates and mapping each one to a 
schedule as follows.5 
 

everyDay :: Date -> Sched a -> Cal a 
everyDay d s = map (:-> s) [d..] 

 
For example, if you join the military on October 10th, you might write: 
 

oct 11 `everyDay` wakeAt (hours 4) 
 
This very high-level operation demonstrates just how far you can get with a simple semantics core and a 
sufficiently powerful metalanguage. 

So far all of our operations have concerned the construction of calendars and schedules. Of course, 
we can also define operations that modify them. Below is an operation move f t that reschedules any 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 Note that without an associated year value the stream of dates is actually cyclical. 
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appointments from time f to time t. The first case propagates the move operation into subschedules, 
while the second changes the time of a mapping if it is scheduled for time f. 
 

move :: Time -> Time -> Sched a -> Sched a 
move f t   (l :&: r) = move f t l :&: move f t r 
move f t m@(u :-> a) = if f == u then t :-> a else m 

 
To demonstrate, the following DSL program defines a schedule with two events, then reschedules one of 
them, resulting in the new calendar T 12 0 :-> "Lunch" :&: T 14 0 :-> "Meeting". 
 

busyDay   = T 12 0 :-> "Lunch" :&: T 13 0 :-> "Meeting" 
longLunch = move (pm 1) (pm 2) busyDay 

 
Note that we could reuse in the move operation the syntactic keyword trick demonstrated earlier. By 
including additional keywords, like from and to, we might make the operation’s concrete syntax more 
evocative. 
 
 
COMPOSITIONALITY AND LANGUAGE OPERATORS 
 
The principle of compositionality says that the meaning of a sentence or expression is given by its 
structure and the meaning of its parts. This idea has a long tradition, and some of its roots can be traced 
back to Frege’s context principle (1884). The notion of compositionality can be formalized, for example, 
by stipulating a homomorphism between the syntax of the language and its semantic domain (Montague, 
1970). 

The principle of compositionality is at work twice in the semantics-driven design process. First, the 
decomposition of domains into subdomains and their relationships assumes a compositional structure in 
the domain to be modeled. Second, the composition of a DSL out of several micro DSLs exploits the 
compositionality in the application of language schemas. 

The second instance of compositionality brings us to the notion of language operators. A language 
operator takes one or more languages and produces a new language, either through the composition of 
several micro DSLs, or through the incremental addition of syntax. In terms of Haskell, a DSL is 
represented by a set of Haskell definitions (a Haskell program), so a language operator that transforms 
one DSL into another becomes effectively a Haskell metaprogram. Note that language operators usually 
cannot be expressed directly in the metalanguage. Instead they are given by high-level descriptions of 
changes to the DSL representation. In our previous work (2011) we have provided descriptions of 
language operators as transformation patterns of Haskell programs. This helps us understand the 
representation of DSLs in Haskell and also illustrates the concrete steps required to do semantics-driven 
DSL development in Haskell. In this section we will focus on the specific role that some of these 
operators play in the semantics-driven language design process. 
 
 
Syntactic vs. Semantic Language Operators 
 
In general, language operators can apply either to the syntax or the semantics of the involved languages. 
Since the syntax of a DSL is given in our approach through data constructors and function definitions, 
syntactic language operators will add, remove, or change these constructs. Likewise, semantic language 
operators will involve adding, removing, or changing type definitions. 

In the previous section we saw several examples of syntactic extension through the addition of new 
function definitions. We can also extend the scope of existing operations in the DSL by applying another 
language operator that parameterizes an existing operation. For example, we could add a new parameter 
for minutes to the pm function. Other language operators include the inverse operations of removing 
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function definitions to eliminate the corresponding syntax, and removing a parameter to reduce the scope 
of, or specialize an operation. The hours operation in the Time micro DSL is an example of a non-
destructive specialization of the T operation for constructing times. Instead of removing the minutes 
parameter of T directly, we added a new function that hid it. 

In general, the application of syntactic language operators, in the semantics-driven approach, is 
guided by the semantics. This is because the functions that implement specific syntax have to produce 
values of the semantic domain. Since, in Haskell, semantic domains are represented by types, the 
definition of new syntax is in some sense type directed. For example, the definition of the syntactic 
operation wakeAt has to employ the constructors of Map since it must build a value of type Sched String. 
 
 
First-Order vs. Higher-Order Language Operators 
 
In addition to the distinction between syntactic and semantic language operators, we can also distinguish 
between first- and higher-order language operators. A first-order language operator takes one or more 
languages and produces a new language, while a higher-order language operator takes other language 
operators as inputs or/and produces them as outputs. 

First-order language operators directly change the representation of a DSL in the metalanguage. This 
can take quite different forms. For example, the addition of a function or data constructor extends the 
represented language by a new operation. Similarly, we can extend an existing language operation by 
adding a new argument to the function (or constructor) that represents that operation. We can also add 
whole languages by adding new data types; this is often a preparatory step to combine the language with 
others into a bigger language. And we can rename types, functions, and constructors. Each of these 
operators have natural inverse operations, for example, removing functions/constructors or their argu-
ments, which amounts to the removal or restriction of the operation, respectively. We can similarly 
remove data types to eliminate whole micro DSLs. Renaming is its own inverse operation. 

Most first-order operations can be composed to form other, more complicated language operations. 
For example, the merging of two languages L and L’ into one involves adding (some of) the constructors 
from one data type, say L’, to the other one, L, plus changing the argument types of the added 
constructors from L’ to L. Constructors in L’ that represent operations already represented by constructors 
in L should be removed. The types of associated syntax functions must then also be changed from L’ to L. 

In contrast to first-order language operators that work directly on languages, a higher-order language 
operator takes other language operators as inputs or produces them as outputs. At this point it is important 
to recognize that a language schema is itself a language operator since it can produce, via instantiation, 
different languages. The higher-order language operators discussed below will produce and consume 
language schemas. 

One important higher-order language operator is language abstraction that takes a language (or 
language schema) and produces a language schema by substituting a sublanguage by a parameter. In 
terms of Haskell this means to take a type (or type constructor), add a parameter to its definition, and 
replace some argument types of its constructors by this new parameter. For example, suppose we start 
with a calendar definition that does not use Map but that defines a monomorphic type with two similar 
constructors, fixing the argument types to Date and Appointment. 

 
data Cal’ = Has Date Appointment 
          | Join Cal’ Cal’ 
 

By abstracting from the Date and Appointment sublanguages represented in that type (and renaming the 
constructors), we can generalize the language Cal’ into the language schema Map. 

Dually, language instantiation takes a language schema and substitutes a language (or language 
schema) for one of its parameters, producing a language or a more specific language schema. For example, 
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CalD was obtained from Map by substituting Date for a, and Cal was obtained from CalD by substituting 
CalT a for a. 

As with first-order language operations, we can derive more elaborate higher-order language 
operators from abstraction and instantiation. A very powerful derived language operator is the 
composition of language schemas. The basic idea behind schema composition is to instantiate one schema 
with another. We have seen an example of this already in the definition of Cal by composing CalD and 
CalT. As another example, consider the following language schema Access for distinguishing between 
private and public information. Private information is protected by some kind of key, which we assume 
for simplicity to be represented by strings. 

 
type Key = String 
data Access a = Protected Key a | Public a 

 
We can compose the CalD language schema with the Access schema to obtain a calendar schema in 
which appointment information can be protected by this privacy micro DSL. 
 

type CalDA a = CalD (Access a) 
 

Unlike many other language operators, we can actually define an operator for language schema 
composition within Haskell quite easily. 
 

type Compose s t a = s (t a) 
 
This definition is analog to the definition of function composition, it just works on the level of types. 
With this language operator we can give an alternative definition for CalDA that reflects the explicit 
application of the employed language operator. 
 

type CalDA a = Compose CalD Access a 
 
Higher-order language operators, such as language abstraction, instantiation, and composition, support the 
semantics-driven DSL design process by facilitating gradual changes to the overall structure of a language. 
These operators make it possible to employ language refactorings during the design process, supporting 
the incremental and iterative design of compositional languages. 
 
 
RELATED WORK 
 
Foundational and related work in the area of programming languages and functional programming has 
been discussed already in the background section (and elsewhere throughout the paper). In this section we 
briefly describe the relationship of syntax- and semantics-driven design to other theories about language 
design and software engineering. We also list a few examples of successful, real-world DSLs that exhibit 
the characteristics of semantics-driven design. 

Languages centered around concrete syntax are often based on the non-compositional LL or LR 
parsing frameworks, an approach that imposes inherent limits on the composition of languages (Kats et al., 
2010). The syntax-driven approach to language design is also indirectly promoted by the popular strategy 
of user-centered design (Norman & Draper, 1986). Since user-centered design asks users about how to 
solve specific tasks, there is the danger of focusing on too many details of too specific operations and 
losing the big picture. A critical view of user-centered design was provided by Don Norman himself 
(2005) where he instead argued for activity-centered design. Our proposal is to go one step further and 
focus directly on the domain with which tasks and activities are concerned. 

The motivation for semantics-driven language design is similar to that for model-driven engineering 
(MDE) (Kent, 2002; Schmidt, 2006). MDE encourages that solutions be developed first from the 
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perspective of the problem domain rather than from the solution domain. That is, the development of a 
software banking system would begin by abstractly modeling the concepts of accounts, customers, and 
transactions, and only then consider the translation of these concepts into a software implementation. The 
early emphasis on modeling attempts to manage complexity by decomposing the system into clearly 
defined abstractions before committing to a specific implementation. This is very similar to the early 
emphasis on domain identification and modeling in semantics-driven design, which leads to a more 
modular and compositional semantic basis before committing to a specific syntax. 

Semantics-driven design is also closely related to the idea of domain-driven design promoted by Eric 
Evans (2003). An important aspect of domain-driven design is the development of a so-called ubiquitous 
language, to be used by software developers and domain experts alike. This ubiquitous language consists 
of terminology that closely reflects the key concepts of the domain to be modeled, which corresponds to 
the elements of the semantic domain in semantics-driven design. The main differences between the two 
approaches is that in domain-driven design, domain terminology is embedded into English when talking 
about language aspects, whereas semantics-driven design firmly grounds domain terminology in a 
metalanguage that is used to precisely and unambiguously define the semantic domain and the domain-
specific language. 

Finally, although in this chapter we name and provide structure to the semantics-driven design 
process, it reflects a philosophy that has long existed and proven very successful in the functional 
programming community. Many semantics-driven Haskell DSELs have found success in the real-world. 
Examples include the PFP (Probabilistic Functional Programming) library for representing and computing 
with discrete probability distributions (Erwig & Kollmansberger, 2006) and the Pan language for creating 
and manipulating images (Elliott, 2003). Interestingly, semantic values in Pan are not ground values but 
functions. Pan syntax therefore consists of functions that manipulate and produce other functions. Such 
DSELs are called combinator libraries (Wallace & Runciman, 1999) and represent a simple but powerful 
extension of the basic process sketched in third section. Perhaps the most successful combinator library is 
Parsec, a widely-used DSEL for constructing recursive-descent parsers (Leijen & Meijer, 2001). Parsec’s 
expressiveness and extensibility have led to it being ported to at least a dozen different host languages. 
 
 
CONCLUSION 
 
We advocate shifting the attention in the early phases of DSL design toward semantics. We argue that a 
semantics-driven and compositional approach to design leads to better DSL designs that are more general 
and reusable, and less ad hoc. The language development process is supported by one’s choice of meta-
language. We suggest Haskell as a good metalanguage for semantics-driven DSL design since it supports 
a clear interpretation of semantic domains as types, enables the incremental extension of syntax through 
function definition, in addition to other helpful features like a flexible syntax and lazy evaluation. 

A beneficial side effect of compositional language design is that it also leads to compositional 
languages, in particular, when compared to syntax-driven language design. Compositionality is generally 
a highly valued feature of languages since it supports expressiveness with few language constructs. In a 
sense, compositional languages are more economical since they provide more expressiveness with fewer 
constructs. 
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KEY TERMS AND DEFINITIONS 
 
Background 
 
• domain-specific embedded language (DSEL): A DSL defined within a metalanguage that uses meta-

language constructs directly as DSL syntax. Also called an internal DSL. 

• deep embedding: A technique for implementing DSELs where abstract syntax is represented by a 
data type and mapped onto the semantic domain by a valuation function. 

• shallow embedding: A technique for implementing DSELs where syntax is defined by functions that 
build semantic values directly. 

• compositionality: The principle that an object can be defined and understood by considering its parts 
individually, then relating them in a systematic way. A desirable property of a language’s design, its 
semantic domain, and the expressions it contains. 

 
Introduced in this Chapter 
 
• syntax-driven design: The traditional view that the design of a language begins by identifying its 

(abstract) syntax, and only later describing its semantics. 

• semantics-driven design: A language design process that begins by identifying, decomposing, and 
modeling the semantic domain of a language, then systematically extending it with syntax. 

• domain decomposition: The identification and separation of a semantic domain into its component 
subdomains and their relationships. Enables the domain to be modeled in a structured and modular 
way. 

• domain modeling: The representation of a (decomposed) semantic domain in a metalanguage with 
types and data types, forming a hierarchy of micro DSLs related by language schemas. 

• language schema: A parameterized class of related languages, from which specific languages can be 
derived by instantiation. 

• language operator: An operation that produces a new language from one or more languages or lan-
guage schemas (and possibly other arguments). Language operators are the mechanisms by which a 
language is incrementally extended and built from its component parts. 
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