
Types

1 / 16



Outline

Introduction
Concepts and terminology
The case for static typing

Implementing a static type system
Basic typing relations
Adding context

2 / 16



What is a type?

Static types
A set of syntactic terms (ASTs) that share the same behavior

Dynamic types
A set of runtime values that share the same behavior

Types define an interface for terms/values:
• what operations can be applied to them?
• in what contexts can they appear?

Examples in Haskell: Int, Bool, String, Maybe Bool, [[Int]], Int -> Bool

Introduction 3 / 16



Type errors

Static typing
Occurs during type checking when a term cannot be assigned a type

Dynamic typing
Occurs at runtime when a value cannot be created, or when an
invalid operation is applied to a value

Causes of type errors:
• undefined variables
• violation of the type interface (e.g. invalid operations)

If type errors are not caught/prevented, the program will either crash or do
something unpredictable!

Introduction 4 / 16



Type safety

A type system detects and prevents/reports type errors

A language is type safe if an implementation can detect all type errors

• statically: by proving the absence of type errors
• dynamically: by detecting and reporting all type errors at runtime

Type safe languages
• Haskell, SML static
• Python, Ruby dynamic
• Java, Go mixed

Unsafe languages
• C, C++ pointers
• PHP, Perl, JavaScript conversions

Introduction 5 / 16



Implicit type conversions: strong vs. weak typing

Many languages implicitly convert between types – is this safe?

Only if it’s determined by the types, not the runtime values!

Java (safe)
int n = 42;
String s = "Answer: " + n;

PHP, Perl (unsafe)
n = "4" + 2;
s = "Answer: " + n

Fun diabolical example: http://www.jsfuck.com/
programming with implicit conversions!

Introduction 6 / 16

http://www.jsfuck.com/


Static vs. dynamic typing

Static typing
• types are associated with syntactic terms (ASTs)
• type errors are reported at compile time (and typically prevent execution)
• type checker proves that no type errors will occur at runtime

Dynamic typing
• types are associated with runtime values
• type errors are reported at runtime (e.g. by throwing an exception)
• type checker is integrated into the runtime system

Introduction 7 / 16



Outline

Introduction
Concepts and terminology
The case for static typing

Implementing a static type system
Basic typing relations
Adding context

Introduction 8 / 16



Benefits of static typing

Usability and comprehension
1. machine-checked documentation

• guaranteed to be correct and consistent with implementation
2. better tool support

• e.g. code completion, navigation
3. supports high-level reasoning

• by providing named abstractions for shared behavior

Introduction 9 / 16



Benefits of static typing (continued)

Correctness
4. a partial correctness proof – no runtime type errors

• improves robustness, focus testing on more interesting errors

Efficiency
5. improved code generation

• can apply type-specific optimizations
6. type erasure

• no need for type information or checking at runtime

Introduction 10 / 16



Drawback: static typing is conservative

Q: What is the type of this expression?
if 3 > 4 then True else 5

A: Static typing: type error
Dynamic typing: Int

Q: What is the type of this one?
\x -> if x > 4 then True else x+2

A: Static typing: type error
Dynamic typing: ???

Silly examples, but . . .
• many advanced type features created
to “reclaim” expressiveness

Introduction 11 / 16



Outline

Introduction
Concepts and terminology
The case for static typing

Implementing a static type system
Basic typing relations
Adding context

Implementing a static type system 12 / 16



Static typing is a “static semantics”

Dynamic semantics (a.k.a. execution semantics)
• what is the meaning of this program?
• relates an AST to a value (denotational semantics)
• describes meaning of program at runtime

sem :: Exp -> Value

Static semantics
• which programs have meaning?
• relates an AST to a type
• describes meaning of program at compile time

typeOf :: Exp -> Type

Typing is just a semantics with a different semantic domain

Implementing a static type system 13 / 16



Defining a static type system

Example encoding in Haskell:

1. Define the abstract syntax, E data Exp = ...
the set of abstract syntax trees

2. Define the structure of types, T data Type = ...
another abstract syntax

3. Define the typing relation, E : T typeOf :: Exp -> Type
the mapping from ASTs to types

Then, we can define a dynamic semantics that assumes there are no type errors

Implementing a static type system 14 / 16



Outline

Introduction
Concepts and terminology
The case for static typing

Implementing a static type system
Basic typing relations
Adding context

Implementing a static type system 15 / 16



Typing contexts

Often we need to keep track of some information during typing
• types of top-level functions
• types of local variables
• an implicit program stack
• set of declared classes and their methods
• . . .

Put this information in the typing context (a.k.a. the environment)

typeOf :: Exp -> Env -> Type

Implementing a static type system 16 / 16


	Introduction
	Concepts and terminology
	The case for static typing

	Implementing a static type system
	Basic typing relations
	Adding context


