
A visual language for explaining probabilistic reasoning$

Martin Erwig n, Eric Walkingshaw

School of EECS, Oregon State University, Corvallis, OR 97331, USA

a r t i c l e i n f o

Article history:
Received 7 September 2011
Received in revised form
12 November 2012
Accepted 14 January 2013

Keywords:
Explanation
Probability
Story telling
Explanation transformation
Language semantics

a b s t r a c t

We present an explanation-oriented, domain-specific, visual language for explaining
probabilistic reasoning. Explanation-oriented programming is a new paradigm that shifts
the focus of programming from the computation of results to explanations of how those
results were computed. Programs in this language therefore describe explanations of
probabilistic reasoning problems. The language relies on a story-telling metaphor of
explanation, where the reader is guided through a series of well-understood steps from
some initial state to the final result. Programs can also be manipulated according to a set
of laws to automatically generate equivalent explanations from one explanation
instance. This increases the explanatory value of the language by allowing readers to
cheaply derive alternative explanations if they do not understand the first. The language
is composed of two parts: a formal textual notation for specifying explanation-producing
programs and the more elaborate visual notation for presenting those explanations. We
formally define the abstract syntax of explanations and define the semantics of the
textual notation in terms of the explanations that are produced.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Probabilistic reasoning is often difficult to understand,
especially for people with little or no corresponding educa-
tional background. Even simple questions about conditional
probabilities can have counterintuitive solutions, causing
confusion and even disbelief among laypeople despite
elaborate justifications. Consider, for example, the following
conditional probability problem: Three coins are flipped.
Given that two of the coins show heads, what is the probability
that the third coin shows tails? Many people respond that the
probability is 50%, but it is, in fact, 75%.

If you do not understand the solution to the above
problem, an explanation will be provided shortly. If you
do understand, pretend for a moment that you do
not—what would you do? Your best recourse might be

to simply ask someone that does understand. A good
personal explanation is ideal because the explainer can
rephrase the explanation, answer questions, clarify
assumptions, and provide related examples as further
illustration. Unfortunately, good personal explanations
are a comparatively scarce resource; they are not always
available, and cannot be easily shared or reused.

If you cannot get a personal explanation, you might
refer to a probability textbook or seek other explanatory
material on the web. These explanations have much
higher availability and reusability; a web-based explana-
tion, in particular, can be accessed any number of times
from almost anywhere in the world. The trade-off is that
these explanations lack the flexibility and adaptability of
a personal explanation. They are rarely presented in terms
of the specific problem at hand and cannot respond to the
questions and confusions of a particular person.

In this paper we bridge this gap with a domain-
specific, visual language called Probula1 for explaining

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/jvlc

Journal of Visual Languages and Computing

1045-926X/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.jvlc.2013.01.001

$ This paper has been recommended for acceptance by Shi Kho Chang.
n Corresponding author. Tel.: þ1 541 737 8893;

fax: þ1 541 737 3014.
E-mail addresses: erwig@eecs.oregonstate.edu (M. Erwig),

walkiner@eecs.oregonstate.edu (E. Walkingshaw). 1 A portmanteau of probability and fabula, the Latin word for story.

Journal of Visual Languages and Computing] (]]]])]]]–]]]

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

probabilistic reasoning problems like the three coins
problem above. Using Probula, we can produce visual
explanations for a wide range of conditional probability
problems, combining the flexibility and accessibility ben-
efits of personal and electronic explanations. We also
provide a set of laws for transforming explanations
created in Probula into alternative, equivalent explana-
tions. This adds some of the adaptability of personal
explanations, allowing users who do not understand an
initial explanation to view the problem from different
perspectives, to reduce understood parts of the explana-
tion to focus on more difficult parts, and to add and
remove abstraction. However, our goal is not to replace
personal or web-based explanations, but to complement
them. For example, a web page might provide a textual
explanation along with a Probula explanation as a sup-
plementary resource, or a teacher might use a Probula
explanation as a visual aid for a verbal explanation,
employing automatically generated alternatives to illus-
trate different points.

Probula is an example of an explanation-oriented
language—a language that supports explanation-oriented
programming (EOP). EOP is a new paradigm where the
focus of programming is shifted from describing the
computation of values to providing explanations of how
and why those values are produced. A case for EOP is
made in Section 2, along with a brief account of our
previous work in this area.

A Probula explanation of the three coins problem is
given in Fig. 1. The explanation is read from top to
bottom, like a story describing how an initial probability
distribution is transformed into the solution of the pro-
blem. This story-telling model is the central metaphor on
which the language is built. The idea is that each step in
the story is small and easy to understand, and that by
following each of these well-understood steps, the reader
can see how the ultimate conclusion is reached. In Section

3 we motivate the choice of the story-telling model for
explaining probabilistic reasoning and describe its impact
on the design of Probula.

We begin the explanation in Fig. 1 with an empty
probability distribution, that is, a distribution with a 100%
probability of no event. The first three steps of the
explanation are all generator steps, which introduce
new events into a distribution. In this case, each generator
represents a coin flip. The filter step encodes our condi-
tional constraint that we consider only cases where two of
the three coins show heads. Finally, we group the possi-
bilities in the resulting distribution into two cases accord-
ing to the question posed by the problem—whether or not
the remaining coin shows tails.

The Probula language consists of two levels, each
represented by a distinct notation. The visual notation
shown in Fig. 1 represents the story-level and is the more
important and interesting of the two. An object at this
level is a story—a view on a transformable explanation
that is intended to be read by explanation consumers. The
second level is the plot-level, represented by a simple
textual notation. An object in this language is a plot, also
called an explanation program, which is a formal specifica-
tion of a story written by the explanation creator. A plot
can be instantiated or executed with an initial distribu-
tion to produce a story.

In Section 4 we formally define the notations of stories
and plots and relate the two through a third notation, a
mathematical representation of distribution graphs.
A distribution graph is essentially a sequence of probabil-
istic distributions, where each distribution is a group of
nodes (one for each value in the distribution), and where
the nodes in each adjacent distribution are possibly
connected by edges. Specifically, in Section 4, we equate
distribution graphs to the abstract syntax [9] of the visual
story notation, then define the denotational semantics of
plots also in terms of distribution graphs. In other words,
a distribution graph represents a story, and the meaning
of a plot is the story it produces. We also discuss and
motivate many aspects of the concrete syntax of the
visual notation, beyond the overarching story-telling
metaphor.

Each step of a story is represented at the plot-level by
an operation (such as generate, filter, or group) that, given
a preceding distribution Di, extends the distribution graph
by a new distribution Diþ1 and new edges connecting
nodes in Di and Diþ1. In Section 5 we define the semantics
of all six operations provided by Probula in terms of
distributions graphs, as described above.

Finally, a story represents only a single instance from a
field of potential explanations for the underlying prob-
abilistic reasoning problem that it explains. Through the
use of the above-mentioned transformation laws, we can
automatically transform the underlying plot for this story
into several ‘‘equivalent’’ alternatives. In Section 6 we
define this notion of plot equivalence, then enumerate
and formally describe all such transformations. We also
discuss the trade-offs that each of these transformation
presents, both informally and through the development
and application of a simple measure of vertical vs.
horizontal distribution graph complexity.Fig. 1. Explanation of the three-coins problem.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]2

The rest of the paper consists of a discussion of related
work in Section 7, followed by conclusions and directions
for future work in Section 8.

This work is an extension and consolidation of two
earlier papers on explaining probabilistic reasoning
[12,13]. Prior to these papers, we presented a domain-
specific embedded language (DSEL) in Haskell for creating
and manipulating (but not explaining) probabilistic
values [10]. In [12] we reused this DSEL in the design of
a second Haskell DSEL for explaining probabilistic reason-
ing that became the basis for Probula. That paper also
provides the first examples of Probula’s visual notation
along with an extended discussion of philosophical
research on explanations and a lengthier motivation
for the story-telling metaphor than is provided here.
We formalized a subset of the visual notation of Probula
in [13] and also provided a formal semantics for a subset of
the operations used for creating Probula explanations. That
work also contained the first set of laws for transforming a
Probula explanation into equivalent alternatives.

In this paper, we improve and complete the formaliza-
tion of the visual notation begun in [13] and provide a
formal semantics for all of the supported operations. In
particular, we formalize for the first time the branching
operation and the selection of representative examples,
and improve the treatment of grouping operations. We
also define a formal specification language for generating
these explanations and clarify the relationship of this
formal notation to the visual notation. Finally, we provide
a more complete and detailed description of the
explanation-generating transformation laws.

2. Explanation-oriented programming

EOP is fundamentally motivated by two simple obser-
vations. The first is that programs often produce unex-
pected results. The second is that programs have value
not only as tools for instructing computers, but also as a
medium of communication between people.

When a program produces an unexpected result, a user
is presented with several questions. First, is the result
correct? If so, what is the user’s misunderstanding? If not,
where is the bug and how can it be fixed? In these
situations an explanation of how the result was generated
or why it is correct would be very helpful. Unfortunately,
such explanations are difficult to come by; in many cases
a user’s only recourse is to go through a long and
exhausting debugging process. For less critical problems,
the user may simply give up. With a large and growing
class of end-user programmers [33], the ability to provide
good explanations is more important than ever.

Although many tools for explaining programs exist, such
as debuggers and software visualization tools, these often
suffer from a fundamental disconnect from the languages
they are meant to explain. If a language provides explana-
tion tools at all, they are typically designed post hoc, as an
add-on to the language itself. This forces these tools to
reflect a notion of computation that was not designed for
explainability (rather, usually to maximize other properties
like efficiency and expressiveness), leading to explanations
that are difficult to produce and have low explanatory value.

In an explanation-oriented language, the focus on
explaining programs is shifted to an earlier stage in
language and tool development process, making it a
primary design goal of the language itself. In devising
syntax and semantics, language designers consider not
only the production of values, but also explanations of
how those values are obtained and why they are correct.

This idea has a huge potential to innovate language
design. Besides the obvious applications to debugging and
program analysis, it also suggests an entirely new class of
domain-specific languages where the explanation itself,
rather than a final value, is the primary output of a
program. This represents a stronger sense of explanation
orientation and reflects the second observation above that
formal languages are an effective medium for commu-
nicating ideas with other people. Probula is an example of
such a language, for producing explanations in the
domain of probabilistic reasoning.

Using a strongly explanation-oriented language like
Probula, an explanation designer, who is an expert in the
application domain, can create and distribute explanation
artifacts for specific problems in the domain. These
artifacts can be customized and explored by non-expert
explanation consumers who do not understand the pro-
blems or who are trying to gain a greater understanding
of the domain itself. There are many possible application
domains for such languages, including the explanation of
medical procedures, electrical systems, computer algo-
rithms, and all kinds of scientific phenomena. In this
paper we address the application domain of probabilistic
reasoning, something which is generally not well under-
stood but of great scientific and practical importance, and
can thus benefit greatly from a language for creating
explanations.

3. The story-telling model of explanations

The visual notation of Probula relies on several inter-
related metaphors. In this section we motivate the most
important of these that likens the process of explaining a
phenomenon to that of telling a story. This story-telling
metaphor fundamentally directed the design of Probula.
In this section, we will motivate this design decision and
demonstrate its impact on the design.

In our previous work we have conducted a brief survey
of the study of explanations and their representation [12].
Our criteria for selecting a model for explaining probabil-
istic reasoning was that the model should be (1) simple
and intuitive since the language is intended to be used not
just by philosophers, mathematicians, or scientists, but by
laypeople who likely have no background in explanation
theory or formal modeling; and (2) constructive, in the
sense that the model should identify specific components
of an explanation and their relationships, so that these
can in turn be realized by specific language constructs.
These criteria rule out several potential models of expla-
nation, such as advanced statistical models [27,31], mod-
els based on physical laws [32], and those based on
process theory [6], all of which are too complicated for
our purposes. Also ruled out are unificationist models

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 3

[24], which do not provide a constructive approach (and
are also quite complicated).

We believe that the most promising explanation mod-
els are those based on causation; that is, to explain a
phenomenon means to identify what caused it. The idea
that explanations reveal causes for why things have
happened seems intuitive and goes back at least to Plato
[30]. Popular models in the philosophical study of causa-
tion are based on causal graphs [16,37]. In these models,
explanations are represented by directed graphs with
variables as nodes (typically representing events or
states), where an edge leads from X to Y if X has a direct
effect on Y. In our previous work we have worked
extensively with one such representation called neuron
diagrams [27], formalizing and extending the language in
[14] and designing a Haskell DSEL for creating and
analyzing neuron diagrams in [36].

While causal graphs are a useful and expressive
explanation model, they also place a navigational burden
on the user. That is, a user must decide which nodes,
edges, or paths to look at and in which order. A more
linear representation is simpler and easier to understand
but also less expressive.

Our explanation-oriented focus and the selection cri-
teria stated above lead us to choose a more linear view
of causation and ultimately to the story-telling model
of explanation. Specifically, we represent an explanation
as a sequence of points in a story, where each point
corresponds to some state. We move from point to point
through the story by an interleaved sequence of state-
modifying steps that guide the reader from the initial
state to the explanandum.2 In designing domain-specific
languages, we often embrace limited computational gen-
erality to achieve a close fit with the target domain.
Likewise for explanation-oriented DSLs, we embrace a
less general explanation model if it fits the needs of our
domain, leading to simpler and thus more understandable
explanations. The intuitiveness of this model is supported
by empirical evidence that suggests that presenting facts
and explanations in the form of a story makes them more
convincing and understandable [28].

The story-telling model is also constructive in that it
suggests a path for realization within a particular domain.
Specifically, we must identify (1) some notion of state
within the domain that will be manipulated throughout
the story, and (2) a set of composable operations for
defining the transitions at each step. Tying this back to the
linearized notion of causal graphs, we must essentially
realize the representation of the nodes (which correspond
to states in the story-telling model) and the edges (which
correspond to operations). The explanation of the three-
coins problem presented in Section 1 demonstrates our
adaption of the story-telling model to the domain of
probabilistic reasoning. The state, shown at each point
in the explanation, is a probabilistic distribution, while
operations correspond to the annotated steps between
states.

The story-telling model also suggests a distinction
between two different levels of notation. An explanation
is sufficiently defined by its initial state and the sequence
of operations that eventually transform it into the expla-
nandum, which we call the plot. For example, the plot of
an explanation of how an omelette is made might list the
ingredients and directions for how to make one. However,
the presentation of an explanation, or the story, must also
include intermediate states generated by each step.
For example, a story explaining the creation of an omel-
ette might show a sequence of illustrations demonstrat-
ing each preparation and cooking step that transforms the
ingredients into the finished omelette. This distinction
between definition and presentation, or plot and story, is
reflected in the two notations of Probula.

4. A language for explaining probabilistic reasoning

In this section we describe how each of the language
features motivated by the story-telling model—state,
state-transforming operations, and a distinction between
story and plot—are represented both visually and formally.
We begin with the representation of state as probability
distributions in Section 4.1 and of distribution-modifying
operations in Section 4.2, which together lead to a notion
of distribution graphs that serve as the abstract syntax of
stories in Probula. In Section 4.3 we introduce a limited
form of branching to Probula stories, enabling the explora-
tion of choices between probabilistic outcomes in explana-
tions, something which is common in probabilistic
reasoning. Finally, in Section 4.4 we bring everything
together by formalizing the abstract syntax of stories as
distribution graphs, presenting a simple textual notation
for representing plots, and a semantics function for gen-
erating a story (distribution graph) from a plot and an
initial distribution. Throughout this section, we also dis-
cuss the concrete syntax of the visual notation, pointing
out and motivating the important design decisions and
visual metaphors used.

4.1. Probability distributions

Each point in a Probula story is represented by a typed,
discrete probability distribution. A distribution D over a
discrete random variable of type A is a set of pairs (x,p)
where x : A and

P
p2rngðDÞp¼ 1.3 We write the type of D as

/AS. For readability, when we write distributions expli-
citly we render each pair (x,p) as xp where p is expressed
as a percentage, and list all such pairs in D between angle
brackets. For example, lcoin¼/H60,T40S is the distribu-
tion of a loaded coin that lands on heads with 60%
probability. In this example, lcoin has type /CS where
type C has values fH,Tg.

Visually, we represent a distribution using the com-
mon metaphor of spatial partitioning. A horizontal area is
partitioned into blocks, where each block corresponds to,

2 The thing that is to be explained.

3 This representation is isomorphic to a probability mass function,
A-½0: :1%. Also note that we access the domain and range of a set of pairs
with domð&Þ and rngð&Þ, respectively.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]4

and is labeled by, a different value-probability pair in the
distribution (therefore, we often refer to these pairs in the
formal notation also as blocks) and where the area of each
block is proportional to its probability. Spatial partitioning
is a good metaphor for representing distributions since it
directly captures many abstract probabilistic axioms.
For example, the sum of the areas (probabilities) of all
blocks equals the area of the entire distribution (which
represents 100% probability), and as the area of one block
increases, the area of other blocks must necessarily
decrease. From the perspective of operations that will
transform this state, we can view the probability space as
a resource that operations can split, merge, and redis-
tribute amongst values.

In addition to standard distributions, we also introduce
a notion of grouped distributions, an example of which can
be seen as the explanandum (final state) of the explana-
tion in Fig. 1. A grouped distribution is a distribution
whose blocks have been consolidated into one or more
groups. In the visual notation, we represent grouped
distributions by drawing thick borders around each group
and by eliminating the thinner lines between blocks in
the same group.

We indicate a grouped distribution D in the
formal notation with boldface. An ungrouped distribution
D : /AS can be grouped (by the group operation, see
Section 5.2) according to a grouping function g : A-T that
maps values in D onto some type T whose elements can
be checked for equality. All values that map to the same
t : T will be put in the same group. For example, the
grouping function used to produce the explanandum in
Fig. 1 is a predicate from sequences of coin values to a
boolean value indicating whether or not one of the coins
is tails, which we write as Cn-Bool. We represent a group
by a pair ðt,XÞ where X ¼ fðx,pÞ9ðx,pÞ 2 D, gðxÞ ¼ tg.
A grouped distribution D is then a set of groups. We write
the type of D, a distribution of type /AS grouped
according to a type T, as /AST . For example, the type of
the final grouped distribution in the example is /CnSBool.

In the visual notation, a group is labeled by the set of
the values it contains and the sum of their probabilities.
While the latter is not represented explicitly in the formal
notation it can be easily derived. Note also that the
grouping value t is not shown explicitly in the visual
notation.

Grouped distributions give us a way to visually orga-
nize or categorize the blocks in a distribution for the
purpose of enhancing an explanation, but they do not
significantly affect the underlying distribution from a
mathematical perspective. A grouped distribution D is
just a lightweight view imposed on the original distribu-
tion D, and we can easily recover D by simply removing
this view, D¼

S
rngðDÞ; this is the purpose of the ungroup

operation presented in Section 5.5. Alternatively, we can
consider plain distributions as a special case of grouped
distributions, grouped by the identity function. That is, D :
/AS is similar to a grouped distribution D : /ASA, where
D¼ fðx,fðx,pÞgÞ 9 ðx,pÞ 2 Dg. Because of these similarities
and since it is convenient, we often refer to both
plain and grouped distributions as simply ‘‘distributions’’
(and range over these with D), unless the distinction is

important. We always distinguish between the types of
plain and grouped distributions, however, so despite the
similarity above /ASa/ASA.

4.2. Operations

While each point in a story is represented by a
distribution, the structure and progression of the story
(its plot) is fundamentally determined by its operations,
which describe the steps from one point in the story to
the next. An operation can therefore be viewed as a
function from one distribution to another. In the following
we refer to the ith operation in the plot as oi and the
function implementing this operation as fi; we use Di$1

for the (plain or grouped) distribution at the preceding
point in the story and Di for the subsequent distribution,
generated by applying f iðDi$1Þ.

At the non-visual plot level, fi is a sufficient description
of an operation. In the visual story notation, however,
operations are a bit more intricate. In addition to the
name of the operation (generate, filter, group, etc.) and a
brief annotation describing the transformation it
performs, the visual representation of a step from one
point to the next includes edges between the blocks in the
distributions Di$1 and Di. This reflects the convention of
data flow diagrams, making explicit the flow of values
(possibly modified by the intermediate operation) from
one distribution to the next. The basic story telling model
implies a representation of state and a set of state-
manipulating operations, with the idea that each opera-
tion will be small and simple enough to understand in
isolation. In Probula, we extend that basic model with an
explicit representation of the state transformations pro-
duced by the operations. In other words, instead of just
showing each point in the story (as we did in our textual
DSEL [12]), edges in Probula describe how each step
produces its subsequent story point, allowing readers to
direct their effort on more important aspects of the
explanation.

In addition to the subsequent distribution Di, each opera-
tion oi generates a set of edges Ei where each edge is a pair
(v,w) where v 2 domðDi$1Þ and w 2 domðDiÞ[f?g. An edge
ðv, ?Þ represents a terminating edge, an edge from Di$1 that
does not connect to a block in Di but ends instead with a
horizontal bar. This indicates a value in Di$1 that does not
flow to the next distribution, for example, because it was
filtered out, as seen in the filter step of the explanation in
Fig. 1. Note that since values in a distribution are unique, we
can uniquely identify a block in a plain distribution by its
value. For grouped distributions, we connect edges to groups
rather than blocks, and each group can be uniquely identified
by its representative value t.

The meaning of an operation oi from the perspective of
story generation is therefore not just fi, but a function
from Di$1 to the pair ðEi,DiÞ. We call this function the story
semantics of the operation, written 1oiU. In Section 5 we
will define the story semantics of all of the operations in
Probula.

Note that although each operation has an associated
annotation, we do not capture this in the formal repre-
sentation above. While it would be trivial to add an

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 5

annotation value to the representation and story seman-
tics of each operation, this would clutter the notation
without adding any real benefit. More significantly, how-
ever, we do not consider the automatic transformation of
annotations in Section 6. Instead annotations are consid-
ered a purely secondary notation [15], that is, a way to
convey information outside the constraints of the formal
notation.

We call a sequence of distributions and block/group-
connecting edges a distribution graph, and these form the
abstract syntax of Probula’s visual notation. A simplified
view of distribution graphs follows directly from the
definitions of distributions and operations above. A plot
can be viewed as a sequence of operations o1, . . . ,ok, from
which a distribution graph ðD0,E1,D1, . . . ,Ek,DkÞ can be
generated by mapping the story semantics across the
operations and reducing the list with function application
and the initial distribution D0 (saving the intermediate
edges and distributions). Now we add another wrinkle to
Probula stories, however, in order to represent a new class
of probabilistic reasoning problems.

4.3. Story branching

Many probabilistic reasoning problems involve a ques-
tion of choice—a scenario is established and the reader is
asked which course of action has the best expected
benefit to the actor in the scenario. One of the most
famous (and famously misunderstood) examples is the
so-called ‘‘Monty Hall Problem’’ [10,17,26]. In this sce-
nario, a game show host presents a contestant (the actor)
with three doors, one of which hides a prize. The contest-
ant selects one of the doors, then the host opens one of
the remaining two doors that does not contain a prize.
The contestant is then presented with a choice: stay with
the originally selected door or switch to the other closed
door? Most people believe that switching doors makes no
difference, but this is incorrect—switching doors doubles
the contestant’s chance of winning from 33 1

3% to 662
3%.

A Probula explanation for the Monty Hall Problem is
presented in Fig. 2. It introduces two new operations and
the concept of story branching. The story reads as follows:
Initially, there are three possibilities to consider—either
the prize is hidden behind the first, second or third
door—and each case is equally likely. This is represented
by an initial distribution where each value is a triple with
elements corresponding to doors; $ indicates the door
containing the prize (unknown by the contestant), and 0
indicates a door without a prize. In the first step, we select
one of these cases as a representative example of the
problem since for the purposes of probabilistic analysis,
it does not matter which door the prize is behind, just that
one of the three doors contains a prize. In other words, the
three cases are isomorphic.4 The next two generator steps
represent the contestant initial selecting a door and the
host opening a prizeless door. The selected door is
represented visually by underlining, while the opened

door is outlined in a small rectangle. Note that when the
contestant has chosen the door with the prize, the host can
open either one of the other two doors, while he has no such
choice in the other two cases (he must open the remaining
door not containing the prize). The generator will therefore
split the block in half in the first case, and leave the
probability unchanged in the other two cases. Next, we group
the results according to whether or not the contestant is
currently unknowingly winning the prize or not. This brings
us to the choice point, represented in Probula by a branch in
the story. In the left branch, the contestant does not switch
doors, while in the right branch, the contestant switches.
Finally, we map the potential outcomes in each branch onto
the values ‘‘Win’’ and ‘‘Lose’’, indicating whether or not the
contestant won the prize. By comparing the explananda at
the end of each branch, we can see that switching doors leads
to a 66.7% chance of winning, while not switching doors leads
to only a 33.3% chance of winning.

Visually, we represent story branching by showing both
possible paths for the story to take, separated by a dotted
line. One branch is always preferred in that the edges from
the last unbranched distribution lead to the first distribution
in only one of the two branches, and step annotations are
shown only for the step to the preferred branch. This is
simply to reduce noise in the visual notation. An interactive
implementation would allow readers to change the preferred
branch. Additional annotations (in parentheses) are provided
to label each alternative in the branch, to help the reader
understand the choice that the branch represents.

Branching fundamentally extends the expressiveness of
Probula by allowing us to explain a class of real-world-
applicable problems concerned with making the best choices
in the face of probabilistic information. However, the verbose
notation clearly will not scale beyond only a very small
number of branches. This is an intentional design decision,
consistent with our emphasis on explainability over other
qualities. By embracing the mostly linear story-telling model,
we embraced explainability over expressiveness. With
branching, we give some of that expressiveness back, but
our particular choice of notation sacrifices scalability to avoid
compromising the simplicity and explicitness of the explana-
tions. These sorts of design trade-offs are expected when
designing languages for usability [15].

Having demonstrated branching in the visual notation
at the story level, in the next subsection we extend the
formal representations of plots and distribution graphs to
also incorporate branching. We also tie this entire section
together with a semantics function for producing stories
from a plot and an initial distribution.

4.4. Distribution graphs, plots, and stories

As described in Section 1, the visual notation of Probula
tells a story intended to be read by an explanation
consumer—someone who presumably does not under-
stand the problem being explained. For this end-user, the
visual notation is the only aspect of Probula they need ever
see. However, we have made a point of distinguishing the
visual notation of stories in Probula from the formal/textual
notations of plots and distribution graphs, which have different
intended audiences. Plots are created by explanation

4 Using Theorem 11, users can generate alternative explanations if
they are not convinced of this. For an example, see Fig. 10 in Section 6.7.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]6

producers—domain experts who understand the problem to
be explained and want to explain it to others. A plot is
essentially an explanation-producing program while a story
is the result of executing that program. Distribution graphs
are a formal representation of the abstract syntax of stories,
and are used mainly by us, as language creators, to define the
language of Probula, formally describe the relationship
between plots and stories, and discuss the transformation
of stories and plots. In this subsection we will complete the
definitions of plots and distribution graphs, and relate the
two by extending the story semantics of operations (see
Section 4.2) to plots.

In Section 4.2 we said that the plot of a story (its
structure and progression) is fundamentally determined
by its operations. In Section 5 we catalog and define these
operations; here, we consider their organization. Primar-
ily, we compose operations into plots via a right-
associative sequencing operator x , terminated by the
end-of-plot symbol E. To produce branched stories like the
explanation of the Monty Hall Problem, a plot branching
operator ^ is provided. A simplified grammar for plots is
given below, using o to range over operations:

P :: ¼ E End of Plot

9ox P Plot Sequence

9P^P Plot Branch

The grammar is simplified in that it does not encode the
syntactic constraints that only some operations can be
applied to grouped distributions—while these constraints
could be encoded in the grammar, we prefer to enforce

them separately to keep the grammar clear and simple.
Note also that the syntax allows for empty plots (E) that
produce trivial, single-distribution explanations, and that
it does not restrict branching in any way, despite the lack
of scalability in corresponding stories. It is the explana-
tion creators’ responsibility to use branching judiciously,
to keep explanations understandable.

The formal notation of distribution graphs follows
directly from the definition of plots, and the notations
are almost structurally identical. We reuse the sequence
and branch symbols from plots directly since their mean-
ing is similar here and since it is always clear from the
context which language we refer to:

G :: ¼D Explanandum

9ðD,EÞxG Story Sequence

9G^G Story Branch

Graphs terminate in an explanandum and each step in a
story sequence is represented by a pair of a preceding
distribution and a set of edges connecting it to the next
distribution in the sequence. Note that this representation
introduces a small amount of redundancy when repre-
senting branches since the distribution immediately pre-
ceding a branch in the story will be represented multiple
times (once at the beginning of each branch) in the graph.
This representation is chosen because it leads to a more
straightforward semantics function.

We define the story semantics of an operation oi in
Section 4.2 to be a function 1oiU : D-ðE,DÞ from a

33.3% 33.3% 33.3%

Host opens non-chosen
no-win door

100%

EXAMPLE Select first value as a
representative

33.3% 33.3% 33.3%

GENERATE Candidate selects
closed door

GENERATE

33.3% 33.3%16.7% 16.7%

Group by currently
winning or losingGROUP

33.3% 66.7%

33.3% 66.7%33.3% 66.7%

Lose
33.3%

Win
66.7%

Win
33.3%

Lose
66.7%

MAP Switch doors
(Switch doors)(Don't switch doors)

MAPMAP

Fig. 2. Explanation of the Monty Hall Problem.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 7

preceding distribution Di!1 to a pair containing the sub-
sequent distribution Di and a set of edges Ei connecting
the two distributions. We use this definition to extend the
notion of story semantics to plots. The story semantics of
a plot P is a function from an initial distribution to the
distribution graph representing the abstract syntax of the
generated story, 1PU : D-G. In the following, 1 " UðDÞ
means to apply the function returned by 1 " U to D:

1EU¼ lD:D
1ox PU¼ lD:ðD,EÞx1PUðD0Þ

1P^P0U¼ lD:1PUðDÞ^1P0UðDÞ

where ðE,D0Þ ¼1oUðDÞ

For the base case, we simply return the argument
distribution as the explanandum when the end of the plot
is reached. For branches, we recursively compute the story
semantics of each branch and compose the results with a
corresponding branch in the graph. For plot sequences, we
compute the story semantics for the current operation and
apply that function to the preceding distribution, yielding the
next distribution and a set of connecting edges. We use these
to create a story sequence in the graph and then recursively
compute the semantics of the rest of the plot. Using this
semantics function we can generate a story given a plot and
an initial distribution.

Finally, when describing transformations in Section 6, we
will need to talk about whether or not a transformation
preserves the meaning of the affected part of the distribution
graph. This poses two requirements: (1) a notion of a
distribution subgraph and (2) a definition of the semantics
(meaning) of a subgraph. The first is straightforward; given a
distribution graph ðD0,E1Þx . . . x ðDi!1,EiÞx " " " xDn we
can obtain the subgraph corresponding to steps j through
krn as ðDj!1,EjÞx " " " xDk. For the second requirement,
there are many possibilities. We define the semantics of a
(sub)graph G to be its limits, written limðGÞ, defined as the
pair of G’s initial distribution and a sequence Dn of the
explanandum at the end of every branch in G. For the simple
and common case where G is a k-step story without branch-
ing, the limits of the graph will therefore be the pair ðD0,DkÞ.
Thus, when we say that the meaning of a subgraph is
preserved over some transformation, we mean that the
subgraph begins and ends in the same place, although it will
presumably change in the middle. This is important for
ensuring the locality of transformations.

We conclude this section with a summary of the
semantics of the major constructs introduced throughout
this section, given in Fig. 3.

5. Catalog of operations

At the heart of the story-telling model is the idea that a
story can be told as a sequence of steps where each step
can be easily understood on its own, allowing the reader

to focus on the progression of the explanation from the
beginning to the explanandum. For explaining the domain
of probabilistic reasoning, we identified six types of these
steps, implemented as distribution manipulating (and
distribution graph generating) operations. In this section
we will discuss each of these operations in turn, defining
them formally and describing their representation in the
visual notation. We will also describe the syntactic con-
straints on each operation (mentioned in Section 4.4),
since some operations can only be applied to either plain
or grouped operations, but not both.

Probula’s six operations are listed in the syntax defini-
tion in Fig. 4, in the order that they will appear in this
section. Operations are distinguished in the formal nota-
tion by a prefixed symbol and may include an argument,
usually a function, defining the behavior of the operation.
In the syntax, the metavariables e, g, f, and p all range over
functions, but each have different constraints on their
types. These constraints will be discussed in the context
of their associated operations and are also summarized
later in Section 5.7. The metavariable x ranges over
distribution values.

Recall from Section 4.2 and Fig. 3 that the story
semantics of an operation oi is a function from the
preceding distribution Di!1 to a pair of the subsequent
distribution Di and the connecting edges Ei. In this section,
we will define the story semantics of each operation
explicitly. When discussing the interaction of types in
an operation, however, we will usually refer to just the
distribution transformation—the function from Di!1 to Di,
omitting the edges which carry no interesting type
information. In Section 5.7 we will summarize the types
of the distribution transformations of all of the operations
presented in this section.

5.1. Generate

A generator De introduces new probabilistic events
into a plain distribution. The event generating function e :
A-/BS maps the values in the preceding distribution D :
/AS to distributions of type /BS, where B is usually
derived in some way from A. The distributions produced
by e are concatenated and scaled according to the prob-
abilities of the original values in D, in order to produce the
resulting distribution D0 : /BS.

As an example, consider the definition of the second
generator in the explanation of the Monty Hall Problem in
Fig. 2, in which the host opens a door that was not chosen
and does not contain the prize. This operation can be
defined as DopenDoor with the function openDoor defined

Syntactic Category Semantics Domain Descriptionof Semantics Function
A→ [0..1] probability mass function
D→ (E,D) story semantics of an operation
D→ G story semantics of a plot

D
o
P
G (D,D*) limits of a distribution graph

Fig. 3. Summary of denotations of constructs in the formal notation.

Fig. 4. Probula operations.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]8

below (using pattern-matching):

openDoorð$00Þ ¼/$0050,$0050S

openDoorð$00Þ ¼/$00100S

openDoorð$00Þ ¼/$00100S

If the contestant has selected the door with the prize,
there is a 50% chance of the host opening either remaining
door. However, if the contestant has chosen a door with-
out the prize, then there is a 100% chance of the host
opening the other prizeless door. The effect of applying
DopenDoor to its preceding distribution can be seen in
Fig. 2.

Often a generator simply extends a distribution of
sequences An with a new probabilistic A value. For
example, each of the three generators in the three coins
problem in Fig. 1 adds a new coin flip to the distribution.
We can represent a coin flip with the following event
generating function flipCoin : Cn-/CnS that appends
heads or tails to the sequences in the existing distribution
with 50% probability each:

flipCoinðxÞ ¼/xH50,xT50S

For these simple sequence-extending cases, we can auto-
matically derive an event generating function of type
An-/AnS given just the distribution of the new value
to append D : /AS. Since this case is very common, we
introduce as syntactic sugar the notation DD for De where
e¼ lx:fðxy,pÞ 9 ðy,pÞ 2 Dg. Using this, we can define the
first three steps of the plot for the three coins problem as
DcoinxDcoinxDcoin where coin : /CS is the distribu-
tion /H50,T50S.

The story semantics of a generate operation De is given
explicitly below. Edges are defined between every value x
in D and every y produced by e(x). The probabilities in the
resulting distribution D0 are scaled by multiplying the
original probabilities in D with those in the distributions
generated by e. We also have to add the probabilities for
identical y values that are produced by different invoca-
tions of the generator. This is done in the definition of D00:

1DeU¼ lD:ðE,D00Þ
where E¼ fðx,yÞ 9 x 2 domðDÞ, y 2 domðeðxÞÞg

D0 ¼ fððx,yÞ,pqÞ 9 ðx,pÞ 2 D, ðy,qÞ 2 eðxÞg

D00 ¼ fðy,
X

ððx,zÞ,pÞ2D0 ,z ¼ y

pÞ 9 y 2 rngðdomðD0ÞÞg

Visually, we represent edges in generate steps by collap-
sing the common tails of edges from the same source x,
emphasizing the idea that generators partition or split
blocks in the probability space when a value in D leads to
more than one value in D00.

5.2. Group

A group operation g transforms a plain distribution D
into a grouped distribution D0. As described in Section 4.1,
grouping introduces a simplified view of a distribution,
hiding some of its underlying structure by visually mer-
ging sets of blocks into groups in order to emphasize

some aspect of the explanation. Unlike generators (and
most other operations), grouping does not fundamentally
modify the underlying probability distribution. The
operation is provided purely to support the explanation
of probabilistic situations rather than their computation.

The operation’s argument is a grouping function g :
A-T that maps values in D : /AS onto some type T
whose elements can be checked for equality. When
several values in D map to the same t : T, their blocks
will be placed in the same group (represented by t) in the
resulting grouped distribution D0 : /AST . These blocks
will then be shown merged in the visual representation,
and labeled by the sum of their probabilities. For example,
we can represent the final step of the explanation of the
three coins problem in Fig. 1 by the operation hasTails,
where the predicate hasTails : Cn-Bool is true if its argu-
ment coin sequence contains at least one tails value and
false otherwise. In the visual notation, the blocks of the
three sequences that satisfy hasTails are grouped together
in the explanandum, and the probability of the group is
the sum of its component blocks. The remaining block
(that does not satisfy the predicate) is isolated in its own
group. We also distinguish grouped distributions visually
by drawing the distribution with thick borders indicating
that the view imposed by the group overrides the stan-
dard representation of the distribution.

Recall from Section 4.1 that a grouped distribution is
represented by a set of groups. Each group is a pair ðt,XÞ,
where t is the grouping value produced by g (true or false
in the hasTails example above), and X is the set of blocks
contained in the group. We build a grouped distribution
D0 from a preceding plain distribution D and the grouping
function g in the story semantics of group operations
below:

1 gU¼ lD:ðE,D0Þ

where E¼ fðx,gðxÞÞ 9 x 2 domðDÞg

D0 ¼ fðt,fðx,pÞ 9 ðx,pÞ 2 D, gðxÞ ¼ tgÞ9t 2 fgðxÞ9x 2 domðDÞgg

We connect edges to blocks in plain distributions and to
groups in grouped distributions, using values to address
blocks and grouping values to address groups (see Section
4.2). This is demonstrated in the definition of E, where we
produce an edge from each block in D to its corresponding
group in D0.

There are some differences between the structural
representation of grouped distributions in the abstract
syntax (distribution graphs) and their rendering in the
concrete syntax (visual notation). One is that a group’s
representative value t is not reflected in the visual nota-
tion. We could imagine, for example, replacing the values
displayed in a group by their common grouping value t.
This would introduce a mechanism for abstraction that
might sometimes be useful in representing more complex
problems. We choose not to do this for a couple reasons:
(1) similar (but irreversible) functionality is provided
already by the map operation, discussed in Section 5.3
and (2) there is a trade-off between introducing
abstraction and mapping closely to our domain of prob-
ability distributions [15]. For a language focused on

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 9

explainability, we again prefer simplicity, concreteness, and
a high closeness of mapping over generality and scalability.
Grouping values are needed in the abstract syntax, however,
for edge addressing, as seen above, and for the filtering of
grouped distribution, discussed in Section 5.4.

Another difference between the abstract and concrete
representations of grouped distributions is that in the visual
notation we display the probability of a group as the sum of
the probabilities of the blocks it contains. This reflects that
the primary purpose of grouped distributions, from an
explanation standpoint, is to reduce the need for readers
to perform hard mental operations [15] by organizing
distributions into the relevant cases explicitly. We do not
represent this sum explicitly in the abstract syntax since it
can be easily derived.

5.3. Map

While the generate and group operations may only be
applied to plain distributions, the map operation (and
filter in the next section) can be applied to either plain or
grouped distributions. When applied to a plain distribu-
tion, a map operation nf transforms D : /AS by applying
the function f : A-B to each value in the distribution,
producing a new distribution D0 : /BS. When applied to a
grouped distribution D : /AST , map behaves similarly,
applying f to every value within every group, preserv-
ing the grouping and producing a distribution of type
D0 : /BST . We will consider the plain distribution case
first and adapt this to grouped distributions afterward.

If f is one-to-one, the structure of D is unchanged by a
map operation. That is, D0 will have the same number of
blocks as D and each will have the same probability—only
the values in D will be changed. This is equivalent to the
traditional functional programming view of mapping a
function over a list or other data structure.

If f is not one-to-one, however, the blocks of A values
that map to the same B value will be merged; that is,
the probability of a value y : B in D0 will be the sum of
the probabilities of all the x values in D for which f ðxÞ ¼ y.
For example, consider the following distribution of coin
sequences, produced by applying the generator sequence
DcoinxDcoin to an empty initial distribution:

twoCoins¼/HH25,HT25,TH25,TT25S : /CnS

Suppose we also have a function countTails : Cn-Int that
returns the number of tails values in a sequence of coin
flips. Applying ncountTails to twoCoins yields the following
plain distribution of integers:

numTails¼/025,150,225S : /IntS

In this way, a map can function similarly to a group
operation, except that it actually changes the values and
structure of the underlying distribution, so the original
cannot easily be recovered. If instead we apply countTails
to twoCoins, we get a distribution of coin sequences, grouped
by integers:

/ð0,fHH25gÞ, ð1,fHT25,TH25gÞ, ð2,fTT25gÞS : /CnSInt

This overlap in functionality leads to a design decision for
explanation creators of whether to employ a map or group
operation when combining events.

When choosing between map and group, if subsequent
steps in the story fundamentally rely on the combined result
(that is, if the combined value is needed as input in a later
generate or map step) then a map operation must be used.
On the other hand, if the combined result is needed only for
explanatory purposes, to categorize the events into equiva-
lence classes, then a group may be better since it directly
shows the values that make up the cases instead of
abstracting these away in the combined value. To demon-
strate this, consider again the final step of the explanation of
the three coins problem in Fig. 1. If we had applied nhasTails
instead of hasTails at this step, we would have produced
the less useful plain distribution /false25,true75S instead of
the grouped distribution shown.

To define the story semantics of the map operation, we
first introduce a helper function map : ðA-BÞ $/AS-
/BS that maps a function over a plain distribution,
merging blocks that map to the same values by summing
their probabilities, as described above:

mapðf ,DÞ ¼ y,
X

ðx,pÞ2D
f ðxÞ ¼ y

p

0

@

1

A9y 2 ff ðxÞ9x 2 domðDÞg

8
<

:

9
=

;

With the heavy lifting off-loaded to map, the definition of
the story semantics for nf when applied to a plain
distribution is mostly trivial:

1nf U¼ lD:ðE,D0Þ

where E¼ fðx,f ðxÞÞ 9 x 2 domðDÞg

D0 ¼mapðf ,DÞ

The edges for a map operation connect each block in D to
its corresponding block in D0. Thus, every block in D will
have one departing edge while blocks in D0 could have
potentially many arriving edges, if f is not one-to-one.

When applying nf to a grouped distribution D, we just
apply our helper function map to the subdistribution X
contained in every group (t,X), thereby mapping f first
over the groups in D, then over the values in those groups.
Note that each X is not properly a distribution since its
probabilities do not sum to 1, but that this use of map is
still valid since X is structurally identical to a distribution
and since map does not rely on its argument representing
a complete sample space:

1nf U¼ lD:ðE,D0Þ

where E¼ fðt,tÞ 9 ðt,XÞ 2 Dg

D0 ¼ fðt,mapðf ,XÞÞ 9 ðt,XÞ 2 Dg

A subtle feature of this implementation is that maps act
locally with regard to groups. That is, if two values in D
map to the same value through f, they will only be merged
in D0 if they were already in the same group. If they were
in different groups in D, however, they will remain in
different groups in D0 and thereafter, until a subsequent
ungroup operation (see Section 5.5).

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]10

Concerning edges for maps applied to grouped dis-
tributions, we draw only a single edge between corre-
sponding groups in D and D0, regardless of the effect of f
on the values contained within. For example, see the last
two steps of the Monty Hall explanation in Fig. 2. This is
to reduce visual noise in the explanation and provides a
way for explanation creators to indicate that all values
in a group are affected in a similar way by the map
operations.

5.4. Filter

Like map, the filter operation can be applied to either
plain or grouped distributions, and has a different story
semantics for each case. Again, we consider the case
for plain distributions first, then adapt it to grouped
distributions.

A filter operation ?p transforms a plain distribution D :
/AS by removing blocks from D according to the predicate
p : A-Bool. The area of the removed blocks is redistributed
proportionally among the remaining blocks in the resulting
distribution D0 : /AS. For example, recall the distribution
numTails¼/025,150,225S from the previous subsection.
Applying the filter ?isPos to numTails, where isPos :
Int-Bool is true if its argument is greater than zero, yields
the distribution /166:7,233:3S. Note that the ratio of the
probabilities of the values that pass through the filter is
preserved in the resulting distributions.

The story semantics of the filter operation when
applied to a plain distribution is defined below. In the
definition, the constant c represents the proportion of the
probability space that is not filtered out by the predicate.
This is used to scale the probabilities of the remaining
values:

1?pU¼ lD:ðE,D0Þ

where c¼
X

ðx,qÞ2D,pðxÞ

q

E¼ fðx,xÞ 9 x 2 domðDÞ,pðxÞg [fðx, ?Þ9x 2 domðDÞ,:pðxÞg

D0 ¼ fðx,q=cÞ 9 ðx,qÞ 2 D,pðxÞg

As described in Section 4.2, edges from blocks eliminated
by a filter end with terminating bars while edges from
blocks whose values pass the predicate are connected to
their corresponding blocks in the subsequent distribution.

For grouped distributions, filters work slightly differ-
ently, filtering out whole groups of values at once. Thus,
the type constraints on a filter operation ?p applied to a
grouped distribution D : /AST are slightly different.
The predicate p must have type T-Bool instead of
A-Bool, since the predicate is on the grouping values
rather than the values in the underlying distribution.
Often, a filter is performed immediately after a group,
where the grouping function is the predicate and the
argument to the filter operation is just lt:t¼ true. This
accentuates the effect of the filter, grouping together all of
the elements that will and won’t pass the filter, and
presenting the sum of each groups probabilities. Section
6.5 provides an example of this explanation strategy.

The story semantics of filtering a grouped distribution
are given below. Again, c accumulates the proportion of
the probability space that passes the filter and is used to
scale the probabilities of values in the resulting distribu-
tion:

1?pU¼ lD:ðE,D0Þ

where c¼
X

ðt,XÞ2D,q2rngðXÞ,pðtÞ

q

E¼ fðt,tÞ 9 t 2 domðDÞ,pðtÞg [fðt, ?Þ9t 2 domðDÞ,:pðtÞg

D0 ¼ fðt,fðx,q=cÞ 9 ðx,qÞ 2 Xg, ðt,XÞ 2 D, pðtÞg

Edges for the grouped distribution case are similar to the
plain distribution case, except connecting between groups
rather than blocks.

5.5. Ungroup

An ungroup operation removes the view imposed by
a previous group operation by transforming a grouped
distribution back into a plain distribution. That is, it
defines the distribution transformation /AST-/AS. This
is almost, but not quite as simple as taking the union of
the subdistributions contained in each group, as originally
described in Section 4.1. The hitch is that sometimes a
map operation can map values in different groups to the
same value—we must merge these during the flattening
process by summing their probabilities as if the map had
been applied to a plain distribution. To do this, we can
reuse the map helper function defined in Section 5.3.

In the following story semantics for the ungroup
operation, we build an intermediate plain distribution of
type /T $ AS in which each value x is prefixed by the
value t of its group in the previous distribution.
This allows us to flatten the distribution while ensuring
that every value is unique. We can then attain the desired
distribution of type /AS by invoking the helper function
map with the function snd that returns the second value
of a pair. This will combine values that were the same but
in different groups in the original grouped distribution,
accumulating their probabilities:

1 U¼ lD:ðE,D0Þ

where E¼ fðt,xÞ9ðt,XÞ 2 D,x 2 domðXÞg
D0 ¼mapðsnd,fððt,xÞ,pÞ9ðt,XÞ 2 D,ðx,pÞ 2 XgÞ

We produce an edge leading to each block in the
ungrouped distribution from its containing group in the
grouped distribution.

An example use of the ungroup operation will be
provided in Section 6.5.

5.6. Representative example selection

Like the group and ungroup operations, the final
operation in Probula is not strictly needed for computa-
tion with probabilistic distributions (unlike the other
three operations), but rather to support the creation of
effective explanations. The operation ! x means to select
the value x as a representative example from the previous

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 11

plain distribution. This operation is used when all of the
cases in a distribution are isomorphic and equally
probable, simplifying subsequent distributions through-
out the explanation by assuming a single case rather than
considering all cases simultaneously.

A typical example of this operation’s use is provided in
the first step of the explanation of the Monty Hall Problem
in Fig. 2. In the initial distribution, we represent that the
prize could be hidden behind any one of the three doors,
each with equal probability. The important observations
are that (1) it does not really matter which door hides the
prize and (2) the probabilities of winning or losing are the
same for any one case as for the problem as a whole. We
could confirm this by removing the second step of the plot
and observing that the number of values in subsequent
distributions would be multiplied by three (and their
probabilities correspondingly divided by three), but that
the final probabilities in the explananda would remain
unchanged.

Given the above description, it should be obvious that
there are significant constraints on when we can employ
the representative example operation. Fortunately, these
constraints are easy to check and enforce. Given a pre-
ceding distribution D and a plot ! xx P where ðx,pÞ 2 D, we
require that 8ðy,qÞ 2 D, p¼q and the limits of the distribu-
tion graphs 1PUð/x100SÞ and 1PUð/y100SÞ are the same.
The second of these constraints reveals the story seman-
tics of the operation, given below, in which we simply
create a new distribution where the value x has 100%
probability:

1! xU¼ lD:ðE,D0Þ

where E¼ fðy,xÞ 9 y 2 domðDÞg

D0 ¼/x100S

The edges generated by a representative example step are
also trivial, but we represent them in the visual concrete
syntax by merging their heads and making the line from
the chosen example block bold.

The representative example operation requires a
somewhat deeper understanding or intuition of probabil-
istic reasoning to accept in isolation. In Section 6.7 we
present a simple transformation for changing the parti-
cular example chosen as a representative. This can help to
convince the readers of an explanation who do not
immediately see the isomorphism between the cases.

5.7. Summary

The operations presented in this section can be sepa-
rated into two classes of three operations each, according
to their primary role in the creation of explanations of
probabilistic reasoning. The generate, map, and filter
operations represent probabilistic computations. These
operations manipulate the values and probabilities in
distributions directly; that is, they are primarily con-
cerned with the computation of results essential to the
explanation. The group, ungroup, and example operations
are concerned instead with the presentation of explana-
tions. Group and ungroup manipulate a grouping view

overlaid on a distribution while the example operation
reduces a set of equivalent cases to a single representative
case. These operations organize the computed results in
order to make the important points clear and the expla-
nation understandable.

In Fig. 5 we summarize the type information for each
operation, including the types of the distribution transfor-
mations (from input to output) and of the arguments to
each operation. Whether an operation is applied to a plain
or grouped transformation can be determined from the
type of the input distribution (/AS is plain, /AST is
grouped). Note that there are two entries for the map
and filter operations since they can be applied to either
plain or grouped distributions, and their implementations,
constraints, and distribution transformations differ depend-
ing on this context.

In the next section we develop theorems for rearranging,
merging, and introducing these operations to automatically
generate alternative but equivalent explanations.

6. Generating alternative explanations

One of the most important features of Probula is the
ability to algorithmically transform a single explanation,
defined by an explanation creator, into many alternative,
equivalent explanations of the same probabilistic reason-
ing problem. This allows us to bridge the gap between
the two qualitatively different kinds of explanations
discussed in Section 1. On one end we have explanations
given directly from one person to another. Personal
explanations are extremely adaptable. The explainer can
answer questions, rephrase points, clarify assumptions,
and provide alternative examples. The drawbacks of
personal explanations are that they are inconsistent,
time-consuming to share, and often difficult to come by
in the first place. At the other end are what might broadly
be called static explanations, those given in text or
pictures, provided in a book or on the web. These
explanations are much less adaptable but make up for it
with higher consistency, availability, and shareability. In
the middle, and intending to complement both, are
explanation stories like those provided by Probula.

Probula explanations can be presented as simple
illustrations, as throughout this paper, conferring the
benefits of static explanations. But they are also highly
adaptable, able to transformed through a set of laws into
alternative explanations that tell the same basic story in a

Fig. 5. Summary of operations and their types.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]12

different way, emphasizing one point or another. In this
section we will present these laws, define what it means
for an explanation to tell the same basic story, and
define some simple metrics for discussing the differences
between tellings.

6.1. A story and its telling—fabula and sujet

Narrative is one of the most important and funda-
mental way of sharing knowledge and ideas. It is the basis
not only of arts like literature and cinema, but also of
history, journalism, and the entire institution of academic
authorship. It is the idea that information can be con-
veyed as a story that the same essential story can be told
in different ways, and that how that story is told impacts
how it is perceived and understood.

The basic advantage of personal explanations can be
boiled down to the fact that a personal explanation’s
narrative is flexible—it can be modified on the fly to suit
the particular needs of the situation. If the same person
gave an explanation of the Monty Hall Problem to three
different people, she would likely tell three different
stories. The important point of this section, however, is
that while these stories might differ in their telling, they
must also, as explanations of the same problem, share
some common essence. In narratology, this point is some-
times captured in the terms fabula, meaning the basic
facts or ‘‘raw material’’ of a story, and sujet, meaning how
the story is organized and told [5]. In our scenario, the
fabula of the three personal explanations is constant
while the sujet is likely to change between tellings,
depending on the individual needs of the listeners and
other factors.

In Probula, a plot and the story it generates correspond
to a particular sujet—one telling or view of a larger class of
related stories with a common fabula. The laws presented in
this section represent transformations from one sujet in this
class to another. Through the combination and repeated
application of these laws, we can view a Probula explana-
tion not just as a single story, but as a navigable space of
different stories that all explain the same basic problem.

The laws are defined as transformations of a part of a
Probula plot (a subplot), usually translating one sequence
of operations into another. To help ensure that a law
preserves the underlying fabula of generated stories,
we compare the limits of the distribution subgraph (see
Section 4.4) generated by the affected subplot, before and
after the transformation. If the limits are the same, we say
that the transformation is limit preserving. While limit
preservation does not capture the preservation of fabula
directly, it does so indirectly by guaranteeing that a story
transformation is strictly local. Specifically, a limit pre-
serving transformation affects only the intermediate
distributions produced by a subplot and nothing else in
the story.

Transformation locality is important for several reasons.
First, it enables the composition of transformation laws—
new Probula explanations can be generated not only by
applying the laws described in this section directly, but by
composing these laws into larger transformations, broad-
ening the space of potential explanations. Second, it allows

us to consider the effect of a transformation independent of
its context. In the next subsection we will define a couple of
simple metrics to support the isolated analysis of a trans-
formation and to frame its effects on the perception and
understandability of its generated stories.

6.2. Measures of story complexity

In order to quantify the effect of an explanation
transformation, we introduce the notions of the horizon-
tal and vertical complexity of a distribution (sub)graph.
These metrics are not intended to measure the effective-
ness or understandability of an explanation directly, but
to provide a way to quantify the effect that a transforma-
tion has on an explanation, to support the comparison of
transformations and other discussion.

The vertical complexity of a (sequential) distribution
subgraph is simply the number of steps it contains.
The horizontal complexity of a subgraph is the total number
of edges it contains divided by the number of steps.
For example, consider the subgraph corresponding to the
first three generate steps in the explanation of the three
coins problem in Fig. 1. The vertical complexity of this
subgraph is 3, while the horizontal complexity is (2þ4þ8)/
3¼4.67. Note that the merging of the heads and tails of
edges in the concrete syntax has no effect on the computa-
tion of the horizontal complexity of a subgraph.

Vertical complexity intends to capture the intuition
that the length of an explanation affects its understand-
ability. A longer explanation presents more individual
steps that must be examined and understood, and
increases the cognitive load when considering the expla-
nation as a whole. Horizontal complexity represents
instead the average difficulty of understanding each step
in the explanation. The reasoning is that steps with more
edges require more effort for readers to untangle and
accept. Again, however, neither of these metrics are
intended to absolutely quantify understandability—we
cannot take a graph with a vertical complexity of 4 and
conclude that it is easier to understand than an unrelated
graph with a vertical complexity of 5 (even if their
horizontal complexities are identical). Instead we use
complexity to discuss the relative understandability of
graphs related through a transformation law.

As we will see in the rest of this section, most interesting
transformations present a trade-off between the vertical
and horizontal complexity of an explanation. This means
that there is usually not a unique ‘‘best’’ explanation to be
achieved; different explanations fill different roles and have
different benefits and drawbacks. Using the transformation
laws presented below we can move between these different
explanations. This not only enables users to get the parti-
cular static explanations that work best for them, but also to
explore the explanation space and view many alternative
explanations for the same problem, increasing the value of
Probula explanations further.

6.3. Operation fusion

The first class of transformations we will consider
follows from the observation that often adjacent operations

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 13

of the same kind can be merged by combining the effects of
their argument functions. We call this operation fusion. For
example, consider again the first three generate steps in the
example in Fig. 1. In Fig. 6 we show how these can be fused
into a single generate step that represents the flipping of all
three coins at once. Adjacent generators, maps, and filters
can all be merged. In this subsection we will consider each
of these in turn.

Recall that a plot transformation is considered valid if it
preserves the limits of the distribution subgraph generated
by the affected subplot. When fusing two adjacent genera-
tors De1 and De2, we must therefore identify an event
generating function e3 such that if 1De1 xDe2 x PUðD0Þ ¼
ðD0,E1Þx ðD1,E2Þx ðD2,E3ÞxG, then 1De3 x PUðD0Þ ¼
ðD0,E2

0Þ x ðD2,E3ÞxG. Such a function is defined in the
following theorem for fusing adjacent generate steps. Note
that, throughout this section, we use the symbol * to
indicate a directed, limit-preserving plot transformation and
we omit the common subsequent plot P from the notation.
That is, we write a plot transformation o1 x $ $ $ x oj x
P*o1 0 x $ $ $ x ok

0 x P more concisely as o1 x $ $ $ x oj*
o1 0 x $ $ $ x ok

0.

Theorem 1. Generator fusion:

De1 xDe2*Dlx:fðz,qrÞ 9 ðy,qÞ 2 e1ðxÞ, ðz,rÞ 2 e2ðyÞg

Any number of adjacent generators can be fused by
repeatedly applying this theorem.

That generator fusion is limit preserving follows
directly from the story semantics of plots from Section
4.4 and of generate operations in Section 5.1. The initial
distribution D0 is trivially preserved. The preservation of
D2 can be confirmed by computing and comparing the
semantics of the LHS and RHS of the transformation.
For the LHS, we first compute the intermediate distribu-
tion D1 and use that to compute the semantics of D2, as
follows:

D1 ¼1De1UðD0Þ ¼ fðy,pqÞ9ðx,pÞ 2 D0,ðy,qÞ 2 e1ðxÞg

D2 ¼1De2UðD1Þ ¼ fðz,pqrÞ9ðy,pqÞ 2 D1,ðz,rÞ 2 e2ðyÞg

For the RHS we compute D2 directly:

D2 ¼1De3UðD0Þ ¼ fðz,pqrÞ9ðx,pÞ 2 D0,ðz,qrÞ 2 e3ðxÞg

where e3 ¼ lx:fðz,qrÞ9ðy,qÞ 2 e1ðxÞ,ðz,rÞ 2 e2ðyÞg

Since the two resulting distributions are also identical, the
transformation is limit preserving. We will not work through
the limit-preservation proofs of all the transformations as

verbosely, but they can all be confirmed likewise by comput-
ing and comparing the story semantics.

By fusing two generate steps into one, generator fusion
trivially reduces the vertical complexity of a story by one.
To compute the change in horizontal complexity, we first
observe that the number of edges at any one generate
step is equal to the number of values in the produced
distribution (D2 above). For example, in Fig. 1, the sizes of
the first three distributions after the initial distribution
are 2, 4, and 8, and these are also the number of edges in
each of the three generate steps. Therefore, the horizontal
complexity of the story produced by the LHS of Theorem 1
is ð9D19þ9D29Þ=2, while the horizontal complexity of the
RHS is 9D29. Additionally, we know that 9D29Z9D19, since
generators can only add values to a distribution. There-
fore, the horizontal complexity of the RHS is greater than
(or equal to) that of the LHS by ð9D29&9D19Þ=2.

In qualitative terms, the trade-off between vertical and
horizontal complexity with generator fusion is a trade-off
between many small steps that incrementally build up a
complex distribution or fewer larger steps that do the same.
We expect that the explanatory value of each view is not
constant throughout the process of reading and under-
standing an explanation. When an explanation is first
presented, it might be helpful to see how a complex
distribution is produced from smaller steps. Once this aspect
is understood, however, the additional generators become
visual noise that distract from the more subtle and inter-
esting parts of an explanation. Through generator fusion, the
user can take advantage of both views—seeing the more
verbose explanation initially and fusing generators together
as they are understood.

Like generators, adjacent maps and filters can also be
fused. For maps, we use the composition of the two
mapped functions as the argument to the new map
operation.

Theorem 2. Map fusion:
nf 1 x

nf 2*
nðf 2Jf 1Þ

We fuse adjacent filters by filtering with the conjunction
of their predicates.

Theorem 3. Filter fusion:

?p1 x ?p2*?lx:p1ðxÞ4p2ðxÞ

That these transformations are limit preserving can be
confirmed in the same way as generator fusion, by
expanding the story semantics of both sides of the
transformations and comparing. As with generator fusion,
these transformations trivially reduce the vertical com-
plexity of a story by one and increase (though again, not
strictly) the horizontal complexity of the explanation.

The number of edges in a filter or map step is
determined not by the size of the produced distribution,
as with generators, but rather by the size of the input
distribution. Assume a similar D0 and D2 as above, for
representing the identical limits of the generated distri-
bution graphs before and after map or filter fusion, and a

Fig. 6. The three generators from Fig. 1 fused into one.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]14

similar D1 for representing the intermediate distribution
produced by the plot on the LHS only. Then the horizontal
complexity of the graph before each transformation is
ð9D09þ9D19Þ=2 while the horizontal complexity after each
transformation is 9D09. In this case, we have the partial
inequality 9D09Z9D19, since maps and filters can only
remove values from distributions. So the horizontal com-
plexity after each transformation is greater than before by
ð9D09$9D19Þ=2. These differences present a similar trade-
off for explanation consumers as generator fusion.

Note that given a suitable representation, it is also
possible to split previously fused generators, maps, or filters.
However, such transformations are not possible in general
(that is, on operations that were not previously fused)
unless we impose further restrictions on these operations,
making their arguments somehow decomposable.

6.4. Operation commutation

In addition to fusing adjacent operations of the same
kind, many operations can be commuted with each other.
These transformations present less clear explainability
trade-offs than operation fusion (or the transformations
we will look at in the next subsection) but they are often
useful as preparatory steps to setup other transforma-
tions. Therefore, we will present some commutation
transformations here, relatively briefly.

Since filters do not affect the types of the distributions
they modify, they can be freely commuted with each
other. Note that we use) to indicate a limit-preserving,
undirected plot transformation.

Theorem 4. Filter-filter swap:

?p1 x ?p2)?p2 x ?p1

That this transformation preserves the limits of the
corresponding distribution subgraph is obvious—in either
case, the resulting distribution contains only the values
that pass both predicates. Observe that this theorem can
also be viewed as a corollary of Theorem 3 (Filter Fusion)
since applying that transformation to both ?p1 x ?p2 and
?p2 x ?p1 will result in the same fused filter operation.

Like all commutation transformations, filter swapping
has no effect on the vertical complexity of the produced
graph; no operations are added or removed, they are
simply rearranged. The transformation’s effect on hori-
zontal complexity depends on the specific predicates p1
and p2. If fewer values in D0 pass p1 than p2, the graph
produced by the LHS will have a lower horizontal com-
plexity, while the opposite will be true if p2 filters more
values out of D0 than p1. Although the transformation
impacts horizontal complexity inconsistently, swapping
the order of two filters might still help a user to under-
stand the exact effect that each filter has on the resulting
distribution. Once these are understood, the filters might
be fused with Theorem 3.

Unlike filters, maps do affect the types of their argu-
ment distributions, meaning that maps cannot be as
freely commuted as filters. However, often we can push
a map nf below another operation o by composing f with
the function associated with o. In other words, we can

perform the mapping described by f implicitly within o, in
order to delay the actual map step. These transformations
should be used judiciously since they can obscure the
original meaning of o, but they are safely limit preserving
and may be useful to setup other transformations.

The following theorem provides a limit-preserving
transformation that pushes a map operation below a filter
operation.

Theorem 5. Map-filter swap:
nf x ?p*?ðpJf Þx nf

Assuming that the input distribution to this subplot is
D0 : /AS, then f : A-B and p : B-Bool. By composing p
and f, we change the type of the predicate passed to the
filter to A-Bool, allowing it to be applied directly to D0.
The intermediate distribution of the subgraph produced
by the LHS will have type /BS, while on the RHS it will
have type /AS. The final distribution graphs will be the
same, however, and be of type /BS.

To illustrate map-filter swapping, consider the follow-
ing plot posTails. Recall from Sections 5.3 and 5.4 that the
function countTails : Cn-Int returns the number of tails in
a sequence of coin values. The function isPos : Int-Bool
returns whether its argument is positive or not:

posTails¼ ncountTailsx ?isPosx E

This plot, given an initial distribution of coin sequences,
produces an explanation of the number of tails in each
sequence that contains at least one tails. For example,
given the initial distribution /HH25,HT25,TH25,TT25S, the
map step produces the intermediate distribution
/025,150,225S, and the filter step produces the final
distribution /166:7,233:3S. This is exactly the running
example from Sections 5.3 and 5.4.

Applying the map-filter swap transformation results in
the following alternative plot posTails0:

posTails0 ¼ ?ðisPosJcountTailsÞx ncountTailsx E

Given the same initial distribution, the filter step elim-
inates the HH sequence, producing the intermediate
distribution /HT33:3,TH33:3,TT33:3S, and the map step
produces the same final distribution /166:7,233:3S.

Map-filter swapping decreases the horizontal com-
plexity of the produced graph since moving the filter up
can only decrease the number of edges produced by the
map step. However, this is a case where horizontal
complexity does not tell the whole story since the
predicate itself is now more complicated.

Using the same strategy as Theorem 5, we can also
push maps below group operations. This transformation is
captured in the following theorem.

Theorem 6. Map-group swap:
nf x g* ðgJf Þx nf

As with map-filter swapping, this transformation will
produce a graph with a dubious decrease in horizontal
complexity.

To illustrate map-group swapping, consider the follow-
ing variant of our previous example, where we use the

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 15

isPos function to group, rather than filter the intermediate
distribution:

posTailsGrp¼ ncountTailsx isPosx E

Given the initial distribution /HH25,HT25,TH25,TT25S, the
map step produces the intermediate distribution
/025,150,225S, and the group step produces the grouped
distribution fðfalse,f025gÞ,ðtrue,f150,225gÞg, which has type
/CnSBool.

Applying the map-group swap transformation to the
posTailsGrp plot yields the following equivalent plot:

posTailsGrp0 ¼ ðisPosJcountTailsÞx ncountTailsx E

If we apply this to the same initial distribution, we get the
following intermediate distribution fðfalse,fHH25gÞ,ðtrue,
fHT25,TH25,TT25gÞg, which will map to the same resulting
grouped distribution as we obtained with posTailsGrp.

Not all pairs of operations containing a map can be
swapped, however. Recall from Section 5.3 that the map
operation merges values only locally within groups.
For example, if we apply the operation ncountTails to
the grouped distribution fðfalse,fHH25,TH25gÞ,ðtrue,fHT25,
TT25gÞg, we get the grouped distribution fðfalse,f025,125gÞ,
ðtrue,f125,225gÞg, in which the two blocks that map to 1 are
not merged since they are in different groups. This means

that although we can lift a group above a map by simulating
the map in the group operation, as in Theorem 6, we cannot
lift an arbitrary map above a group, since it could result in
blocks being merged in the intermediate distribution.
For the same reason, we cannot swap map and ungroup
operations.

Finally, since filters on grouped distributions affect
groups rather than their contained values (see Section 5.4),
we also cannot commute filter and ungroup operations.

6.5. Advanced transformations

In this subsection we move from the simple combining
and rearranging of operations to more subtle and complex
transformations. Like the fusion operations, the laws pre-
sented below pose interesting trade-offs for explainability.

The first transformation we will consider involves a
process called filter lifting and is demonstrated by an
alternative explanation for the three-coins problem
shown in Fig. 7. The basic idea is that if all of the
descendants of some block in a distribution Di (anywhere
in a distribution graph) are eliminated by a downstream
filter, then we can introduce a new filter immediately
below Di that filters that block out. In the three-coins
example, by referring to the original explanation in Fig. 1,

H H
25%

H T
25%

T H
25%

T T
25%

Two coin flipsGENERATE

THH
16.7%

THT
16.7%

HTH
16.7%

HTT
16.7%

HHH
16.7%

HHT
16.7%

Third coin flipGENERATE

H H H
25%

H H T
25%

H T H
25%

T H H
25%

H H H
25%

H H T H T H T H H
75%

FILTER

GROUP

H H
33.3%

H T
33.3%

T H
33.3%

Disregard cases that
cannot have two heads

FILTER

Consider only cases where
two heads have been flipped

Group by whether or
not tails has been flipped

100%

Fig. 7. Example of filter lifting.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]16

we can see that all of the descendants of the TT block in
the D2 distribution are eliminated by the filter two steps
below. In the transformed explanation in Fig. 7, we
introduce a new filter immediately after this value is
generated, filtering it and its descendants out two
steps early (note that we have also fused the first two
generators). We capture this transformation in the fol-
lowing theorem.

Theorem 7. Filter Lifting Given preceding distribution D,
if 8y descended from x 2 domð1DeUðDÞÞ, :pðyÞ, then

Dex . . . x ?p*Dex ?lz:xazx . . . x ?p

Filter lifting increases the vertical complexity of a dis-
tribution graph by one, but offers the potential to sig-
nificantly reduce the horizontal complexity. That filter
lifting always decreases horizontal complexity by some
amount is easy to see—the number of edges at any step in
a story is a function of the size of one of its adjacent
distributions, and every distribution between De and ?p
will be strictly smaller after filter lifting. Exactly how
much the horizontal complexity decreases depends
on how many steps are between the generator and the
filter and how many new values are generated from the

eliminated value x. For the three-coins example, filter
lifting reduces the horizontal complexity of the relevant
subgraph of the explanation from (8þ8)/2¼8 to
ð4þ6þ6Þ=3¼ 51

3. This reduction in horizontal complexity
reflects the observation, encoded in the transformed
explanation that values that will eventually be eliminated
are in some sense irrelevant. By introducing an additional
step to eliminate these values immediately after they
arise, we can invest a little explanatory effort early to
avoid the effort of considering their descendants over and
over, at each step.

Note that we can also preemptively eliminate several
such irrelevant values from a single distribution with just
one filter by alternating applications of Theorem 7 (filter
lifting) and Theorem 3 (filter fusion).

The next two transformations we present can be used
to emphasize a particular step in an explanation’s story,
drawing attention to it and making its effects more
explicit. We do this by introducing a group-ungroup pair
around the step we wish to emphasize, using a process
called group bracketing.

First we consider the bracketing of a filter operation.
This is demonstrated in Fig. 8, where we have bracketed the
filter step in the three coins explanation from Fig. 1. When

GROUP
Group by whether
there are two heads

HHH THH
50%

HTT THT TTH TTT
50%

100%

TTH
12.5%

TTT
12.5%

THH
12.5%

THT
12.5%

HTH
12.5%

HTT
12.5%

HHH
12.5%

HHT
12.5%

GENERATE Three coin flips

H H H H T H T H H
100%

FILTER
Consider only the case
where there are two heads

H H H
25%

H H T
25%

H T H
25% 25%

H H H
25%

H H T H T H T H H
75%

GROUP
Group by whether or
not tails has been flipped

UNGROUP
Break group into
components

HTHHHT

H H T

T H H

Fig. 8. Example of group bracketing.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 17

bracketing a filter, the predicate of the filter is used as the
grouping function, producing a distribution divided into two
groups—those that will pass the filter and those that will
fail. The filter step is then greatly simplified, eliminating one
group and passing the other on as the subsequent distribu-
tion, which is then ungrouped.

Group bracketing of a filter operation is captured
formally in the following theorem. Note that we cannot
bracket a filter if we are already in the context of a group
operation since groups cannot be nested. Also, recall from
Section 5.4 that filters on grouped distributions are
defined in terms of the grouping value rather than the
underlying elements, so we change the filter predicate
from p to lt:t¼ true (equivalently, the identity function)
since each group will be represented by the result of p
applied to each of its contained elements.

Theorem 8 (Group Bracketing of a Filter). If not already in
the context of a group operation, then

?p* px ?lt:tx

Group bracketing increases the vertical complexity of a
story by two, adding a group and ungroup operation.
It also decreases the horizontal complexity. If D and
D0 represent their common limits, with 9D9Z9D09, the
horizontal complexity of the unbracketed filter is 9D9; for
the bracketed version, there are 9D9 edges for the group step,
2 edges for the filter step, and 9D09 edges for the ungroup
step, for a horizontal complexity of ð9D9þ2þ9D09Þ=3, which
is clearly less than 9D9.5 The qualitative trade-off is that we
accentuate and simplify the filter step at the cost of the
additional complexity introduced by the new group and
ungroup steps. Through bracketing, a user can see all of the
values that either pass or fail a filter, together and at a glance,
rather than having to scan the outgoing edges of all values in
the unbracketed filter step.

Similarly, we can also bracket a map operation in a
group-ungroup pair. In this case, we use the mapped
function first as a grouping function (assuming the func-
tion maps to a type that can be checked for equality), then
apply the map, then ungroup.

Theorem 9 (Group Bracketing of a Map). Given f : A-B, if
B can be checked for equality, and if not already in the
context of a group operation, then

nf* f x nf x

This operation offers little benefit if f is one-to-one,
increasing the vertical complexity by two without chan-
ging the horizontal complexity. However, if fmaps several
values in D to the same value in D0, the benefit is similar
to bracketing filters. The horizontal complexity will be
decreased, and values in D that map to the same value in
D0 will be put in the same group, making it easier to see
which values in D will be merged in D0.

6.6. Transforming branched plots

Throughout this section we have considered only the
transformation of sequential plots. Since transformations
are local, these trivially apply also to branched plots as
long as the transformed subplot is entirely before the
branch point or contained within a particular branch. This
view is overly strict, however, ruling out many seemingly
valid transformations that span branch points. For exam-
ple, the subplot nf 1 x ðnf 2^

nf 3Þ is clearly equivalent (in a
limit preserving sense) to the subplot nðf 2Jf 1Þ^ðnf 3Jf 1Þ.
In the second we have fused nf 1 with nf 2 in the left branch
and nf 1 with nf 3 in the right branch. We can’t do this by
applying Theorem 2 directly, however, because neither
pair of map operations are in direct sequence—the branch
point gets in the way.

Rather than extend each transformation law to
account for branching, we instead introduce a new law
that can be composed with existing laws like map fusion
to achieve the desired effect. We call the new transforma-
tion branch unzipping, since it visually resembles the
unzipping of a zipper, and in Fig. 9 we demonstrate its
use as a preparatory step for fusing the maps in the above
example. In this figure we show an abstracted view of
three stories, with the relevant steps annotated by their
operations, and the distributions in the relevant sub-
graphs colored a lighter gray (the darker distributions
are provided to give a sense of context). The leftmost story
corresponds to the story generated by our initial subplot,
nf 1 x ðnf 2^

nf 3Þ. In the second story we unzip one level of
the story, pushing nf 1 out of the trunk and duplicating it
in each branch. Finally, in the third story, we have applied
map fusion twice, once to each branch, corresponding to
our final subplot nðf 2Jf 1Þ^ðnf 3Jf 1Þ.

The dual of branch unzipping is branch zipping, which
allows us to lift a duplicated operation at the top of each
branch into the trunk of an explanation. We capture both
of these transformations in the following theorem.

Theorem 10 (Branch Unzipping/Zipping).

ox ðPL^PRÞ)ox PL^ox PR

Recall from Section 4.4 that the limits of a distribution
subgraph G containing branches are a pair of the initial
distribution in G and a sequence of the final distribution in
each branch. That branch (un)zipping preserves the limits of
the generated subgraph follows directly from an application
of the story semantics of plots (also Section 4.4) to the LHS
and RHS of above the law.
To analyze the complexity impact of these transforma-
tions, we must extend our definitions of vertical and
horizontal complexity to branched stories. Branching
represents complexity mostly on the horizontal axis.
Therefore, we consider the vertical complexity of a
branched story to be simply the average of the number
of steps along each path in the story, while for horizontal
complexity we sum the edges across all steps, in all
branches, and divide by the (averaged) vertical complexity.

Using these definitions, we see that neither trans-
formation has any effect on the vertical complexity
of a story. Meanwhile, zipping decreases horizontal

5 Actually there are two degenerate cases where this is not true. If
9D9¼ 9D09¼ 2 or if 9D9¼ 9D09¼ 1, then group bracketing preserves or
increases the horizontal complexity, respectively.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]18

complexity proportional to the number of edges gener-
ated by o, while unzipping increases horizontal com-
plexity by the same amount. As the example above
demonstrates, however, the complexity introduced by
unzipping may be temporary when used as a preparatory
step for other transformations.

Finally, note that although we applied map fusion to
both branches after unzipping the above example, there is
no requirement that we do so. For example, we can unzip
the subplot nf 1 x ðnf 2^o3Þ (where o3 is presumably not a
map) to ðnf 1 x

nf 2Þ^ð
nf 1 x o3Þ, then apply map fusion only

to the left branch to produce nðf 2Jf 1Þ^ð
nf 1 x o3Þ. In this

case we have decreased vertical complexity by only half a
step, instead of the full step decrease in the original
example, while also increasing horizontal complexity.

6.7. Changing the representative example selection

The final law we consider follows from the discussion
in Section 5.6. Recall that the operation ! x indicates that x
is a representative example of the preceding distribution D,
and that we can therefore replace D with the distribution
/x100S. A representative value x is one that is both
isomorphic to, and equally probable as, every other value
y in D. This operation is used as the first step of the Monty
Hall Problem shown in Fig. 2, in which we choose the case
where the prize is hidden behind the left door as a
representative example.

Since x is isomorphic to all such values y, we can freely
replace ! x with ! y without changing the meaning of the
explanation. For example, in the Monty Hall Problem we

Fig. 9. Example of unzipping a branching story to enable operation fusion.

Lose
33.3%

Win
66.7%

66.7% 33.3%66.7% 33.3%

33.3% 33.3% 33.3%

Host opens non-chosen
no-win door

100%

EXAMPLE Select third value as a
representative

33.3% 33.3% 33.3%

GENERATE Candidate selects
closed door

GENERATE

33.3%33.3%

Group by currently
winning or losingGROUP

66.7%

Win
33.3%

Lose
66.7%

MAP Switch doors
(Switch doors)(Don't switch doors)

MAPMAP

16.7% 16.7%

33.3%

Fig. 10. Monty Hall problem explained with a different representative example.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 19

can equally well choose the case where the prize is behind
the center door or the right door. Fig. 10 shows an
alternative explanation of the Monty Hall Problem
in which we have chosen a different representative
example. This transformation is captured generally in
the following law.

Theorem 11 (Select Representative Example). Given x 2
domðD0Þ and y 2 domðD0Þ, then

! x)! y

Since all values must be isomorphic as a precondition to
the use of the representative example operation, the
limits are trivially preserved by this transformation up
to a similar isomorphism in the result distribution.

While changing the representative example has no
effect on the complexity of the story, it is an important
transformation for supporting the understanding of
explanations that use this rather subtle operation.
It enables explanation readers to confirm for themselves
that the particular representative example chosen does
not determine the solution, and to see how different
examples produce slightly different distributions but an
overall similar structure.

Effective explanations must necessarily be given from
a particular perspective, using particular examples, and
telling a particular story. When constructing a static
explanation, the explanation creator must fix these
aspects once and for all. A personal explainer can be more
flexible, changing their explanation during creation, as
needed by a particular explanation consumer. The trans-
formation laws provided in this section help Probula span
this gap, enabling an initially fixed static explanation to
be automatically adapted to tell new stories about the
same problem, with different examples and from different
perspectives.

7. Related work

Much of the most pertinent related work has been
discussed already in Section 2 on the explanation-
oriented programming paradigm, and Section 3 on the
story-telling model of explanation. In this section we
recall this discussion, filling in the gaps, and discuss
several other areas of related work as well.

The story-telling model of explanation follows in the
tradition of more general ideas from the philosophy of
science that emphasize the importance of causality in
explanations [7,35,19]. The philosophical study of causa-
tion is in turn a large area of research, which we have
discussed briefly in Section 3, and at greater length in our
previous work [12,14]. Of particular interest are the
various visual notations that have been used in this
research for representing graphs of causally related
events [16,27,37]. These causal graph notations are
usually used as informal diagramming tools, to explain
causal situations and support discussion, but are rarely
defined as formal visual languages. Probula differs from
these languages in two important ways. First, it is mainly
linear, a design decision that we discussed in Section 3.
Second, it is typed and much more structured. Nodes in

causal graphs sometimes represent events and sometimes
states, and this ambiguity often leads to misunderstand-
ings and obscures subtle distinctions in relationships
between nodes [18]. In contrast, points in a Probula story
are always distributions of typed values, and relationships
are described in terms of a small set of well-defined
operations with explicit type constraints. This makes the
meaning of each point and each step in the story much
clearer than in less structured representations.

Throughout the paper we have given different expla-
nations in Probula of the Monty Hall problem and the
three coins problem. The fallacies induced by these two
problems are part of a large class of fallacies that arise
from a misunderstanding of statistical independence and
conditional probability. The gambler’s fallacy and the hot
hand fallacy are two contradictory fallacies related to
independence [2]. Given a sequence of heads results when
flipping a fair coin, the gambler’s fallacy expects a higher
probability of the next flip being tails, while the hot hand
fallacy expects the opposite. The inverse fallacy is the false
assumption that PðA9BÞ is approximately equal to PðB9AÞ
[34]. Relatedly, the base-rate fallacy is the failure to
consider the underlying probability of an event when
given some conditional evidence [3]. For example,
consider a population in which 1 in 10 people have a
virus, and a test for that virus that is accurate 90% of the
time. If a random person tests positive for the virus, the
fallacy is that they are 90% likely to have the virus. This
fails to take into account the lower probability of having
the virus in the first place, and thus that there will be
more false positives than false negatives. In fact, the odds
of the person having the virus, given that they tested
positive, is 50%. These fallacies are widespread not only
among laypeople, but among professions where an expert
understanding of conditional probability is critical, such
as clinicians [8]. Probula explanations can help to debunk
these fallacies by providing explanations that show how
the correct (though perhaps counterintuitive) answer is
derived.

In Section 2 we discussed our previous work on
computing with probability distributions [10] and sup-
porting and explaining probabilistic reasoning [12,13].
Although there are other languages that support compu-
tation with probabilistic values, such as IBAL [29] and the
OCaml DSEL designed by Kiselyov and Shan [23], there
does not seem to be any other work on explaining these
computations. Domain-specific explanation support is not
completely new, however, and can be found in the field
of algorithm animation [22], where many ideas and
approaches have been developed to illustrate the working
of algorithms through custom-made or (semi-)automati-
cally generated animations [21]. The work of Blumenkr-
ants et al. is particularly relevant, where the use of the
story-telling metaphor was demonstrated to increase the
explanatory power of their algorithm animations [4].

Code debuggers represent a class of widely used
explanation systems. Very generally, the goal while
debugging is to obtain an explanation of some program
behavior, usually as part of an effort to fix a bug. While
debuggers help users find this information in the code
(often after much time and effort), most operate at such a

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]20

low level that the output and effects they produce could
scarcely be considered an explanation. The WHYLINE
system [25] inverts the debugging process, allowing users
to ask questions about program behavior and responding
by pointing to parts of the code responsible for the
outcomes. Although this system improves the process
significantly, it can still only point to places in the
program, limiting its explanatory power. We have
extended the basic idea of the WHYLINE to the domain
of spreadsheets by allowing users to express expectations
about the outcomes of cells, then generating change
suggestions that would produce the desired results [1].
From a philosophical perspective, the generated change
suggestions represent counterfactual statements about
the state of the spreadsheet [27]. Counterfactual reason-
ing as a basis for explanation is closely related to the
story-telling metaphor [12].

Probula, and the story-telling model in general, are also
related to the idea of dataflow languages, in which data is
incrementally modified by passing through a directed graph
of operations [20]. Our language could be viewed as a
dataflow language with the single, parametrically poly-
morphic data type of probability distributions (plain or
grouped), with the operations described in Section 5 and
an additional operation to support branching.

Finally, the idea of elevating explainability as a design
criterion for languages was first proposed in [11] where
we have presented a visual language for expressing
strategies in game theory. The guiding principle of the
design of this language was the concept of traceabilty. This
is the idea that language designers should consider not
only how to represent programs, but also how to repre-
sent the execution of programs (program traces), and how
to relate programs to their traces in order to support
program understanding. This idea developed into the
notion of explanation-oriented programming as described
in this paper, and Probula reflects these original design
ideas well. Probula’s visual notation is an integrated
representation of the execution of a Probula program, as
the distributions that it generates, combined with a
representation of the operations that produce that
execution.

8. Conclusions and future work

We have presented Probula, a domain-specific, visual
language for explaining probabilistic reasoning problems.
This language continues our research in the new para-
digm of explanation-oriented programming, where the
focus of programming is not on the computation of
results, but on explaining how and why those results
were computed. We believe that this shift of focus reveals
a new, fruitful, and under-explored area for language
design. Domain-specific and visual languages are espe-
cially well-suited for explanation orientation for several
reasons.

Domain-specific languages allow us to express explana-
tions in terms and structures appropriate to the domain; for
example, in Probula, we use probabilistic distributions as a
basic construct in explanations of probabilistic reasoning
problems. This makes explanations in the language more

understandable by making them more concrete and by
taking advantage of users’ existing domain knowledge.
It also makes the explanations more useful and externally
applicable since they can be used not only to understand the
specific problems presented, but as tools to better under-
stand the domain itself. This is one of the primary design
goals of Probula.

Visual languages are a powerful medium for explana-
tion since we have many more potential dimensions for
encoding information than is available in textual lan-
guages (position, color, length, shape, etc.). This not only
gives us more flexibility and expressiveness in the design
of explanations, but also makes it easier to directly reuse
existing notations from the domain, when applicable.
Furthermore, it gives us access to a rich language of visual
metaphors and symbols. We have presented a few such
examples in Probula, such as the use of spatial partition-
ing to encode probability, and connection to represent the
flow of data.

A significant contribution of this work is the formula-
tion of laws which can be used to transform an explana-
tion into many equivalent explanations of the same
problem. In this way we can combine the accessibility
benefits typical of static explanations with the adaptabil-
ity benefits of personal explanations. Through the com-
position of explanation transformations, we can derive
from a single explanation a large, explorable space of
related explanations.

In order to fully realize the adaptability benefits of
personal explanations, however, we must also consider
how users interact with this explanation space. This is an
important topic for future work. In the most straightfor-
ward view, users might directly manipulate an explana-
tion within some tool, in order to generate related
alternatives—manually fusing generators, for example,
or changing the representative example selection. In the
context of personal explanations, direct manipulation
corresponds to responding to a user’s question. But
personal explainers also adapt automatically to a user’s
needs, when they sense that the listener is confused, for
example. Therefore, we might also consider developing
heuristics to determine when a particular transformation
will be most useful for a particular user, which the tool
can suggest or apply automatically.

References

[1] R. Abraham, M. Erwig, GoalDebug: a spreadsheet debugger for end
users, in: Twenty-ninth IEEE International Conference on Software
Engineering, 2007, pp. 251–260.

[2] P. Ayton, I. Fischer, The hot hand fallacy and the gambler’s fallacy:
two faces of subjective randomness, Memory & Cognition 32 (2004)

1369–1378.
[3] M. Bar-Hillel, The base-rate fallacy in probability judgments, Acta

Psychologica 44 (3) (1980) 211–233.
[4] M. Blumenkrants, H. Starovisky, A. Shamir, Narrative algorithm

visualization, in: ACM Symposium on Software Visualization, 2006,
pp. 17–26.

[5] P. Cobley, Narratology, in: M. Groden, M. Kreiswirth, I. Szeman
(Eds.), The Johns Hopkins Guide to Literary Theory and Criticism,

2nd ed. John Hopkins University Press, London, 2005.
[6] P. Dowe, Physical Causation, Cambridge University Press, Cam-

bridge, UK, 2000.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]] 21

[7] M. Dummett, Bringing about the past, Philosophical Review 73
(1964) 338–359.

[8] D.M. Eddy, Probabilistic reasoning in clinical medicine: problems
and opportunities, Judgment Under Uncertainty: Heuristics and
Biases (1982) 249–267.

[9] M. Erwig, Abstract syntax and semantics of visual languages,
Journal of Visual Languages and Computing 9 (5) (1998) 461–483.

[10] M. Erwig, S. Kollmansberger, Probabilistic functional programming
in Haskell, Journal of Functional Programming 16 (1) (2006) 21–34.

[11] M. Erwig, E. Walkingshaw, A visual language for representing and
explaining strategies in game theory, in: IEEE International Sym-
posium on Visual Languages and Human-Centric Computing, 2008,
pp. 101–108.

[12] M. Erwig, E. Walkingshaw, A DSL for explaining probabilistic
reasoning, in: IFIP Working Conference on Domain-Specific Lan-
guages, Lecture Notes in Computer Science, vol. 5658, 2009,
pp. 335–359.

[13] M. Erwig, E. Walkingshaw, Visual explanations of probabilistic
reasoning, in: IEEE International Symposium on Visual Languages
and Human-Centric Computing, 2009, pp. 23–27.

[14] M. Erwig, E. Walkingshaw, Causal reasoning with neuron diagrams,
in: IEEE International Symposium on Visual Languages and Human-
Centric Computing, 2010, pp. 101–108.

[15] T.R.G. Green, M. Petre, Usability analysis of visual programming
environments: a cognitive dimensions framework, Journal of Visual
Languages and Computing 7 (2) (1996) 131–174.

[16] J. Halpern, J. Pearl, Causes and explanations: a structural-model
approach part i: causes, British Journal of Philosophy of Science 56
(4) (2005) 843–887.

[17] E.C.R. Hehner, Probabilistic predicative programming, in: D. Kozen
(Ed.), Mathematics of Program Construction, Lecture Notes in
Computer Science, vol. 3125, Springer, Berlin/Heidelberg, 2004,
pp. 169–185.

[18] C. Hitchcock, What’s wrong with neuron diagrams, in:
J.K. Campbell, M. O’Rourke, H. Silverstein (Eds.), Causation and
Explanation, MIT Press, Cambridge, MA, 2007, pp. 69–92.

[19] P. Humphreys, The Chances of Explanation, Princeton University
Press, Princeton, NJ, 1989.

[20] W.M. Johnston, J.R.P. Hanna, R.J. Millar, Advances in dataflow
programming languages, ACM Computing Surveys 36 (1) (2004)
1–34.

[21] V. Karavirta, A. Korhonen, L. Malmi, Taxonomy of algorithm
animation languages, in: ACM Symposium on Software Visualiza-
tion, 2006, pp. 77–85.

[22] A. Kerren, J.T. Stasko, Algorithm animation – introduction, in:
S. Diehl (Ed.), Revised Lectures on Software Visualization, Lecture
Notes in Computer Science, vol. 2269, 2001, pp. 1–15.

[23] O. Kiselyov, C. Shan, Embedded probabilistic programming, in: IFIP
Working Conference on Domain-Specific Languages, Lecture Notes
in Computer Science, vol. 5658, 2009, pp. 360–384.

[24] P. Kitcher, Explanatory unification and the causal structure of the
world, in: P. Kitcher, W. Salmon (Eds.), Scientific Explanation, Uni-
versity of Minnesota Press, Minneapolis, MN, 1989, pp. 410–505.

[25] A.J. Ko, B.A. Myers, Debugging reinvented: asking and answering why
and why not questions about program behavior, in: IEEE International
Conference on Software Engineering, 2008, pp. 301–310.

[26] C. Morgan, A. McIver, K. Seidel, Probabilistic predicate transfor-
mers, ACM Transactions on Programming Languages and Systems
18 (3) (1996) 325–353.

[27] J. Pearl, Causality: Models, Reasoning and Inference, 2nd ed.
Cambridge University Press, Cambridge, UK, 2009.

[28] N. Pennington, R. Hastie, Reasoning in explanation-based decision
making, Cognition 49 (1993) 123–163.

[29] N. Ramsey, A. Pfeffer, Stochastic lambda calculus and monads of
probability distributions, in: Twenty-ninth Symposium on Princi-
ples of Programming Languages, 2002, pp. 154–165.

[30] D. Ruben, Explaining Explanation, Routledge, London, UK, 1990.
[31] W. Salmon, Scientific Explanation and the Causal Structure of the

World, Princeton University Press, Princeton, NJ, 1984.
[32] W. Salmon, Causality without counterfactuals, Philosophy of

Science 61 (1994) 297–312.
[33] C. Scaffidi, M. Shaw, B. Myers, Estimating the numbers of end users

and end user programmers, in: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, 2005, pp. 207–214.

[34] G. Villejoubert, D. Mandel, The inverse fallacy: an account of
deviations from Bayes theorem and the additivity principle, Mem-
ory & Cognition 30 (2002) 171–178.

[35] G. von Wright, Explanation and Understanding, Cornell University
Press, Ithaca, NY, 1971.

[36] E. Walkingshaw, M. Erwig, A DSEL for studying and explaining
causation. In: Proceedings of the IFIP Working Conference on
Domain-Specific Languages. EPTCS 66 (2011) 143–167. http://
dx.doi.org/10.4204/EPTCS.66.7. arXiv:1109.0780 [cs.PL].

[37] J. Woodward, Making Things Happen, Oxford University Press
New York, NY, 2003.

Please cite this article as: M. Erwig, E. WalkingshawA visual language for explaining probabilistic reasoning, Journal of
Visual Languages and Computing (2013), http://dx.doi.org/10.1016/j.jvlc.2013.01.001i

M. Erwig, E. Walkingshaw / Journal of Visual Languages and Computing] (]]]])]]]–]]]22

