
A Domain Analysis of Data Structure and Algorithm
Explanations in the Wild

Jeffrey Young
Oregon State University

School of EECS
Corvallis, Oregon, USA

Eric Walkingshaw
Oregon State University

School of EECS
Corvallis, Oregon, USA

ABSTRACT
Explanations of data structures and algorithms are complex interac-
tions of several notations, including natural language, mathematics,
pseudocode, and diagrams. Currently, such explanations are cre-
ated ad hoc using a variety of tools and the resulting artifacts are
static, reducing explanatory value. We envision a domain-specific
language for developing rich, interactive explanations of data struc-
tures and algorithms. In this paper, we analyze this domain to
sketch requirements for our language. We perform a grounded the-
ory analysis to generate a qualitative coding system for explanation
artifacts collected online. This coding system implies a common
structure among explanations of algorithms and data structures.
We believe this structure can be reused as the semantic basis of
a domain-specific language for creating interactive explanation
artifacts. This work is part of our effort to develop the paradigm of
explanation-oriented programming, which shifts the focus of pro-
gramming from computing results to producing rich explanations
of how those results were computed.

CCS CONCEPTS
• Social and professional topics→ Computing education;

KEYWORDS
explanation-oriented programming; domain-specific languages;
grounded theory; algorithm explanation
ACM Reference Format:
Jeffrey Young and Eric Walkingshaw. 2018. A Domain Analysis of Data
Structure and Algorithm Explanations in the Wild. In Proceedings of The
49th ACM Technical Symposium on Computer Science Education (SIGCSE’18).
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159477

1 INTRODUCTION
Data structures and algorithms are at the heart of computer science
and must be explained to each new generation of students. How can
we do this effectively? In this paper, we focus on the artifacts that
constitute or support explanations of data structures and algorithms
(hereafter just “algorithms”), which can be shared and reused. For
verbal explanations, such as a lecture, the supporting artifact might
be the associated slides. For written explanations, the artifact is
the explanation as a whole, including the text and any supporting

SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of The 49th ACM Technical Symposium on Computer Science Education (SIGCSE’18),
https://doi.org/10.1145/3159450.3159477.

figures. Explanation artifacts for algorithms are interesting because
they typically present a complex interaction among many different
notations, including natural language, mathematics, pseudocode,
executable code, various kinds of diagrams, animations, and more.

Currently, explanation artifacts for algorithms are created ad
hoc using a variety of tools and techniques, and the resulting ex-
planations tend to be static, reducing their explanatory value. Al-
though there has been a substantial amount of work on algorithm
visualization [8, 9, 11–13, 19], and tools exist for creating these
kinds of supporting artifacts, there is no good solution for creat-
ing integrated, multi-notational explanations as a whole. Similarly,
although some algorithm visualization tools provide a means for
the student to tweak the parameters or inputs to an algorithm to
generate new visualizations, they do not support creating cohesive
interactive explanations that correspondingly modify the surround-
ing explanation or allow the student to respond to or query the
explanation in other ways. To fill this gap, we envision a domain-
specific language (DSL) that supports the creation of rich, interactive,
multi-notational artifacts for explaining algorithms. The develop-
ment of this DSL is part of an effort to explore the new paradigm
of explanation-oriented programming, described in Section 2.1.

The intended users of the envisioned DSL are CS educators who
want to create interactive artifacts to support the explanation of
algorithms. These users are experts on the corresponding algo-
rithms and also skilled programmers. The produced explanation
artifacts might supplement a lecture or be posted to a web page
as a self-contained (textual and graphical) explanation. The DSL
should support pedagogical methods through built-in abstractions
and language constructs. It should also support a variety of forms of
student interaction. For example, teachers should be able to define
equivalence relations enabling users to automatically generate vari-
ant explanations [6], to build in responses to anticipated questions,
and to provide explanations at multiple levels of abstraction.

This paper presents a formative step toward this vision. We
conduct a qualitative analysis of our domain to determine the form
and content of the explanation artifacts that educators are already
creating. Specifically, we answer the following research questions:
RQ1. What are the component parts of an algorithm explanation?
RQ2. How does each part advance the overall explanation?
RQ3. How are the parts of an algorithm explanation structured?
RQ4. What kinds of notations are used in algorithm explanations?
Answers to these questions set expressiveness requirements for our
DSL since we should be able to express explanations that educators
are already creating. They also guide the design of the DSL by
providing an initial set of components and operations for building
explanations. We base our analysis on the established qualitative
research method of grounded theory [20], described in Section 2.2.

https://doi.org/10.1145/3159450.3159477
https://doi.org/10.1145/3159450.3159477

SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA Jeffrey Young and Eric Walkingshaw

For our analysis, we collected 15 explanation artifacts from the
internet, as described in Section 3. These artifacts are lecture notes
that explain two algorithms and one data structure commonly cov-
ered in undergraduate computer science courses: Dijkstra’s shortest
path algorithm [14, pp. 137–142], merge sort [14, pp. 210–214], and
AVL trees [15, pp. 458–475]. Applying grounded theory, we develop
a coding system that captures the components, structure, and nota-
tions of the explanation in each document. This paper makes the
following contributions:
C1. We provide a coding system (Section 4.2) for analyzing explana-

tion artifacts in the form of lecture notes.We show that through
the application of the coding system, each artifact, regardless
of content, author, or institution, forms a tree structure, which
we have termed an explanation tree (Section 4.3).

C2. We provide a coded qualitative data set of explanation artifacts,
using the system defined in C1, applied to our sample of 15
collected explanation artifacts, along with a tool for exploring
and visualizing this data set (Section 4.1).

C3. We describe how our coding system and explanation trees can
provide a semantic basis for a DSL and argue for the advantages
of such an approach (Section 5).

2 BACKGROUND AND RELATEDWORK
In this section, we put our work into context. In Section 2.1, we
describe explanation-oriented programming, which motivates our
work. In Section 2.2, we describe the grounded theory methodology
that we used to develop our coding system. And in Section 2.3, we
briefly discuss other work related to teaching algorithms.

2.1 Explanation-Oriented Programming
Explanation-oriented programming (XOP) is a programming para-
digm where the primary output of a program is not a set of com-
puted values, but an explanation of how those values were com-
puted [3–6, 21]. A high-level goal of this work is to further realize
the paradigm of XOP through the development of a specific DSL.

Programming languages for XOP should not merely produce
explanations as a byproduct but should provide abstractions and
features specific to the creation of explanation artifacts. For example,
they should provide a way to use application-specific notations and
visualizations (which are widespread in explanations of algorithms),
and to define or generate alternative explanations in response to
user input [6]. Additionally, languages for XOP should help guide
the programmer toward the creation of good explanations.

The need for interactive explanation artifacts is motivated by the
observation that there is a trade-off between personal explanations
and traditional explanation artifacts, which can be partially bridged
by XOP programs viewed as rich, interactive explanation artifacts.
A good personal explanation is useful because the explainer can
respond to the student, adjusting the pace and strategy as necessary.
For example, the teacher can answer questions, rephrase parts of
an explanation, and provide additional examples as needed. Unfor-
tunately, good personal explanations are a scarce resource. First,
there are limited number of people who can provide high quality
personal explanations on a topic. Second, a personal explanation
is usually ephemeral and so cannot be directly shared or reused.
Since personal explanations are hard to come by, many students

learn from impersonal explanation artifacts, such as recorded lec-
tures, textbooks, and online written and graphical resources. These
impersonal explanations lack the interaction and adaptability of
personal explanations, but have the advantage of being easy to
massively share and reuse via libraries and the internet.

In-person lectures exist at a midway point between impersonal
and personal explanations, perhaps closer to the personal end of the
spectrum. These classroom explanations are adaptable—students can
ask questions in class, the teacher can respond, and explanations
can be adapted on the fly if students are confused—but less so than
personal explanations since the teacher must accommodate many
students at once. Classroom explanations are shared among many
students, but less shareable than impersonal explanations since
they are ephemeral and therefore difficult to reuse.

We target another midway point, closer to the impersonal end
of the spectrum, of interactive explanation artifacts that attempt
to reproduce the responsiveness and adaptability of personal ex-
planations, but which can still be shared and reused online. Such
explanation artifacts would be expensive to produce with current
tools since an explanation designer must not only create a high
quality initial explanation and corresponding visualizations, but
also anticipate and explicitly program responses to queries by the
student. We expect that DSLs for XOP can help alleviate this burden.

2.2 Grounded Theory
The core idea of grounded theory is to generate or discover a theory
inductively, based on data, rather than using data to evaluate a
theory developed a priori. Grounded theory is rooted in a pragmatist
view that theory should target its intended uses [20]. Our study
uses the grounded theory methodology defined by Corbin et al. [2].

Grounded theory starts by collecting initial data on the subject of
interest. For example, a researcher interested in why students drop
out of computer science programs might conduct interviews with
students, and collect student schedules and homework assignments.
Once some data is collected, the researcher begins coding, which is
the process of assigning descriptive tags to qualitative data.

Coding consists of three stages: (1) During open coding, the re-
searcher writes down any terms that describe the data. (2) During
axial coding, the researcher identifies similarities and other rela-
tionships between tags developed during open coding. The goal
of this step is to develop a coding paradigm, which is a model that
describes the inter-relationship of tags. (3) Finally, during selective
coding, the researcher identifies a small set of core tags that capture
the main concepts and relationships identified during axial coding.
These tags form the basis of the theory extracted from the data.

In grounded theory, data collection and analysis occurs simulta-
neously and iteratively. That is, after forming an initial theory, new
data will be added that might provide new tags during open cod-
ing, which will suggest revisions to the theory developed through
axial and selective coding, which will trigger a re-analysis of old
data, and so on. This back-and-forth movement between data col-
lection, analysis, and theory building is a marked departure from
quantitative methods where phases are distinct [20].

How does the researcher know when the theory is adequate and
no new data is required? There are three tenets that can help an-
swer that question, which are pivotal to the validity of the grounded

A Domain Analysis of Data Structure and Algorithm Explanations in the Wild SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA

theory method [20]. (1) The tenet of constant comparison is that dur-
ing all phases of coding, the researcher must constantly return to
earlier data to check whether tags are applied consistently. (2) The
tenet of theoretical sampling focuses on filling perceived gaps in the
data based on the current theory. For example, we chose to analyze
explanations of algorithms operating on three different underlying
data types: lists, trees, and graphs. After analyzing explanations
of merge sort, explanations of other sorting algorithms have less
theoretical sampling value than explanations of a very different
kind of algorithm. (3) The tenet of saturation helps determine when
to stop collecting and coding new data. Saturation occurs when the
coding system is able to accommodate new data without modifi-
cation. That is, when the theory can accurately describe data that
was not used to generate it. The amount of data needed to reach
this point will vary depending on the topic, research questions, and
individual researchers.

2.3 Teaching Algorithms through Artifacts
Our underlying motivation is to create artifacts that help explain
algorithms. This motivation is shared by a long tradition of re-
searchers working on algorithm visualization [8–13, 17, 19]. This
work is complementary to our goal since a visualization might
be one part of a comprehensive, multi-notational explanation of
an algorithm. Although our formative study considers only static
explanations in the form of lecture notes, our ultimate goal is to
design a DSL that enables the creation of interactive explanation
artifacts that realize some of the benefits of personal explanations.
Others have demonstrated that interactivity makes video lectures
a more effective pedagogical tool [16, 18, 22].

3 EXPERIMENTAL SETUP
In this section we describe how we executed the grounded theory
process outlined in Section 2.2. We restricted the scope of data col-
lection to include only lecture notes produced by faculty/instructors
in computer science departments at respected universities. Further-
more, we restrict our data to include only static, written documents.
Restricting the scope in this way has two benefits: (1) All explana-
tory artifacts share an intrinsic goal to communicate the mechanics,
application, or implementation of a common computer science
algorithm. (2) There are many and varied examples of different
approaches to explain the same algorithm, and many examples of
similar approaches to explain different algorithms. All data col-
lected was either in PDF format, or in HTML format and converted
to PDF. We considered only self-contained lecture notes, excluding
slides which we view as incomplete explanations without the asso-
ciated presentation they support. We made no attempt to restrict
the size of the data collected. The smallest document collected was
1.5 pages and the longest was 18 pages.

All data was collected and coded by hand by the first author
with the aid of Atlast.ti software.1 Atlast.ti provides direct support
for the grounded theory process by allowing open coding; easing
constant comparison with operations for organizing, searching, and
filtering coded documents; and easing axial and selective coding
with operations for collecting, merging, and revising extent tags.

1http://atlasti.com/

We focused data collection on three algorithms based on dif-
ferent underlying data types: Dijkstra’s shortest path algorithm
on graphs [14, pp. 137–142], merge sort of lists [14, 210–214], and
the AVL tree implementation of balanced binary search trees [15,
pp. 458–475]. We achieved saturation during the grounded theory
analysis after 11 lecture notes. As additional validation and to round
out our data set, we continued collecting and coding documents
until our sample included 5 lecture notes on each of the 3 topics,
for 15 total explanation artifacts.

Some documents contain explanations of multiple algorithms.
In cases where secondary algorithms are explained as part of the
explanation of the target algorithm (e.g. as necessary background),
we coded the explanation as usual. In cases where multiple algo-
rithms are explained in a single document but the explanations are
unconnected, we did not code the others. For example, one docu-
ment explaining Dijkstra’s algorithm also provided an explanation
of Bellman-Ford’s shortest-path algorithm, which we ignored.

4 RESULTS
In this section we present the results of our grounded theory anal-
ysis. In Section 4.1, we briefly describe the coded data set and a
simple associated tool that we provide. In Section 4.2 we describe
the coding system produced by the grounded theory analysis and
provide a sample coding to illustrate its use. We observe that the
coding paradigm identified during axial coding is that explanations
are tree structured. In Section 4.3, we discuss the tree structure of
explanations and describe how to transform a coded explanation
artifact into the corresponding explanation tree.

4.1 Data Set and Tool Support
The coded data set is available online.2 The coded documents are
provided both in the proprietary Atlast.ti format and in an exported
CSV format. Artifacts are indexed according to the algorithm of
focus and a simple counter. For example, the first AVL tree document
is named AVT01 and the fifth is named AVT05.

We also provide a small tool written in Haskell that implements
the coding system described in Section 4.2 and the explanation tree
representation described in Section 4.3. The tool supports convert-
ing a code sequence into the corresponding explanation tree and
rendering explanation trees in a 2-dimensional plain-text format
(see Figure 3). We provide the code sequence for each document in
the data set in a format compatible with the tool.

4.2 The Coding System
The coding system consists of four finite sets of tags—aspects,
moves, roles, and notations—identified by the grounded theory
analysis. Aspects and moves are summarized in Table 1, roles and
notations in Table 2.

An aspect tag identifies a constituent part of an algorithm expla-
nation, that is, what is being discussed (answering RQ1). Example
aspects of an explanation are the goal of the algorithm, required
operations, historical context, advantages, disadvantages, and im-
plementation details. Amove tag is always associated with a parent
aspect and describes how that aspect is addressed (RQ2), that is,

2https://github.com/lambda-land/XOP-Algorithms-Data

http://atlasti.com/
https://github.com/lambda-land/XOP-Algorithms-Data

SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA Jeffrey Young and Eric Walkingshaw

Aspect
Advantage pro or upside
Algorithm a specific algorithm
Application a use case or application
Class a group, set, or class
Complexity computational complexity
Constituent a constituent part of the parent aspect
Data Structure a specific data structure
Design design considerations
Disadvantage con or downside
Goal a goal or desired outcome
History historical background
Implementation implementation details
Motivation motivation or rationale
Operation a specific operation
Problem a problem to be solved
Property a condition, invariant, or property
Solution a solution to a prior problem
State a modifiable state

Move
Abstraction generalize or abstract from the aspect
Assumption highlight introduce an assumption
Cases break something down into cases
Comment a dummy move for orphaned decorators
Conclusion wrap-up or reflect
Contrast contrast this aspect with another
Definition define a concept
Derivation derive through a sequence of steps
Description give a general description
Example provide an example
Implication logical implication, if . . . then . . .
InVivo define a term that practitioners use
Legend provide a key to help interpret a diagram
Observation offer a general observation
Outline provide a point-by-point overview
Proof provide a formal proof
Proposal suggest a path forward
Solicitation ask something of the reader
Summary summarize preceding aspects

Table 1: Overview of all aspects and moves identified by the
grounded theory analysis. Aspects organize an explanation
into its constituent parts while moves are the specific steps
taken to guide the reader toward understanding.

the step taken by the explainer to help advance the reader’s under-
standing. For example, by breaking the aspect into cases, providing
an example or proof, or defining a concept. A single aspect may
be explained in several moves. We take the name for this concept
from Bellack et al. [1]’s notion of a “pedagogical move”.

Both aspect and move tags can be decorated by tags describing
secondary roles and notations. A role tag modifies a move or aspect
to indicate that this part of the explanation serves some secondary
purpose not directly captured by the modified tag (related to both
RQ2 and RQ3). For example, attaching an Aside role to amovemight
indicate that the move is an aside that does not directly advance
the explanation of the parent aspect, while the Pedagogical role

Role
Aside not directly related to parent aspect
Caveat clarifies or qualifies a point
Meta about this aspect/move rather than advancing it
Pedagogical addresses a pedagogical concern
Related substantially related to another aspect/move
Review info that is implied to have already been covered

Notation
Cartoon a drawn or animated graphic
Code a block of code in a programming language
Mathematics mathematical functions, formulas, or equations
PseudoCode non-executable code-like language
Sequence an ordered, bulleted, or punctuated list
Table infromation in tabular format

Table 2: Overview of the secondary roles and notations iden-
tified by the grounded theory analysis. These codes decorate
aspect and move codes to add additional information.

a ∈ Aspect m ∈ Move r ∈ Role n ∈ Notation
c ∈ Code ::= ⇒ a | ⇐ | m | c + d

d ∈ Decorator ::= r | n

Figure 1: Syntax of codes from grounded theory analysis.

might indicate that the move gives advice about how to study an
aspect rather than explaining it. A notation tag modifies a move or
aspect to indicate that this part of the explanation is presented in
some format other than natural language text (RQ4). If no notation
decorator is provided, the tagged fragment is assumed to be text.

During axial coding, we observed that the meaning of an in-
dividual code often depends on preceding codes. For example, a
description move does not stand on its own but typically describes
a preceding aspect. Understanding how a move advances an expla-
nation may require understanding a sequence of preceding aspects,
but not necessarily the immediately preceding ones. For example,
in AVT02 we observe the sequence data structure, problem, solution,
description, property, definition where the final move defines a prop-
erty of the data structure; the intervening subsequence problem,
solution, description is irrelevant to understanding the definition but
forms a separate dependency chain. Thus, it seems explanations
have a hierarchical structure (RQ3) that the coding system must
capture. To do this, we introduce structuring elements to our codes
to indicate where in the hierarchy a given aspect or move sits.

The syntax of codes is defined by the grammar in Figure 1, which
refers to the tags defined in Tables 1 and 2. A new child aspect a is
introduced by a “push” code,⇒ a, and we exit out of this aspect
with a corresponding “pop” code,⇐. A sibling aspect can be added
to the hierarchywith a pop followed by a push. Since adding siblings
is quite common, we introduce⇔ a as syntactic sugar for this case.
A move tagm is added as a child to the current aspect, which may
not be the most recent aspect named in a code due to intervening
pop codes. Finally, secondary roles and notations are unified as
decorators; a decorator d can be added to a code c as c + d .

In Table 3, we illustrate the application of the coding system
to the beginning of one of the documents in our data set, MS03.
The document begins in Row 1 with a header that we code as the

A Domain Analysis of Data Structure and Algorithm Explanations in the Wild SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA

Text Coding

1 2.2 Mergesort ⇒ Algorithm
2 The algorithms that we consider in this sec-
tion is based on a simple operation known
as merging: combining two ordered arrays
to make one larger ordered array.

⇒ Operation
Description
InVivo

3 This operation immediately lends itself
to a simple recursive sort method known
as mergesort: to sort an array, divide it
into two halves, sort the two halves (recur-
sively), and then merge the results.

⇐
Definition
+ Sequence

4 ⟨diagram of list⟩ + Cartoon
5 Mergesort guarantees to sort an array of
N items in time proportional to N log N,
no matter what the input.

⇒Motivation
Description
+ Mathematics

6 Its prime disadvantage is that it uses extra
space proportional to N.

⇔ Disadvantage
Description
+ Mathematics

Table 3: Sample text and codings for beginning of MS03. Ital-
icized text corresponds to headers in the original document.

root aspect, representing the algorithm itself. Row 2 addresses a
sub-aspect, the merge operation, which it explains in two moves: a
description, and the definition of an in-vivo term. Row 3 is coded by
a pop since the explanation is no longer focused on this operation,
but is defining what merge sort is. This move is decorated by the
sequence notation since it is defined by a sequence of steps. Row 4,
referring to a diagram illustrating this definition, further decorates
this move with the cartoon notation. Row 5 concerns the sub-aspect
of motivating merge sort, which it does through a description move
that uses (light) mathematical notation. Row 6 introduces the sibling
aspect of disadvantages of merge sort, which is also explained
through a description with mathematical notation.

4.3 Explanation Trees
In the previous section, we described how our analysis revealed
a hierarchical structure that is crucial to understanding how an
explanation does its work. We call this hierarchical structure an
explanation tree. The internal nodes of an explanation tree are the
hierarchy of aspects that an explanation addresses, while the leaves
of the tree are the specific moves taken to explain these aspects.
Both the aspects and moves of an explanation tree can be decorated
by secondary roles and notations. The notion of an explanation
tree, discovered by considering the relationship between adjacent
moves during axial coding, became the coding paradigm for our
analysis, so we adapted our codes to capture this structure.

Our coding system can be viewed as a simple stack-based lan-
guage for constructing an explanation tree. Figure 2 defines an
interpretation of codes as operations in a stack-based machine that
builds an explanation tree. The semantic domain of codes under this
interpretation is an update function on a stack of trees, represented
as a linked list. The ⇒ a code pushes a node labeled by a with
no children to the stack. Note that we use a to represent both the
aspect and the corresponding tree node on the stack. The⇐ code
pops the first two nodes on the stack and adds the first node as

J·K : Tree∗ → Tree∗

J⇒ aK(ts) = a :: ts
J⇐K(c :: p :: ts) = addChild(c,p) :: ts
JmK(ts) = J⇐K(m :: ts)

Figure 2: Interpreting codes as operations in a stackmachine
that builds an explanation tree.

Aspect Algorithm
+- Aspect Operation
| +- Move Description
| `- Move InVivo
+- Move Definition @ [Note Sequence,Note Cartoon]
+- Aspect Motivation
| `- Move Description @ [Note Mathematics]
`- Aspect Disadvantage

`- Move Description @ [Note Mathematics]

Figure 3: Tree rendering of the codes for MS03 in Table 3.

a child of the second. The m code adds the move node m to the
stack and then immediately executes a pop code (⇐) since moves
correspond to leaves in the explanation tree. In this interpretation,
we assume that the codes have been preprocessed to incorporate all
decorators into the corresponding nodes. Using the J·K function we
can build an explanation tree from a sequence of codes by simply
left-folding the function over the codes with an initially empty
stack, then executing pop codes until the stack is empty.

The Haskell tool provided with the data set implements the
transformation from code sequences to explanation trees. It also
provides a way to render explanation trees. This functionality is
illustrated in Figure 3, which renders the explanation tree produced
by the code sequence in the coding sample in Table 3.

A move at the leaf of an explanation tree can be understood
to advance the reader’s understanding of the aspects along the
path to a root. For example, the last description move explains
a disadvantage of the algorithm identified by the root. The linear
structure of the original explanation can be recovered by a pre-order
traversal of the explanation tree.

5 DISCUSSION
This formative study was conducted to better understand the do-
main of algorithm and data structure explanations, in order to
inform the design of an explanation-oriented DSL for creating in-
teractive explanation artifacts. In this section, we interpret the
results from Section 4 in this context.

At a basic level, the grounded theory analysis reveals a set of
concepts that should be realized by abstractions, constructs, and
features of the DSL. The DSL should provide ways to capture the
various aspects of an algorithm explanation, including aspects like
historical background, motivation, and advantages/disadvantages
that are typically not captured formally. The DSL should also sup-
port a range of more and less formal mechanisms for advancing an
explanation through pedagogical moves. The DSL should provide
formal mechanisms for (semi-)automatically generating examples
from implementations, performing case-analyses and derivations,
and testing properties of an algorithm, but also support informal

SIGCSE’18, February 21–24, 2018, Baltimore, MD, USA Jeffrey Young and Eric Walkingshaw

explanatory moves such as presenting observations and assump-
tions. The DSL should also provide support for a variety of different
notations and support secondary roles such as asides and caveats.

Explanation trees can serve as an underlying semantic model
for the DSL. In an interactive setting, explanation trees provide
convenient places (nodes) to hang extra details about an aspect that
may be explored or not. Lecture notes enforce one path through an
explanation, but interactive explanations can providemultiple paths
through the same tree structure corresponding to explanations at
different levels of abstraction and with different focuses. In addition
to providing suggested paths through the tree, we can allow users to
navigate the tree on their own, exploring more details or alternative
explanations where desired. The secondary roles we discovered
are evidence that such supplementary information that does not
directly advance the explanation is useful. However, there is a
disincentive in a linear explanation to provide toomany extra details
that detract from the main line of the explanation. These concerns
would bemitigated in an interactive setting where secondary details
can be explored on-demand and remain out-of-the-way otherwise.

A more speculative application is to use our theory to adapt and
remix explanations into new ones targeted at a specific audience or
even an individual user. By organizing an explanation into its con-
stituent aspects that describe what part of an explanation is doing,
and separating this from the moves that describe how it is doing it,
it is possible to identify other ways of explaining the same thing.
This empirical approach to generating alternative explanations can
supplement other strategies explored in previous work, such as
generating alternative explanations from equivalence laws [6].

Finally, it is important to acknowledge some limitations of this
work. First, our results are the output of a grounded theory analysis
which is inherently subjective. Grounded theory provides a frame-
work for systematically extracting a theory from qualitative data
(see Section 2.2), but the process relies on our subjective decisions
about how to code the data. It is possible that other researchers
follow the same process and yet arrive at very different results.

Another limitation is that our decision to sample only lecture
notes excludes many other ways that people already explain algo-
rithms, such as oral or animated explanations. We restricted our
study to lecture notes because they were easy to collect and analyze
and because they represent coherent, self-contained explanations,
which is the focus of our proposed DSL. However, unlike anima-
tions or algorithm visualization tools, lecture notes are static. Since
we aim to produce interactive explanation artifacts, it is possible
we missed important features because of this restriction.

Finally, since explanations are about communicating ideas, it is
possible that discourse analysis [7], which focuses on extracting
meaning from how language is used, would have been a better choice
than grounded theory. We chose grounded theory because it is a
process we are familiar with and because we anticipated coding
artifacts with a variety of notations besides natural language.

6 CONCLUSION
This paper presented a grounded theory analysis of 15 explanations
of algorithms and data structures in the form of lecture notes. The
analysis yielded a coding paradigm that organizes algorithm ex-
planations into explanation trees, where internal nodes represent

aspects of the algorithm and leaves represent pedagogical moves
that incrementally advance the reader’s understanding. We make
our coded data set publicly available and provide an associated tool
for rendering the explanation tree corresponding to each document.

This study was performed as a formative domain analysis to
inform the design of a DSL for creating interactive explanations
of algorithms and data structures. Explanation trees can provide
a semantic basis for such a language, and that the enumerated
aspects, moves, and roles discovered by the analysis suggest a suite
of useful constructs and abstractions the language should support
and establishes its basic expressiveness requirements.

ACKNOWLEDGMENTS
Thanks to Shujin Wu for helping collect data and conceptualize this
work. Thanks to Dan Hillman for providing data from a previous
study, which we didn’t end up using but very much appreciate.

REFERENCES
[1] A. A. Bellack, F. L. Smith, H. M. Kliebard, and R. T. Hyman. 1966. The Language

of the Classroom. Teachers College Press.
[2] J. Corbin, A. Strauss, and A. L. Strauss. 2014. Basics of Qualitative Research. SAGE.
[3] M. Erwig and E. Walkingshaw. 2008. A Visual Language for Representing and

Explaining Strategies in Game Theory. In IEEE Int. Symp. on Visual Languages
and Human-Centric Computing (VL/HCC). 101–108.

[4] M. Erwig and E. Walkingshaw. 2009. A DSL for Explaining Probabilistic Reason-
ing. In IFIP Working Conf. on Domain-Specific Languages (DSL) (LNCS), Vol. 5658.
335–359.

[5] M. Erwig and E. Walkingshaw. 2009. Visual Explanations of Probabilistic Rea-
soning. In IEEE Int. Symp. on Visual Languages and Human-Centric Computing
(VL/HCC). 23–27.

[6] M. Erwig and E. Walkingshaw. 2013. A Visual Language for Explaining Prob-
abilistic Reasoning. Journal of Visual Languages and Computing (JVLC) 24, 2
(2013), 88–109.

[7] J. P. Gee. 2014. An Introduction to Discourse Analysis: Theory and Method (4 ed.).
Routledge.

[8] P. Gloor. 1997. Animated Algorithms. In Elements of Hypermedia Design: Tech-
niques for Navigation & Visualization in Cyberspace. Birkhäuser, Boston, 235–241.

[9] P. A. Gloor. 1992. AACE – Algorithm Animation for Computer Science Education.
In IEEE Workshop on Visual Languages. 25–31.

[10] S. Grissom, M. F. McNally, and T. Naps. 2003. Algorithm Visualization in CS
Education: Comparing Levels of Student Engagement. In ACM Symp. on Software
Visualization (SoftVis). 87–94.

[11] S. Hansen, N. H. Narayanan, and M. Hegarty. 2002. Designing Educationally
Effective Algorithm Visualizations. Journal of Visual Languages and Computing
(JVLC) 13, 3 (2002), 291–317.

[12] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. 2002. A Meta-Study of Algo-
rithm Visualization Effectiveness. Journal of Visual Languages and Computing
(JVLC) 13 (2002), 259–290.

[13] C. Kann, R. W. Lindeman, and R. Heller. 1997. Integrating algorithm animation
into a learning environment. Computers and Education (CE) 28, 4 (1997), 223–228.

[14] J. Kleinberg and E. Tardos. 2006. Algorithm design. Pearson Education, Boston.
[15] D. E. Knuth. 1998. The Art of Computer Programming: Sorting and Searching (2

ed.). Pearson Education, Boston.
[16] M. Merkt, S. Weigand, A. Heier, and S. Schwan. 2011. Learning with Videos vs.

Learning with Print: The Role of Interactive Features. Learning and Instruction
(LI) 21, 6 (2011), 687–704.

[17] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen,
A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. A. Velàzquez-Iturbide.
2002. Exploring the Role of Visualization and Engagement in Computer Science
Education. SIGCSE Bulletin 35, 2 (June 2002), 131–152.

[18] S. Schwan and R. Riempp. 2004. The Cognitive Benefits of Interactive Videos:
Learning to Tie Nautical Knots. Learning and Instruction (LI) 14, 3 (2004), 293–305.

[19] C. A. Shaffer, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart, S. Ponce, and S. H.
Edwards. 2010. Algorithm Visualization: The State of the Field. ACM Transactions
on Computing Education (TOCE) 10, 3 (2010), 9.

[20] A. Strauss and J. Corbin. 1967. Discovery of Grounded Theory. (1967).
[21] E. Walkingshaw and M. Erwig. 2011. A DSEL for Studying and Explaining

Causation. In IFIP Working Conf. on Domain-Specific Languages (DSL). 143–167.
[22] D. Zhang. 2005. Interactive Multimedia-Based e-Learning: A Study of Effective-

ness. The American Journal of Distance Education (AJDE) 19, 3 (2005), 149–162.

	Abstract
	1 Introduction
	2 Background And Related Work
	2.1 Explanation-Oriented Programming
	2.2 Grounded Theory
	2.3 Teaching Algorithms through Artifacts

	3 Experimental Setup
	4 Results
	4.1 Data Set and Tool Support
	4.2 The Coding System
	4.3 Explanation Trees

	5 Discussion
	6 Conclusion
	References

