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Data variations are prevalent in real-world applications. For example, software vendors
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vironmental settings of a software product. In database-backed software, the database
of each version may have a different schema and content. As another example, data sci-
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Chapter 1: Introduction

Variations in the content and representation of databases are common in real-world ap-
plications. Users often would like to express the same information need over all database
variants in an application. For example, to cope with variations in business require-
ments, regional conventions, and/or environmental settings for different groups of users,
a software company creates different variants of its software products [3]. These variants
generally share a common codebase and differ based on the selection of features that ex-
tend or modify the core functionality. For example, one feature may determine the unit
of currency and another one may indicate whether a person must have a unique social
security number. A software product may have hundreds of features whose combinations
create a large number of software variants. In database-backed software products, each
variant may have a different database with distinct schema and content. As each data
element may vary in terms of content and representation, there are usually numerous
possible database variants in a software product. Software companies often would like
to perform some common tests over all these variants, for example, to check that each
relation in a relational database has a primary key.

As another example of computing over variations of data, during the process of feature
extraction and selection, a data scientist might train a model over many variants of a
dataset to find the variant over which the model has the highest accuracy. Since each
element may have a distinct representation in or be absent from a variant, the training
is done over numerous variations of the underlying dataset. In these applications, users
need to query or operate on numerous variants of a dataset conceptually simultaneously.

As a result, users would like to work with a database system that hides and/or sim-
plifies the variational nature of the data. Instead of dealing with myriads of databases
with different contents and/or structure, users prefer to work with a unified, compact,
and simple representation of these variants. Otherwise, users have to rewrite and recon-
figure their queries and algorithms over each variant, which takes a great deal of time
and effort. Furthermore, each variant may produce a different answer to the submitted
query. Hence, queries written in the query language L over such abstraction must be
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country member table
US member(ID,firstName,middleName, lastName)
Iran member(ID,firstName, lastName)
Iceland member(ID,firstName,middleName, fatherName, gender)

Table 1.1: Three different variations of a table in a database-backed software company,
where the feature “country” determines the structure of the table.

closed under L: their inputs and outputs are sets of database variants. Example 1.0.1
demonstrates the need for a system that can query multiple databases given only one
query.

Example 1.0.1 Assume a software company that develops variants of software for fi-
nancial institutions all around the globe. The feature “country” determines the country
that software has been requested for. Different countries practice different naming con-
ventions for their customers. The software company has to apply this in their database
design. For example, while it is usual to have a middle name in the United States, it is
not in Iran. Also, the naming convention in Iceland differs from most Western family
name systems by being patronymic, i.e., they indicate the father of the child and not the
historic family lineage. For example, if a father’s name is “Jón Einarsson”, his daughter
and son would take the last name “Jónsdóttir” and “Jónsson”, respectively. Table 1.1
shows the different designs of one table called “member” for different settings of the
feature “country”. Assume a developer wants to get the full name of members across
all variations for a test. They have to write three different queries: First, for the US’s
variant, the query should get the first name, middle name, and last name attributes. Sec-
ond, for Iran’s case, it should return the first name and last name. Finally, for Iceland,
it should return the first name and father’s name attached to “dóttir’ or “sson” if the
person is female or male, respectively. Rewriting a query as such is a burdensome task
for the user as the number of variants can grow exponentially in terms of the number of
features. The question becomes: is there a way that the user can just write one query for
querying all variants of a database?

Views have traditionally been used to define unified abstractions over multiple databases.
Nevertheless, the result of a query over views is a single table. As shown in Example 1.0.1
in such applications we need to be able to output a set of tables depending on the un-
derlying schema of the result. Moreover, due to the possible variability of each element
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in the underlying dataset (e.g., in a database-backed software product line), one may
face exponentially many variants in an application. It is not clear how to scale a view
definition to this many databases.

In this thesis, we outline our proposal for a novel abstraction called variational
databases, v-DB for short, that provides a unified, compact, and structured represen-
tation of data variants in an application domain. We focus on the application of soft-
ware product lines. We also define the concept of variational queries whose inputs and
outputs are variational as well. One may use variational queries to explore database
variants simultaneously while preserving differences between them. Here, we mainly fo-
cus on schema variations in data. However, we believe that variational databases have
the potential to handle other types of data variations.

In Chapter 2 we give a comprehensive background of the situations where more
than two databases are used at a time and how people handle them depending on their
application. Then in Chapter 3 we provide some preliminary definitions along with the
used feature model and its properties (Chapter 4), we formalize variational databases in
Chapter 5, and introduce the representation system, called v-table, for it in Section 5.3.
After that, we introduce our query language, called variational queries, and define its
syntax and semantics in Chapter 6. Finally, we conclude in Chapter 7 and outline future
work.
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Chapter 2: Literature Review

To the best of our knowledge, there exists no database system and query language that
supports accessing and manipulating multiple databases with different schemas simulta-
neously. This is a crucial issue in the database-backed software generated by software
product lines (SPL). Although there has been little attention to the database variabil-
ity related to these software variations. Mathieu et al. present methods to generate
the database of different variations [13, 12], as opposed to a variational database that
assumes the database of variations has been provided and tackles the consequences of
working with various schemas simultaneously. Khedri and Khosravi propose a delta-
oriented programming approach that uses a feature dependency graph of an SPL to
generate the data definition language (DDL) scripts of database-backed software auto-
matically [13]. In contrast, Mathieu et al. present a plug-in tool for the DB-Main CASE
tool, a tool that supports management of database-related variability. They base their
work on feature-oriented modeling analysis and the Simple Variability Language [12].

However, the problem with these techniques is twofold: First, they focus on a
database DDL and do not consider the effects of variability on other aspects such as
queries used in the implementation of SPL software. Second, they are limited to the
context of database variations in SPLs and cannot directly be extended to other applica-
tions. In contrast, variational databases seek to model general forms of data variations.
For example, experts of a data analytics system generate variations of a database to
evaluate their system on different schemas [16]. Moreover, while some approaches offer
a representation-independent relational learning algorithm such as Castor, others gen-
erate different results with regards to the underlying schema of the data such as FOIL
and ProGolem [16]. Variational databases and variational queries provide a language
that can first simplify the expert’s job of creating and querying variations of a database
and second be used to modify such algorithms slightly to be executable over multiple
variations of the data and pick the best result possible.

The dependency of queries on the layout of data has been studied extensively for
various data formats. While this dependency is apparent for some structured data such
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as relational, it is not very obvious for others like HTML pages. Dalvi et al. use training
examples to learn a tree-based model and intuitive heuristics to achieve a more robust
XPath query over similar HTML pages [6]. They also introduce two types of robustness,
adversarial and probabilistic, and use learning algorithms to learn two different models
to achieve robust XPath queries over a series of HTML pages that have their layouts
changed over time [15]. Omari et al. use annotated pages and modify the XPath query
language [14]. They then generate a decision tree to obtain a robust query with a
precision that adjusts dynamically. These approaches use training examples and learn
some model to achieve a robust query against schema modifications, as opposed to a
variational database that does not use any annotated data to achieve executable queries
against various representation of data. Instead, we provide an expressive language that
encodes a query that can be applied to multiple variations of a database. Note that we
do not introduce a robust query against the representation of data. We rather introduce
a query language that is capable of carrying the representation of data inside it.

The query dependency on the representation of the structured data becomes more
problematic when the database evolves throughout time, known as database evolu-
tion. Schema evolution tools try to facilitate the database administrator (DBA) task of
generating a new database, assuming that the DBA knows the target schema exactly [5].
More specifically, they assist the DBA with the process of generating the new database,
determining if it is information preserving, transforming queries written over the previ-
ous schema to the new one, and keeping a history of steps taken to generate the new
database in order to be able to reverse it, if chosen by the user. In short, they provide
the users and DBAs with a language to express the mapping between a schema and its
evolved version and translating queries given a specific mapping [10, 5]. Furthermore,
they can neither execute a query over multiple versions of a database nor are they able to
return a set of results to answer a query evaluated on numerous versions. Nevertheless,
variational databases aim at a more convenient and semi-automatic query maintenance
in the face of various categories of schema evolution and mapping.

In addition to schema evolution, the need to query different data sources concerns
data integration. Data integration is the gathering of data of different formats from
various sources due to a new information need of a company, research group, etc [7]. Due
to the vast amount of variety in data, a mediated schema or warehouse is introduced to
the architecture of a data integration system such that it can be mapped accordingly
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to each of the data sources. As a result, queries are written in terms of the mediated
schema and will be translated to appropriate queries over relevant data sources using
the mappings that have been defined over data sources and the mediated schema, as
opposed to data integration, variational databases do not generate a mediated schema
with mappings to variations accordingly. Instead, they provide a compact representation
of all schemas in an efficient manner such that the user can query each of the desired
variations or a number of them. Furthermore, while data integration systems deal with
managing heterogeneity among existing data sources, variational databases consider het-
erogeneous data in a domain of interest, e.g., SPL. As a result, variational databases can
encode differences among various schemas easily without explicitly mapping an interme-
diate schema to the source schemas. Instead, the feature model presented in a variational
database links a specific schema design to a variation. Hence, the existence of feature
model relieves a variational database from having to define explicit schema mappings.

Similar to the need of defining numerous valid variations of a database, is the need
to represent uncertainty in the data, which is the purpose of probabilistic and in-
complete databases. Probabilistic databases represent uncertainty about the content
of a database by maintaining a set of possible states where each state has a probabil-
ity of being true [17]. These states all share the same schema, and it is assumed that
one is the actual state of the database. Variational databases, however, aim at pro-
viding a principled approach to modeling general types of variations where there may
be numerous valid variations with different schemas. Note that the variability that we
consider is different than current uncertain databases such as incomplete (probabilistic)
databases. The latter arises when we have incomplete (uncertain) knowledge [2, 17],
while the former is the result of information and system need of users to work on different
variations of a database at a time. While incomplete (probabilistic) databases engender
multiple possible worlds, the variational databases introduce just one possible world with
variations in data that the user needs to keep track.

In this thesis, we expand the idea of variational databases we introduced in [4]. How-
ever, our encoding differs significantly from the previous work on variational schemas.
In [4] we present an encoding based on presence conditions and variational sets and maps,
similar to previous research on variational lists, sets, and graphs [19, 9]. This approach
differs from previous methods of encoding variation in abstract syntax trees [8, 18] with
choices. A choice f〈e1, e2〉 is labeled by a condition f and resolves to either the al-
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ternative e1 if f is true or e2 if f is false. Nonetheless, we based our representation
in this work on formula choice calculus (FCC) [11], which is established over choices.
This representation allows for a closer interaction with relational algebra. Furthermore,
employing FCC permits us to handle the feature sets introduced by the application of
interest, SPL. It enables the variational database to encode various elements of a kind
in one including schemas and queries. Nevertheless, the representation of variational
queries and schemas in both works differs.
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Chapter 3: Preliminaries

In this section, we first review some basic database concepts required. Then we introduce
the concept of Software Product Line (SPL) and how it relates to variational databases.
Schema S is a finite set {R1, . . . , Rn} of relation symbols where each Ri has a fixed arity
ni ≥ 0. A relation Ri consists of an attribute set, i.e., attr(Ri) = {A1, . . . , Ak}. The
cardinality of a relation, denoted by arity(Ri), is the number of attributes it contains.
Let D be a countably infinite set of constants. An instance IS of S assigns to each
relation symbol Ri ∈ S a finite ni-ary relation RIi ⊆ Dni . For brevity, we use I to denote
an instance of a database. The domain dom(I) of instance I is the set of all constants
that occur in at least one relation in I. In a defined instance I, each attribute also
has a domain, denoted by dom(Ai), defined as the set of all constants assigned to Ai in
instance I.

Software saturates every sector. Organizations rely on its effectiveness and efficiency
every day. Hence, there is a considerable demand for similar software all around the
globe. As a result, software vendors produce families of similar systems that differentiate
by features [1]. Such software primarily performs the same or similar tasks. Developing
a software requires a certain amount of time and effort, not to mention the resources it
occupies for the maintenance. Hence, if there was a way to generate families of software
that conduct similar tasks without the need to develop each one from scratch, we could
have saved a lot of resources: time, effort, and money! Developing a core asset combined
with a product development and management is the primary idea of Software Product
Lines, SPL for short. SPL is an approach for producing software-intensive products [1].
A software product practice takes advantage of a core asset and applies numerous features
in the product development to generate various software that conducts tasks in the same
category.

Example 3.0.1 A software product practice uses a pipeline to generate software prod-
ucts of banking, stock marketing, and investment, since they all satisfy the need of fi-
nancial market segment and can be developed from a common set of core assets in a
prescribed way [1].
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An SPL practice can generate different software without developing every single one
of them by introducing a set of features, called feature model. The core asset of an SPL
approach is written in such a way that it can decide how to generate a product given a
set of configured features. We call each of the products created this way a variation. In
Chapter 4 we elaborate more on how features are configured and how we specify them
for our purposes.

Often, variations generated by an SPL practice need to work with a database system
to be able to store and manipulate their data in a structured way, especially since they
need to handle a vast amount of data most of the times. As a result, a schema must be
defined for each variation. For our purposes, we introduce some new concepts to be able
to refactor most of the database-related work of an SPL.

Definition 3.0.2 (Complete set of domain relations) Consider a set of countable
and finite relation symbols denoted by R = R1, . . . , Rn. Let Ai = {A1, . . . , Ak}, 1 ≤
i ≤ n, k = arity(Ri) be a disjoint countable and finite set of attributes. We call each of
Ri(A1, · · · , Ak) for 1 ≤ i ≤ n a domain relation and the whole set of them a complete
set of domain relations.

We use the term SPL relation interchangeably with domain relation here since we
focus on the application of SPLs. A schema design may use a subset of the SPL relations
and subsets of their attributes, resulting in a schema variation. We limit the transfor-
mation that schema variations can take into two types: 1) they can contain a relation
defined in the complete set of domain relations or not and 2) a relation of a variation
can include an attribute of that domain relation or not. This assumption requires at-
tribute and relation names to be distinct and unique, i.e., we cannot have two attributes
(relation) representing semantically same concepts.

Definition 3.0.3 (Possible relations) A set of relations in different variations that
are instances of the relation R, defined as an SPL relation, is called a set of possible
relations of R.

Here we define our problems in details: Given a software product practice (including
its variations) along with a set of schema variations and their associated feature config-
urations, how can a user query all the variations at the same time and get the results
over all possible variations?
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Chapter 4: Feature Expression

As mentioned earlier we allow two types of transformations among variations of a soft-
ware: 1) including a table or not and 2) including an attribute or not. The inclusion of a
relation or an attribute is determined by the configured features for every variation. In
this chapter, we first explain the feature model used in an SPL and how we use feature
expressions to specify the SPL feature model. We then explain the equivalence of two
feature formulas, which will be used for evaluating queries.

4.1 Feature Expressions Specifying the SPL Feature Model

As mentioned earlier, an SPL uses a set of features, denoted by F, to manage different
variations of a software. We assume that features are boolean variables. We show in
Example 4.1.1 that we can easily convert multi-valued features to boolean ones. Hence,
without loss of generality, we assume that features are booleans for now. We consider two
types of feature formulas: 1) clauses that only conjunct features (literals) together and
2) disjunctions of the conjunctive clauses. Each of these cases has its own applications,
which we will explain when we use it. We limit our abstract syntax to DNF feature
formulas. However, we allow unnormalized feature formulas in the concrete syntax.
Note that each set of features are associated with a category of features. For example, if
we have features US and Iceland we assign both of them to the category of country. We
assume this task is done by an SPL expert who is familiar with the feature model of the
SPL core. In Example 4.1.1 we show that this is a simple task that in most of the SPLs
is not needed due to having multi-valued features and the process of converting them to
boolean variables.

Example 4.1.1 Assume we have the SPL introduced in Chapter 1. We mentioned that
it has a feature country that takes three values: United State, Iran, and Iceland. We
convert this feature into boolean variables: US , Ir , and Ic; denoting countries United
State, Iran, and Iceland, respectively. Note that these three boolean features belong to the
feature category “country”.
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Feature expression generic object:

f ∈ F Feature Name

Feature expression syntax:

b ∈ B ::= true | false Boolean Tag
cl ∈ Conj ::= b | f | ¬f | cl ∧ cl Conjunction of Features

f̂ ∈ F ::= cl | cl ∨ cl Feature Formula
c ∈ C = F→ B Configuration

Semantics of feature formulas:

F J.K : F → C→ B
F JbKc = b

F JfKc = c f

F J¬fKc = ¬F JfKc
F Jcl1 ∧ cl2Kc = F Jcl1Kc ∧ F Jcl2Kc
F Jcl1 ∨ cl2Kc = F Jcl1Kc ∨ F Jcl2Kc

Figure 4.1: Feature expression definition.
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As we mentioned earlier, the configured features determine the specific variation.
Hence, we define a configuration as a function that maps every feature of the SPL to a
boolean tag. By definition, a configuration is a total function from the feature set to
boolean tags, i.e., a configuration includes all features defined in the SPL feature model.
For brevity, we show the configuration c with a set of features, denoted by F tc , where c
maps all features in F tc to true, i.e., ∀f ∈ F tc : F JfKc = true. Every other feature in the
SPL feature model that is not included in F tc is set to false under configuration c, i.e.,
∀f 6∈ F tc : F JfKc = false. We call F tc the true feature set of configuration c.

Example 4.1.2 Assume the SPL used in Example 4.1.1 also has the feature category
type with boolean variables b, s, and i which represent banking, stock marketing, and
investment, respectively. These features determine the type of the software. Now the
software requested for banking in the United State has the configuration c s.t.: F tc =
{US , b}. Every other feature is set to false, i.e., Ir , Ic, i, and s are set to false under
configuration c.

4.2 Feature Equivalence

In this section, we establish syntactic rules for deriving the semantic equivalence of
feature formulas. We will see in Section 6.4 that this relation is required for the term
equivalence of our query language. In practice, formula equivalence can be checked using
a SAT solver. Recall that

1. Two functions are equal, by definition, if they have the same domain and codomain
and their images agree for all elements in the domain.

2. For any function, the inverse images of elements in the codomain partition the
domain.

3. Any partition defines a canonical equivalence relation where the parts of the par-
tition correspond to the equivalence classes of the relation.

Definition 4.2.1 (Feature formula equivalence) Let (≡) be a binary relation on
feature formulas defined by f̂ ≡ f̂ ′ iff ∀c ∈ C : F Jf̂Kc = F Jf̂ ′Kc.
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Note that the feature formula equivalence is defined in terms of function equality.
Since F J.K is a well-defined function from feature formulas to elements of the semantic
domain, it follows from earlier remarks that the relation (≡) is an equivalence relation.
We refer to the relation (≡) as a semantic equivalence and we call feature formulas f̂
and f̂ ′ (semantically) equivalent if f̂ ≡ f̂ ′. For a set of feature formula equivalence rules,
the reader can consult [11].
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Chapter 5: Variational Databases Definition and Formalization

A v-DB, which stands for variational database, is intuitively meaningful when we have
a set of schema variations at the same time and we want to work on some of them
simultaneously. We consider a schema variation, S, valid if there exists a software product
with a database instance employing schema S in the underlying SPL practice. In this
chapter, we define a compact representation of a set of valid schemas, called a variational
schema. We also elaborate on the equivalence of the elements of such a schema in
Section 5.2. We then establish a representation system for variational databases in
Section 5.3.

5.1 Variational Schema (V-Schema)

Intuitively a v-schema, short for variational schema, is a systematic and compact rep-
resentation of all valid schemas of the underlying application of interest that encodes
feature-related information effectively. A v-schema relieves the need to define an in-
termediate schema and state mappings between it and source schemas. A naive rep-
resentation of variational schemas would be to make the set of relation specifications
variational. While this allows arbitrary variation among schemas, it does not reflect the
fact that schemas can vary in systematic ways. For example, generally, we want to sup-
port any variant that includes or excludes a relation or an attribute. Expressing all such
inclusions/exclusions explicitly and one-by-one is tedious and obfuscates more interest-
ing variations. Instead, we encode relations and schemas by using feature expressions
defined in Chapter 4 and adopting the concept of formula choice calculus introduced
in [11].

Definition 5.1.1 (Variational set) As shown in Figure 5.1, a variational set can be
a single attribute, a set of attributes, a choice of two variational attribute sets where a
feature formula determines which set to pick, or an empty set denoted by ∅.
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Example 5.1.2 Assume we are given a domain relation deposit(account, amount, depositor),
and the feature category “type” that contains three boolean variables b, s, and i, repre-
senting types banking, stock marketing, and investment, respectively. If the software is
designed for a stock market company, then it does not need to have any of the attributes
in the deposit relation. However, if it is of the other two types, it will have attributes
account and amount. Although it will only contain the “depositor” attribute if it is
banking software. Since a person other than the owner of an account can deposit money
to that account, which is not the case for investment software. We can show all these
variations in the following variational set.

vldeposit = (b ∧ ¬s ∧ ¬i)〈{account, amount, depositor}, (¬b ∧ ¬s ∧ i)〈{account, amount},∅〉〉

Definition 5.1.3 (Variational relation) As shown in Figure 5.1, a variational re-
lation is a relation with a variational set assigned to it. Note that the feature formulas
used in the variational set assigned to the variational relation determine the set of possible
relations of a domain relation.

Example 5.1.4 We can show the deposit relation with conditions mentioned in Exam-
ple 5.1.2 by: [deposit : vldeposit ]

Definition 5.1.5 (V-schema) As shown in Figure 5.1 a v-schema is a choice of “a set
of variational relations” with a feature formula attached to it that determines the schema
of the database instance for a software product with a configuration in the underlying
SPL practice, and an empty set, denoted by ∅, specifying the absence of a schema for
configurations that evaluate the feature formula attached to the choice to false.

Remark 5.1.6 The attached feature formula, f̂s, to the choice of a v-schema definition
must have the DNF form. As opposed to the feature formula, f̂l, attached to a choice of
variational set that can take any of the forms allowed by feature expression syntax shown
in Figure 4.1. This difference is rooted at the purposes that these feature formulas carry.
The feature formula f̂s indicates all valid schemas. However, the feature formula f̂l

indicates a subset of the possible relations associated with each set alternative. Therefore,
each conjunctive clause of v-schema’s feature formula must include all features of the
SPL, where each conjunctive clause demonstrates a variation. In contrary, the feature
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Relational model generic objects:

D ∈ Dom Domain
A ∈ Att Attribute Name
R ∈ R Relation Name
t ∈ T Tuple

Relational model definition:

l ∈ L = A1, . . . , An Attribute set
s ∈ S = R(A1, . . . , An) Relation specification
S ∈ S ::= s1, . . . , sn Schema
T ∈ T ::= {⟪t(1), . . . , t(k)⟫|t(i) ∈ Di, 1 ≤ i ≤ k, k = arity(R)} Relation Instance (Table)

Variational schema objects:

vl ∈ Vset ::= A | vl ∪ vl | f̂〈vl, vl〉 | ∅
V R ∈ Vrel ::= [R : vl]

Variational schema syntax:

S ∈ Vsch ::= f̂〈{V R1; . . . ;V Rn},∅〉

Semantics of variational objects:

OLJ.K : Vset→ C→ L
OLJAKc = {A}
OLJvl1 ∪ vl2Kc = OLJvl1Kc ∪OLJvl2Kc

OLJf̂〈vl1, vl2〉Kc =
{
OLJvl1Kc, if F Jf̂Kc = true

OLJvl2Kc, otherwise
OLJ∅Kc = {}
ORJ.K : Vrel→ C→ R
ORJ[R : vl]Kc = R(OLJvlKc)
OSJ.K : Vsch→ C→ S

OSJf̂〈{V R1; . . . ;V Rn},∅〉Kc =
{
{ORJV R1Kc; . . . ;ORJV RnKc}, if F Jf̂Kc = true

{}, otherwise

Figure 5.1: Relational model and v-schema definitions.
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formula of a variational set can only contain a subset of SPL features. For now, we do
not simplify the formulas even if possible.

Example 5.1.7 Assume we have the domain relation deposit defined in Example 5.1.2
and the domain relation member(ID,firstName,middleName, lastName). We also have
feature categories type and country, where type may take feature booleans b, s, and i and
country may take US and Ir . Remember that the middleName attribute is only used
when US = true. Now assume that the SPL contains the variations of US with all three
software types. However, it only includes the variation of banking in Iran. The v-schema
in this situation is:

f̂〈{[deposit : vldeposit ] ; [memeber : vlmember ]},∅〉

where:

f̂ = ((US ∧ ¬Ir) ∧ (b ∧ ¬s ∧ ¬i)) ∨ ((US ∧ ¬Ir) ∧ (¬b ∧ s ∧ ¬i))

∨ ((US ∧ ¬Ir) ∧ (¬b ∧ ¬s ∧ i)) ∨ ((¬US ∧ Ir) ∧ (b ∧ ¬s ∧ ¬i))

vlmember = ((US ∧ ¬Ir) 〈{middleName},∅〉) ∪ {ID,firstName, lastName}

We have defined vldeposit in previous examples.

For reference, the abstract syntax and semantics of relational model is given in Fig-
ure 5.1. A schema is defined as a set of relation specifications (we call them specifi-
cations), where each specification provides the name of the relation and its attributes.
Conceptually, a variational schema represents many different plain schemas that can be
obtained by configurations.

5.2 Variational Object Equivalence

In this section, we establish syntactic rules for deriving the semantic equivalence of
variational objects, including v-schema, variational relation, and variational set.

Definition 5.2.1 (Variational object equivalence) Let (≡) be a binary relation on
objects defined by o ≡ o′ iff ∀c ∈ C : OJoKc = OJo′Kc.
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Note that the object equivalence relation definition ranges over all the semantic func-
tions OL, OR, and OS . In other words, it can be applied to all variational objects: at-
tribute set, relation, and schema. One can easily specify the object type by determining
it as a subscript, i.e. OL, OR, and OS for attribute set, relation, and schema, respectively.
With a similar reasoning to the feature formula equivalence relation, the relation (≡) is
an equivalence relation, and objects o and o′ are (semantically) equivalent if o ≡ o′.

5.3 The Representation System for a V-DB: V-Table

Now that we have introduced an abstraction to encode all valid schemas of the underly-
ing domain of interest, the v-schema, we need a representation system for the v-DB to
communicate with it as well as enabling the user to visualize their result to a query. To
be able to represent a v-DB we have to represent its elements, i.e., the tuples in varia-
tional relations. It is essential to use a representation system that can effectively show
the variability of data in tuple-level. Note that the v-schema takes care of the variability
in the structure of data. Hence, we do not need to worry about structure variability
while defining the representation system. We introduce our representation formalism,
variational table (v-table), as follows:

Definition 5.3.1 (Variational table) A v-table, short for variational table, is a
pair, V T = (T,Ψ), defined over the variational database instance I, where T is a relation
instance in I and Ψ : R → F assigns a feature formula, Ψ(t), to tuple t to indicate the
software variation(s) that it belongs to. We call the Ψ function the “variation presence
condition assigner” (VPCA).

Remark 5.3.2 Note that a variational relation is an abstraction that encodes all possible
relations of a domain relation. As opposed to a v-table that represents an instance of a
variational relation in a v-DB instance. Hence, they perform different tasks. While the
former manages the data variability, the latter one handles the structure variability.

We call a feature formula that determines whether an element is valid in a given
configuration presence condition. Therefore, we define relation presence conditions, at-
tribute presence conditions, and tuple presence conditions. While the v-relation takes
care of the first two, the v-table keeps track of the last one.
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ID firstName middleName lastName

F1
1 Sean John Patrick
2 Caitlin Elyse Brennan

F2
3 Mani ⊥ Tehrani
4 Saeid ⊥ Ghafouri

Table 5.1: A v-table of the variational relation member . The ⊥ denotes the case where
an attribute, A, is not valid for a given tuple, t, i.e., the variation that t belongs to does
not include attribute A.

Example 5.3.3 The v-table of the member variational relation in Example 5.1.7 is
shown in Table 5.1, where part1 includes the first two tuples and part2 includes the
last two tuples. Therefore:

∀t ∈ part1 : Ψ(t) = F1 = (US ∧ ¬Ir) ∧ (¬b ∧ ¬s ∧ i)

∀t ∈ part2 : Ψ(t) = F2 = (¬US ∧ Ir) ∧ (b ∧ ¬s ∧ ¬i)

Note that we infer presence conditions for v-relations and attributes using the defined
v-shcema. Here the presence condition of the v-table (member ,Ψ), denoted by Φ(member)
is:

Φ(member) = ((US ∧ ¬Ir) ∧ (b ∧ ¬s ∧ ¬i)) ∨ ((US ∧ ¬Ir) ∧ (¬b ∧ s ∧ ¬i))

∨ ((US ∧ ¬Ir) ∧ (¬b ∧ ¬s ∧ i)) ∨ ((¬US ∧ Ir) ∧ (b ∧ ¬s ∧ ¬i)).

In a similar manner, we infer the presence conditions of attributes. For attribute A we
denote its presence condition by Φ(A). Hence, in this example we have:

Φ(ID) = f1 = true

Φ(firstName) = f2 = true

Φ(middleName) = f3 = US ∧ ¬Ir

Φ(lastName) = f4 = true

Given a v-table (T,Ψ), an instantiation of it w.r.t. configuration c is a v-table (Rc,Ψ)
such that:
T c = {〈t(A1), . . . t(Ak)〉|t ∈ T and F JΦ(T )Kc = true and ∀1 ≤ i ≤ k : F JΦ(Ai)Kc =
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ID firstName lastName
c 3 Mani Tehrani
c 4 Saeid Ghafouri

Table 5.2: The relation of the instantiation of the v-table (member ,Ψ) given in Table 5.1.

true and F JΨ(t)Kc = true}. Note that Φ(T ) and Φ(Ai) are taken from the v-relation
definition correspondent to T .

For example, Table 5.2 shows the instantiation (memberc,Ψ) of the v-table shown in
Table 5.1 where c = ((¬US ∧ Ir) ∧ (b ∧ ¬s ∧ ¬i)).

Remark 5.3.4 Note that the v-table instantiation itself is a v-table. Also an empty set
is considered as a v-table that its table is empty and as a result its VPCA function does
not have any tuple to assign a presence condition to.

5.4 Property of the Representation System, V-Table

Definition 5.4.1 (closeness) A representation system for a v-DB is closed under a
query language if the result of a query can be represented in that representation system
as well as its input.

Consider a representation formalism, F , such as the one introduced in Figure 6.2.
Let D be a variational database represented in F . Given a query Q ∈ L, where L is a
query language, if we can represent Q(D) in F then F is closed under L. Clearly, any
complete representation system is closed too, which gives us Corollary 5.4.2.

Corollary 5.4.2 V-table is closed under V-SPJ algebra.

Proof Assume we have a query Q that only contains V-SPJ operations over a v-table
in a variational database instance I. Assume V T = Q(I) is the result of running Q over
I. To prove closeness of v-table under V-SPJ algebra, We need to show that V T is a
v-table as well. Hence we need to construct all the elements of a v-table, i.e., its relation
instance and VPCA functions. Let V T = (T,Ψ). We need to define T and Ψ. We
have already comprehensively explored this while defining the validation and dynamic
semantics of V-SPJ in Section 6.3.2. And as it can be seen the result of a v-query is
always a v-table.
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The property of a representation formalism being closed under a query language is
also known as strong representation system [2]. As a result, the variational table is a
strong representation system under variational queries.
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Chapter 6: Query Language

A user’s least expectation of a database system is the ability to satisfy their information
need, such as manipulating data and extracting information. A query language is a tool
for such an interaction with a database. In this section, we introduce the variational
query language, v-query for short, as a query language for a v-DB. We pick a subset
of relational algebra operations known as SPJ algebra and adopt them in such a way
that they will be applicable to a v-DB instance. We first explain the SPJ algebra
briefly in Section 6.1 and then introduce v-queries in Section 6.2. We then explore
different semantics of the introduced query language: the configuration selection and
dynamic semantics in Sections 6.3.1 and 6.3.2, respectively. Finally we elaborate on the
equivalence of v-query terms in Section 6.4.

6.1 SPJ Algebra Semantics

The elements, syntax, and semantics of SPJ algebra are shown in Figure 6.1. Note that
we just use the relation names to write a query. However, the query will be run on
an instance of the relation provide by the database instance. We define the expression
equivalence relation (≡) as a binary relation on SPJ expressions defined by e ≡ e′ iff
EJeK = EJe′K. Hence, expressions e and e′ are (semantically) equivalent if e ≡ e′. The
SPJ algebra contains four operations: projection, selection, join, and Cartesian product.
We explain the semantics of the operations, shown in Figure 6.1, briefly [2]:
Selection filters data horizontally, i.e., it returns a subset of tuples belonging to a table
T based on a condition θ. We define it formally in Figure 6.1. Note that θ(t) : T → T
is the condition θ applied to the tuple t ∈ T and returns a boolean value. Note that a
query using this operation must follow the attribute inclusion and value-attribute domain
matching constraints explained in Section 6.1.1.
Projection filters data vertically, i.e., it returns a set of attributes with their corre-
spondent values in tuples. The formal definition is shown in Figure 6.1, where t(Ai)
represents the value of a tuple at attribute Ai. We use the notation of ⟪t(A1), . . . , t(Aj)⟫
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SPJ algebra generic objects:

k ∈ K Constant
• ∈ Op ::= < | <= | = | > | >= | != Operation

θ ∈ Cond ::= b | A • k | A •A | ¬θ | θ ∨ θ | θ ∧ θ Condition
κ ∈ Jcond ::= b | A = A | κ ∨ κ | κ ∧ κ Join Condition

SPJ algebra syntax:

e ∈ Exp ::= T Relation specification
| σθe Selection
| πle Projection
| e× e Cartesian product
| e onκ e Join

Semantics of SPJ algebra:

EJ.K : Exp→ T
EJT K = T

EJσθeK = {t ∈ EJeK | θ(t) = true, attr(θ) ∈ attr(e)}
EJπleK = {⟪t(A1), . . . , t(Aj)⟫ | t ∈ EJeK, l = A1, · · · , Aj}

EJe1 × e2K = {⟪t1(1), . . . t1(k), t2(1), . . . , t2(j)⟫ | t1 ∈ EJe1K, t2 ∈ EJe2K,
arity(e1) = k, arity(e2) = j}

EJe1 onκ e2KI = {t ∈ EJσκ(e1 × e2)K}

Attribute inclusion constraint:

Q = πle ∀A ∈ l : A ∈ attr(e)
Q = σθe ∀A ∈ attr(θ) : A ∈ attr(e)

Value-attribute domain matching constraint:

Q = σθe ∀A ∈ attr(θ) : valA(θ) ∈ dom(A)

Attribute domains matching constraint:

Q = e1 onκ e2 ∀A ∈ attr(θ) : valA(θ) ∈ dom(A)

Figure 6.1: The SPJ algebra definitions.
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to represent a tuple with the attribute set {A1, . . . Aj}. Note that a query using this
operation must follow the attribute inclusion constraint explained in Section 6.1.1.
Cartesian product joins every tuple in table e1 with every tuple in e2, without ap-
plying any conditions to the returned tuples. In its definition, shown in Figure 6.1,
t1(i), 1 ≤ i ≤ k and t2(i), 1 ≤ i ≤ j denote the value of the tuples t1 and t2 at attribute
ith of relations e1 and e2 respectively.
Join is used to relate two tables e1 and e2 based on a condition κ. As it can be seen
in Figure 6.1 this operation can easily be defined using the combination of selection and
Cartesian product. Hence, we do not introduce it here. Note that the conditions used
in the join operation must be of the Jcond syntactic category. Also note that a query
using this operation must follow the attribute domains matching constraint explained in
Section 6.1.1.

Note that in all SPJ operations, the input can be the result of some other SPJ
algebra expression, since the relational model is closed under relational algebra, which
the SPJ algebra is a subset of [2]. In that case each expression will be computed, and
the result will be passed to the next operation, as shown in the semantics of SPJ algebra
in Figure 6.1.

6.1.1 SPJ Query Constraints

Any query written in the SPJ algebra must satisfy three constraints, if applicable. These
constraints are stated in Figure 6.1. If a query does not follow these constraints, applying
it to a database instance will result in a type error.
Attribute inclusion constraint ensures that attributes used in the attribute operand
of a query are included in the relation’s argument of it. For example, the attributes used
in the set of projection operator must be attributes of the relation that the projection
has been applied to.
Value-attribute domain matching constraint ensures that the value assigned to
attributes in the conditional operands of a query matches the domain of that attribute
in the relation the query is applied to. Note that we denote such a value by valA(θ). For
example, we cannot have a condition like ID = ‘John’, where dom(ID) = N. Because
John 6∈ N.
Attribute domains matching constraint ensures that the equality of attributes in a
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V-SPJ objects:

V T ∈ Vtab ::= (T,Ψ)
vθ ∈ Vcond ::= b | A • k | A •A | ¬vθ | vθ ∨ vθ | vθ ∧ vθ | f̂〈vθ, vθ〉

V-SPJ algebra syntax:

ve ∈ Vexp ::= V T Variational Table
| σvθ ve Variational Selection
| πvl ve Variational Projection
| ve× ve Variational Cartesian Product
| f̂〈ve, ve〉 Variational Expression Choices

Figure 6.2: V-SPJ algebra definitions.

conditional operand of a query is valid, i.e., the domain of attributes on the right-hand
and left-hand sides of the condition is the same. This constraint, for example, prevents
cases that an attribute of the integer domain is checked for equality to an attribute of
the string domain. In other words, it prevents type errors.

6.2 Variational Query (V-Query)

Conceptually, a variational query describes a query that can be executed over any
database instance consistent with the variational schema. The property that must hold
between a variational query V Q and a variational schema V S is that for every plain
query Qc obtained from V Q by configuring with a function c : F→ T, Qc is consistent
with the corresponding plain schema Sc obtained by OSJV SKc with the same function c.
That is, every variant query matches the corresponding variant schema. In Section 6.5,
we prove that our query language, v-query, can encode this idea and also recover any of
the conceptually potential results for any instance of the variational database.

The representation of variational queries in Figure 6.2 builds on the representation
of plain queries in Figure 6.1. First, relations are generalized to accept a variational set
of attributes with assigned feature formulas defined in the variational schema. Second,
the variational conditions are annotated by feature formulas indicating in which variants
the conditions are applicable. Third, each query is itself annotated by a feature formula
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indicating in which variants the query should be employed. In what follows we demon-
strate the potential of v-queries and provide some examples for a better understanding
of them.

Remark 6.2.1 Similar to SPJ queries, we define V-SPJ queries using just the name
of the v-relations. Although, note that the v-table associated to that name in the v-DB
instance will be passed to the query.

Remark 6.2.2 The defined syntax of v-query allows for applying plain relational oper-
ations on a v-table. Note that the presence condition of relation, attributes, and tuples
will determine the validity of the returned attributes and tuples. Example 6.2.3 demon-
strates this point. Note that in our examples, we drop the VPCA function for simplicity.
However, while passing a query to the database, this function will be passed too.

Example 6.2.3 Assume we have the v-table given in Table 5.1 and we want to get mem-
bers’ IDs and first names. The v-query q1 = πID,firstName(member) will accomplish this
task. Obviously, the result is a v-table that contains first three columns of the Table 5.1,
with the same VPCA function. If we wanted to get the middle names as well we could
still use the simple v-query q2 = πID,firstName,middleName(member). The result this time
contains the first four columns of the table with the same VPCA function. Although a
more optimized case is to eliminate the cases where the middle name attribute is not
defined and update the functions accordingly. We will consider such optimizations in our
future work. Note that getting unoptimized data is specifically problematic when a user
wants to query the results of q2. She normally expects to be querying the case where she
has middle names, i.e., she has focused on the matter of US database. Assume the result
of q2 is (T,Ψ). Now she wants to get the first names used in the US. She expects just to
project the first name attribute of T since she is assuming that she has already filtered
out the cases that do not have the middle name, in our example tuples associated with
Iran. Hence, she runs the query q3 = πfirstName(T ). Surprisingly, she gets first names
of both countries, and hence she will not be satisfied. She could have avoid this problem
by rewriting q2 as q′2 = π(US ,¬Ir)〈(ID,firstName,middleName),∅〉(member). She can then easily
run q3 on the result of q′2 and get first names used in the US. This also demonstrates the
necessity of including the feature specifications in query operands.
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firstName
Sean
Caitlin
Mani
Saeid

Table 6.1: The result of query q1 over member v-table in Example 6.2.4, demonstrating
the need of including the VPCA function in v-tables.

It is vital to pass feature specifications in query operators and also in the v-table and
the v-relation, all as feature formulas, to be able to match the correct variations either
structurally or contextually. Example 6.2.4 and 6.2.3 demonstrate the necessity of this
issue.

Example 6.2.4 We first show the necessity of defining the VPCA function for a v-
table. Assume we did not have the Ψ function of the member v-table shown in Table 5.1.
Evaluating the v-query q1 = πfirstName(member) results in Table 6.1. As it can be seen,
we have no idea which variation the member with name Sean belongs to. Hence we have
lost the provenance, or originality, of the data. In Section 5.4 we prove that defining the
VPCA function made the v-table representation a variation preserving representation
system. In contexts that users deal with data from a variety of sources, this is a crucial
issue to handle.

While writing a v-query, one must carefully choose presence conditions used for the
query operands. Some subtle details and points must be taken into account when writing
the queries. Example 6.2.5 demonstrates a simple case. For now, we assume any given
v-query is valid and correct semantically. Although, we plan to check the validity of a
v-query in our future work.

Example 6.2.5 Assume the country category feature includes three features US, Ir, and
Ic; standing for the United States, Iran, and Iceland, respectively. These features repre-
sent different countries that have requested a software from the SPL company. A user
wants to get the middle name when the US is set and the first name when the Ic is set.
At first, she writes the v-query:
Q1 = π(US∧¬Ic∧¬Ir)〈(middleName),(firstName)〉(member).
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However, she notices that in the result returned she also has first names of the coun-
try Ir. Then she realizes that the feature formula she used does not convey her in-
tent. Because after evaluation to false it considers both countries, Iceland and Iran.
For her v-query to return her desired set of tuples, she needs to modify her v-query to
Q2 = π(US∧¬Ic∧¬Ir)〈(middleName),(¬US∧Ic∧¬Ir)〈(firstName),∅〉〉(member).

6.3 V-SPJ Semantics

We introduce three semantic functions over the introduced V-SPJ algebra with regards
to the nature of variational databases: 1) Configuration selection semantic definitions,
selection semantics definitions for short, specify a v-query to a given specific configura-
tion. 2) Static semantic rules ensure that a query written over a v-DB is well-formed
and consistent with the v-schema. As mentioned earlier, we plan to write these rules
in future and here we assume any written v-query is statically checked. 3) Dynamic
semantic definitions apply a query to a v-DB instant and return the result in the form
of a v-table. We dive into details regarding these semantics in Sections 6.3.1 and 6.3.2,
respectively. The input to a v-query is assumed to be a v-table in all semantic definitions.

6.3.1 V-SPJ Configuration Selection Semantics

The selection semantics of a v-query Q takes a specific configuration, c, and construct a
v-query of Q with plain arguments over an instantiation of the input v-table with respect
to c. In other words, the selection semantics limits a query to only one variation of data
chosen by the user. Figure 6.3 defines all selection semantic definitions. Note that we
have extended the “equivalence relation” definition to variational queries and conditions
as explained in Section 6.4.

Example 6.3.1 Assume we have the variational query Q2 given in Example 6.2.5. We
want to get the plain query of Q2 associated to the configuration c1 = (US ∧¬Ic∧¬Ir)∧
(b ∧ ¬i ∧ ¬s). We will have:

EEJQ2Kc1 = πmiddleName (memberc1)

Remark 6.3.2 Note that the selection semantics does not output a plain query in SPJ
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Configuration selection semantics of variational conditions:

ECJ.Kc : Vcond→ C→ Cond
ECJbKc = b

ECJA • kKc =
{
A • k, if F JΦ(A)Kc = true

false, otherwise
where A ∈ attr(R), (R,Ψ) ∈ Vtab

ECJA1 •A2Kc =
{
A1 •A2, if F JΦ(A1)Kc = F JΦ(A1)Kc = true

false, otherwise
where A ∈ attr(R), (R,Ψ) ∈ Vtab

ECJ¬vθKc = ¬ECJvθKc
ECJvθ1 ∨ vθ2Kc = ECJvθ1Kc ∨ ECJvθ2Kc
ECJvθ1 ∧ vθ2Kc = ECJvθ1Kc ∧ ECJvθ2Kc

ECJf̂〈vθ1, vθ2〉Kc =
{
ECJvθ1Kc, if F Jf̂Kc = true

ECJvθ2Kc, otherwise

Configuration selection semantics of variational expressions (queries):

EEJ.Kc : Vexp→ C→ Vexp
EEJV T Kc = V T c

EEJσvθ veKc = σECJvθKc EEJveKc
EEJπvl veKc = πOLJvlKc EEJveKc

EEJve1 × ve2Kc = EEJve1Kc × EEJve2Kc

EEJf̂〈ve1, ve2〉Kc =
{
EEJve1Kc, if F Jf̂Kc = true

EEJve2Kc, otherwise

Figure 6.3: Configuration selection semantics of V-SPJ algebra.
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algebra since the input is an instantiation of v-table and as defined in Section 5.3 an
instantiation of a v-table is a variational table where all tuples and attributes presence
conditions assign them to one specific configuration.

6.3.2 V-SPJ Dynamic Semantics

The dynamic semantics of a v-query defines the evaluation of that query against an
instance of a v-DB. Consider we have a variational database instance I and a v-query Q.
Assume that the result of running Q over D, denoted by QI , is the v-table (T,Ψ). We
need to figure out different pieces of this v-table, namely the tuples to return and the
VPCA function, Ψ. Note that the instance of the v-table is encoded inside its definition
implicitly and the v-query takes a v-table as input. Hence, when evaluating a v-query,
we do not need to explicitly state the database instance since we are already passing it
to the v-query by means of v-table.

Remark 6.3.3 Note that the we do not define dynamic semantics for the third type of
v-queries since due to the assumption that we have distinct v-table and attribute name,
they will never occur. In future work, we will relax this assumption and provide the
semantics for its cases.

Remark 6.3.4 We assume the compatibility of the feature formulas and presence con-
ditions has already been checked by the static semantic rules. We demonstrate this by
stating “∀c ∈ Cchecked” in our dynamic rules definitions.

We go over each of the operations separately and define its dynamic semantics:
Selection: The dynamic semantics of v-queries employing the selection operation is

shown in Figures 6.4 to 6.5. Notice that a dynamic semantic definition takes a variational
expression, applies it to an instance of the v-DB, and outputs a v-table. Note that if
the condition operand of a selection query is not provided, we will assume that true has
been passed as the argument and hence the given v-table will be returned to the user.

We provide a brief justification of these definitions: Since the selection operation does
not filter any attributes, the output v-table will have all the attributes of the input v-
table. We also want to keep track of the variation which each tuple belongs to. Hence the
VPCA function may be more restricted by the conditions used in the v-query. However,
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DJ.K : Vexp→ Vtab

Dynamic semantics of variational selection queries (especial cases):
DJ(T,Ψ)K = (T,Ψ)
DJσtrue (T,Ψ)K = (T,Ψ)
DJσfalse (T,Ψ)K = {}

DJσtrue
(
f̂t〈(T1,Ψ1), (T2,Ψ2)〉

)
K = (T,Ψ)

(6= DJ(T1,Ψ1)× (T2,Ψ2)K)
where: attr(T ) = {A | A ∈ attr(T1) ∪ attr(T2)}

s.t. arity(T ) = arity(T1) + arity(T2)
T = T ′1 ∪ T ′2

where: T ′1 = {⟪t(1), . . . , t(j),⊥, . . . ,⊥⟫ | t ∈ T1, arity(T1) = j}
T ′2 = {⟪⊥, . . . ,⊥, t(1), . . . , t(k)⟫ | t ∈ T2, arity(T2) = k}

s.t. arity(T ′1) = arity(T ′2)

∀t ∈ T : Ψ(t) =
{

Ψ1 (part (t, T1)) ∧ f̂t, t ∈ T ′1
Ψ2 (part (t, T2)) ∧ ¬f̂t, t ∈ T ′2

Dynamic semantics of type 1 variational selection query:
DJσθ (T1,Ψ1)K = (T,Ψ)

where: attr(T ) = attr(T1)
T = {t | t ∈ T1, θ(t) = true}
s.t. ∀t ∈ T : Ψ(t) = Ψ1(t)

Figure 6.4: Dynamic semantics of variational queries using the selection operator. The
part function takes a tuple t and a set of tuples T and returns the part of t that belongs
to T . This function helps tracking what the variation of a constructed tuple is, i.e.,
whether a tuple t comes from T1 or T2. In other words, it drops the empty values of a
tuple constructed in our definition.
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Dynamic semantics of type 2 variational selection query:

DJσ
f̂θ〈vθ1,vθ2〉

(T1,Ψ1)K = (T,Ψ)

where: attr(T ) = attr(T1)
T = T ′1 ∪ T ′2

where: T ′1 = {t | t ∈ T1, (∀c ∈ Cchecked : ECJvθ1Kc(t) = true, F JΨ1(t)Kc = true)}
T ′2 = {t | t ∈ T2, (∀c ∈ Cchecked : ECJvθ2Kc(t) = true, F JΨ1(t)Kc = true)}

s.t. ∀t ∈ T : Ψ(t) =
{

Ψ1(t) ∧ f̂θ, t ∈ T ′1
Ψ2(t) ∧ ¬f̂θ, t ∈ T ′2

Dynamic semantics of type 4 variational selection query:

DJσ
f̂θ〈vθ1,vθ2〉

(
f̂t〈(T1,Ψ1), (T2,Ψ2)〉

)
K = (T,Ψ)

where: attr(T ) = {A | A ∈ attr(T1) ∪ attr(T2)}
s.t. arity(T ) = arity(T1) + arity(T2)

T = T ′1 ∪ T ′′1 ∪ T ′2 ∪ T ′′2
where: T ′1 = {⟪t(1), . . . , t(j),⊥, . . . ,⊥⟫ | t ∈ T1, arity(T1) = j,

(∀c ∈ Cchecked : ECJvθ1Kc(t) = true, F JΨ1(t)Kc = true)}
T ′′1 = {⟪t(1), . . . , t(j),⊥, . . . ,⊥⟫ | t ∈ T1, arity(T1) = j,

(∀c ∈ Cchecked : ECJvθ2Kc(t) = true, F JΨ1(t)Kc = true)}
T ′2 = {⟪⊥, . . . ,⊥, t(1), . . . , t(k)⟫ | t ∈ T2, arity(T2) = k,

(∀c ∈ Cchecked : ECJvθ1Kc(t) = true, F JΨ2(t)Kc = true)}
T ′′2 = {⟪⊥, . . . ,⊥, t(1), . . . , t(k)⟫ | t ∈ T2, arity(T2) = k,

(∀c ∈ Cchecked : ECJvθ2Kc(t) = true, F JΨ2(t)Kc = true)}

s.t. ∀t ∈ T : Ψ(t) =


Ψ1 (part (t, T1)) ∧ f̂t ∧ f̂θ, t ∈ T ′1
Ψ1 (part (t, T1)) ∧ f̂t ∧ ¬f̂θ, t ∈ T ′′1
Ψ2 (part (t, T2)) ∧ ¬f̂t ∧ f̂θ, t ∈ T ′2
Ψ2 (part (t, T2)) ∧ ¬f̂t ∧ ¬f̂θ, t ∈ T ′′2

Figure 6.5: Dynamic semantics of variational queries using the selection operator (con-
tinued).
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tuples will not lose their originality. For example, assume a tuple, t, belongs to variations
c1 and c2. The v-query applies a condition that filters out tuples of variation c2 from the
output. Then the returned tuple correspondent to t will only be of variation c1, which
is more restrictive than before.

Projection: The dynamic semantic definitions of v-queries that use the projection
operator are shown in Figures 6.6 and 6.7. The output relation will include the attribute
set resulted from the dynamic definition of the attribute set operand in the query, i.e.,
LJvlK in πvl(V T ). Again the VPCA function will be modified according to the v-query,

Cartesian product: The dynamic semantic definitions of a v-query using the Carte-
sian product operation are provided in Figure 6.8. Note that each resulting tuple consists
of two parts: one part that belongs to the first v-table and a second portion that belongs
to the second given v-table, i.e., a returning tuple is a concatenation of a tuple in the first
and second v-tables. The VPCA function will change accordingly based on the v-query.

Remark 6.3.5 Note that in all dynamic semantic definitions, the VPCA function is
operating such that the originality of tuples is not misplaced, i.e., after applying a query
the variation of a tuple is either the same as it was or it is being more restricted due
to the conditions in the v-query. However, the information about what variation a tuple
belongs to will not be lost or generalized. We call this property of variational databases
variation preservation. It is essential to note that the VPCA function makes the
variational table a variation preserving representation system.

6.4 Variational Query Equivalence

In this section, we define and prove sound a syntactic relation (≡) on variational queries,
where if two expression ve1 ≡ ve2 are related, then ve1 and ve2 are semantically equiv-
alent, that is, DJve1K = DJve2K. Note that since every expression defined in the V-SPJ
algebra is a query we use the terms query and expression interchangeably. In order to
introduce this relation we first define the syntactic relation (≡c) on variational queries
(and conditions), where if two terms vt1 ≡ vt2 are related, then vt1 and vt2 are se-
mantically equivalent w.r.t. configuration c, that is, EJve1Kc = EJve2Kc, where E can
either be subscripted with C or E for variational conditions and expressions respectively.
Note that we define the first equivalence relation both independent and with the help
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Dynamic semantics of a variational attribute set:

LJ.K : Vset→ L
LJAK = {A}
LJvl1 ∪ vl2K = {A|∃c ∈ C : A ∈ OLJvl1 ∪ vl2Kc}
LJf̂〈vl1, vl2〉K = {A|∃c ∈ C : A ∈ OLJf̂〈vl1, vl2〉Kc}
LJ∅K = {}

Dynamic semantics of variational projection queries (especial cases):

DJπ∅ (T1,Ψ1)K = {}

DJπ∅
(
f̂t〈(T1,Ψ1) , (T2,Ψ2)〉

)
K = {}

Dynamic semantics of type 1 variational selection query:

DJπl (T1,Ψ1)K = (T,Ψ)
where: attr(T ) = l

T = {⟪t(A1), . . . , t(Ak)⟫|t ∈ T1, l = {A1, . . . , Ak}}
s.t. ∀t ∈ T : Ψ(t) = Ψ1(t)

Dynamic semantics of type 2 variational selection query:

DJπ
f̂l〈vl1,vl2〉

(T1,Ψ1)K = (T,Ψ)

where: attr(T ) = LJf̂l〈vl1, vl2〉K
T = {⟪t(A1), . . . , t(Ak)⟫|t ∈ T1, LJf̂l〈vl1, vl2〉K = {A1, . . . , Ak}}

s.t. ∀t ∈ T : Ψ(t) =
{

Ψ1(t) ∧ f̂l, ∀A ∈ LJvl2K : t(A) =⊥
Ψ2(t) ∧ ¬f̂l, ∀A ∈ LJvl1K : t(A) =⊥

Figure 6.6: Dynamic semantics of variational sets and variational queries with the pro-
jection operator.



35

Dynamic semantics of type 4 variational selection query:

DJπ
f̂l〈vl1,vl2〉

f̂t〈(T1,Ψ1), (T2,Ψ2)〉K = (T,Ψ)

where: attr(T ) = LJf̂l〈vl1, vl2〉K
T = {⟪t(A1), . . . , t(Ak)⟫|(t ∈ T1 or t ∈ T2), LJf̂l〈vl1, vl2〉K = {A1, . . . , Ak}}

s.t. ∀t ∈ T : Ψt =


Ψ1(t) ∧ f̂t ∧ f̂l, t ∈ T1, ∀A ∈ LJvl2K : t(A) =⊥
Ψ1(t) ∧ f̂t ∧ ¬f̂l, t ∈ T1, ∀A ∈ LJvl1K : t(A) =⊥
Ψ2(t) ∧ ¬f̂t ∧ f̂l, t ∈ T2, ∀A ∈ LJvl2K : t(A) =⊥
Ψ2(t) ∧ ¬f̂t ∧ ¬f̂l, t ∈ T2, ∀A ∈ LJvl1K : t(A) =⊥

Figure 6.7: Dynamic semantics of variational sets and variational queries with the pro-
jection operator (continued).

of the second equivalence relation definition. The rules that make up these equivalence
relations can, therefore, be used to prove the semantic equivalence of two variational
queries, or if applied in a directed fashion, can be used to transform a variational query
in a semantics-preserving way.

Definition 6.4.1 (Variational query equivalence w.r.t. a configuration c) Let (≡c
) be a binary relation w.r.t. c on variational queries defined by ve ≡c ve′ iff EEJveKc =
EEJve′Kc.

Definition 6.4.2 (Variational condition equivalence w.r.t. a configuration c) Let
(≡c) be a binary relation w.r.t. c on variational conditions defined by vθ ≡c vθ′ iff
ECJvθKc = ECJvθ′Kc.

Definition 6.4.3 (Variational expression equivalence) Let (≡) be a binary rela-
tion on variational queries defined by 1) ve ≡ ve′ iff ∀I ∈ I : DJveK = DJve′K or 2)
ve ≡ ve′ iff ∀c ∈ Cchecked : EEJveKc = EEJve′Kc.

The relational algebra equivalence rules focus on optimizations in order to run the
most efficient expression at the runtime. Similarly, formula choice calculus (FCC) equiv-
alence rules try to remove redundancy and unemployed branches, which would result
in better performance as well [11]. The variational query equivalence rules combine
any of these rules together to achieve a more optimized query with as little as possible
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Dynamic semantics of type 1 variational Cartesian product query:

DJ(T1,Ψ1)× (T2,Ψ2)K = (T,Ψ)
where: attr(T ) = attr(T1) ∪ attr(T2)

s.t. arity(T ) = arity(T1) + arity(T2)
T = {⟪t1(1), . . . , t1(j), t2(1), . . . , t2(k)⟫ | t1 ∈ T1, t2 ∈ T2, arity(T1) = j,

arity(T2) = k,Ψ1(t1) ∧Ψ2(t2) 6= false}
s.t. ∀t ∈ T, t1 ∈ T1, t2 ∈ T2, t = concat(t1, t2) : Ψt = Ψ1(t1) ∧Ψ2(t2)

Dynamic semantics of type 2 variational Cartesian product query:

DJf̂t〈(T1,Ψ1), (T ′1,Ψ′1)〉 × f̂tt〈(T2,Ψ2), (T ′2,Ψ′2)〉K = (T,Ψ)
where: attr(T ) = attr(T1) ∪ attr(T ′1) ∪ attr(T2) ∪ attr(T ′2)

s.t. arity(T ) = arity(T1) + arity(T2) + arity(T ′1) + arity(T ′2)
T = P1 ∪ P2 ∪ P3 ∪ P4

where: P1 = {⟪t1(1), . . . , t1(j), t2(1), . . . , t2(k),⊥, . . . ,⊥⟫ | t1 ∈ T1, t2 ∈ T2,

arity(T1) = j, arity(T2) = k,Ψ1(t1) ∧Ψ2(t2) 6= false}
P2 = {⟪t1(1), . . . , t1(j),⊥, . . . ,⊥, t2(1), . . . , t2(n)⟫ | t1 ∈ T1, t2 ∈ T ′2,

arity(T1) = j, arity(T ′2) = n,Ψ1(t1) ∧Ψ′2(t2) 6= false}
P3 = {⟪⊥, . . . ,⊥, t1(1), . . . , t1(m), t2(1), . . . , t2(k),⊥, . . . ,⊥⟫ | t1 ∈ T ′1,

t2 ∈ T2, arity(T ′1) = m, arity(T2) = k,Ψ′1(t1) ∧Ψ2(t2) 6= false}
P4 = {⟪⊥, . . . ,⊥, t1(1), . . . , t1(m),⊥, . . . ,⊥, t2(1), . . . , t2(n)⟫ | t1 ∈ T ′1,

t2 ∈ T ′2, arity(T ′1) = m, arity(T ′2) = n,Ψ′1(t1) ∧Ψ′2(t2) 6= false}
s.t. arity(P1) = arity(P2) = arity(P3) = arity(P4)

∀t ∈ T : Ψ(t) =


Ψ1 (part (t, T1)) ∧Ψ2 (part (t, T2)) ∧ f̂t ∧ f̂tt, t ∈ P1
Ψ1 (part (t, T1)) ∧Ψ′2 (part (t, T ′2)) ∧ f̂t ∧ ¬f̂tt, t ∈ P2
Ψ′1 (part (t, T ′1)) ∧Ψ2 (part (t, T2)) ∧ ¬f̂t ∧ f̂tt, t ∈ P3
Ψ′1 (part (t, T ′1)) ∧Ψ′2 (part (t, T ′2)) ∧ ¬f̂t ∧ ¬f̂tt, t ∈ P4

Figure 6.8: Dynamic semantics of variational queries with the Cartesian product opera-
tor. For brevity, we state: concat(t1, t2) = ⟪t1(1), . . . , t1(j), t2(1), . . . , t2(k)⟫.
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redundancy. Note that they should be combined accordingly in order to get the correct
equivalence rule. These rules can be used to optimize the query trees by both simpli-
fying the feature formulas and the relational algebra operations. We state and sound
prove some of the interesting variational query equivalences. The most important equiv-
alence rule is the choice distributive rule with other operations as shown in Figure 6.9.
Figure 6.10 demonstrates some of the relational algebra and FCC equivalence rules.

Theorem 6.4.4 The choice distributive rules (w.r.t. configuration c) hold for all feature
formulas f̂ ∈ F , variational expressions ve1, . . . , ve4 ∈ Vexp, variational attribute lists
vl1, vl2 ∈ Vset, and variational conditions vθ1, vθ2 ∈ Vcond; vκ1, vκ2 ∈ Vjcond (and a
given valid configuration c).

Proof We prove the Projection-Choice distributive equivalence (w.r.t. c) directly from
the definitions provided in Figure 6.3. The rest can be proved similarly.

∀c ∈ Cchecked :

EEJf̂〈πvl1ve1, πvl2ve2〉Kc =
{
EEJπvl1ve1Kc, if F Jf̂Kc = true

EEJπvl2ve2Kc, otherwise

=
{
πOLJvl1KcEEJve1Kc, if F Jf̂Kc = true

πOLJvl2KcEEJve2Kc, otherwise

= EEJπf〈vl1,vl2〉f̂〈ve1, ve2〉Kc

6.5 Properties of the Query Language

As mentioned in Section 6.2 the nature of variational databases requires the variational
query to represent any function c : C → Exp. To demonstrate this capability of v-
queries we define total variational expressive query languages and prove that the v-query
is a total variational expressive language.

Definition 6.5.1 (Total variational expressiveness) A query language L is a total
variational expressive query language for variational databases if there exists a func-
tion f : Exp → C → Vexp and its reverse f−1 such that they can translate a query in
L to a set of queries in L′ in different variant configurations and vice versa.
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Distributive rules w.r.t. configuration c:

f̂〈πvl1ve1, πvl2ve2〉 ≡c πf̂〈vl1,vl2〉f̂〈ve1, ve2〉 f̂〈σvθ1ve1, σvθ2ve2〉 ≡c σf̂〈vθ1,vθ2〉f̂〈ve1, ve2〉

f̂〈ve1 × ve2, ve3 × ve4〉 ≡c f̂〈ve1, ve3〉 × f̂〈ve2, ve4〉

Distributive rules:

f̂〈πvl1ve1, πvl2ve2〉 ≡ πf̂〈vl1,vl2〉f̂〈ve1, ve2〉 f̂〈σvθ1ve1, σvθ2ve2〉 ≡ σf̂〈vθ1,vθ2〉f̂〈ve1, ve2〉

f̂〈ve1 × ve2, ve3 × ve4〉 ≡ f̂〈ve1, ve3〉 × f̂〈ve2, ve4〉

Figure 6.9: V-SPJ algebra and choice distributive rules.

f̂〈σvθ1∧vθ2ve1, σvθ1∧vθ3ve2〉 ≡ σvθ1(f̂〈σvθ2ve1, σvθ3ve2〉) ≡ σvθ1s〈vθ2,vθ3〉f̂〈ve1, ve2〉

f̂〈πvl1(πvl2ve1), πvl1(πvl3ve2)〉 ≡ πvl1 f̂〈ve1, ve2〉
f̂〈πvl1(πvl2e1), πvl3(πvl2ve2)〉 ≡ f̂〈πvl1ve1, πvl3e2〉 ≡ πf̂〈vl1,vl3〉f̂〈ve1, ve2〉

f̂〈σvθ1(σvθ2ve1), σvθ3(σvθ1ve2)〉 ≡ σvθ1(f̂〈σvθ2ve1, σvθ3ve2〉)

Figure 6.10: Combinations of relational algebra and FCC rules.

Theorem 6.5.2 The v-query is a total variational expressive query language w.r.t. SPJ
algebra.

In order to prove Theorem 6.5.2 we break down the Definition 6.5.1 into two defini-
tions and prove lemmas to prove Theorem 6.5.2 in parts.

Definition 6.5.3 (Type 1 expressiveness) A query language L is a type 1 expres-
sive language for variational databases with respect to query language L′ if there exists
a function f(c,Q) that for a given configuration c translates a query Q ∈ L to a query
Q′ ∈ L′, where L′ is a query language for relational data.

Lemma 6.5.4 The v-query is a type 1 expressive language for variational databases
w.r.t. SPJ algebra.

The proof of this lemma is trivial since the function f is the V-SPJ configuration
semantics defined in Section 6.3.1. V-SPJ algebra is more expressive than just expressing
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all queries possible in SPJ due to its ability to run multiple SPJ queries simultaneously
over different variations. Remember that v-SPJ provides the opportunity of running all
plain queries included compactly in a v-query over a set of variations simultaneously.
We introduce the second type of expressiveness to indicate this property.

Definition 6.5.5 (Type 2 expressiveness) A query language L is a type 2 expres-
sive language over variational databases w.r.t. the query language L′ if given any set of
queries in L′, there exists a query Q ∈ L that captures all the elements of the given set
in different variations.

Lemma 6.5.6 The v-query is a type 2 expressive language for variational databases
w.r.t. SPJ algebra.

Proof We prove this theorem by construction. Without loss of generality, assume we
have plain queries q1, . . . , qn written in SPJ algebra over instantiations T c1 , . . . , T cn of
the v-table (T,Ψ), where ∀ci, cj : ci ∧ cj = false; 1 ≤ i ≤ j ≤ n. Following the syntax
and semantics of v-query introduced in Figure 6.2 we can construct the v-query Q to
encode all q1, . . . , qn:

Q = c1〈q1, c2〈q2, c3〈q3, · · · , cn〈qn,∅〉 · · · 〉〉〉

It is clear that Q represents all q1, . . . , qn. Hence, v-query is a type 2 expressive language
w.r.t. SPJ algebra.
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Chapter 7: Conclusion

In this thesis, we introduced principles required to implement a variational database
system such as variational schema, variational query, and v-table. Such a system is
capable of abstracting over structural differences of several related databases that can
be represented using the introduced feature model. This property allows for variational
schema and variational queries, which provides the user with the ability to query multiple
databases simultaneously and get a set of results corresponding to the used databases.
The flexibility and expressiveness of the variational query language relax the dependency
of queries on the representation of the data. We focused on the application of software
product lines. However, we plan to generalize this idea such that it can be employed in
the domains mentioned in the introduction.

We plan to implement such a system on top of an RDBMS. In order for such a system
to be effective, we need to introduce the translation of variational queries to plain queries
in addition to the semantics functions presented in this work. In addition to that, we
plan to employ the equivalence rules to optimize the query tree and thus achieve an
efficient system. We also plan to make the system as much automatic as possible, e.g.,
the system will generate the variational schema instead of the user providing it. We
introduced different methods of encoding in Chapter ?? and provided a comprehensive
comparison among them and plan to test the theoretical comparison with experimental
studies. It worth exploring whether building a variational database on top of an RDBMS
is more efficient than implementing a variational database system from scratch. While
we can take advantage of what traditional RDBMSs have to offer, implementing such a
system from scratch may be more efficient provided a variational nature to it.
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