
Introduction to Logic Programming in Prolog

1 / 37

Programming paradigms

Most languages are structured around a core view of what computation is

Paradigm View of computation
imperative sequence of state transformations
object-oriented simulation of interacting objects
stack-based sequence of stack operations
functional functions mapping inputs to outputs
logic queries solved by logical deduction
.

Programming paradigms 2 / 37

Outline

Programming paradigms

Logic programming basics
Introduction to Prolog
Predicates, queries, and rules

Understanding the query engine
Goal search and unification
Structuring recursive rules

Complex terms, numbers, and lists

Cuts and negation

Logic programming basics 3 / 37

What is Prolog?

• an untyped logic programming language

• programs are rules that define relations on values

• run a program by formulating a goal or query

• result of a program: a true/false answer and a binding of free variables

Logic programming basics 4 / 37

Logic: a tool for reasoning

Syllogism (logical argument) – Aristotle, 350 BCE
Every human is mortal.
Socrates is human.
Therefore, Socrates is mortal.

First-order logic – Gottlob Frege, 1879 Begriffsschrift
∀x. Human(x)→ Mortal(x)
Human(Socrates)
∴ Mortal(Socrates)

Logic programming basics 5 / 37

Logic and programming

rule ∀x. Human(x)→ Mortal(x)
}
logic program

fact Human(Socrates)

goal/query ∴ Mortal(Socrates)
}
logic program execution

Prolog program (.pl file)
mortal(X) :- human(X).
human(socrates).

Prolog query (interactive)
?- mortal(socrates).
true.

Logic programming basics 6 / 37

Outline

Programming paradigms

Logic programming basics
Introduction to Prolog
Predicates, queries, and rules

Understanding the query engine
Goal search and unification
Structuring recursive rules

Complex terms, numbers, and lists

Cuts and negation

Logic programming basics 7 / 37

SWI-Prolog logistics

Predicate Description
[myfile]. load definitions from “myfile.pl”
listing(P). lists facts and rules related to predicate P
trace. turn on tracing
nodebug. turn off tracing
help. view documentation
halt. this is how you quit!!

Logic programming basics 8 / 37

Atoms

An atom is just a primitive value

• string of characters, numbers, underscores starting with a lowercase letter:
• hello, socrates, sUp3r_At0m

• any single quoted string of characters:
• ’Hello world!’, ’Socrates’

• numeric literals: 123, -345

• empty list: []

Logic programming basics 9 / 37

Variables

A variable can be used in rules and queries

• string of characters, numbers, underscores starting with
an uppercase letter or an underscore
• X, SomeHuman, _g_123

• special variable: _ (just an underscore)
• unifies with anything – “don’t care”

Logic programming basics 10 / 37

Predicates

Basic entity in Prolog is a predicate ∼= relation ∼= set

Unary predicate
hobbit(bilbo).
hobbit(frodo).
hobbit(sam).

hobbit = {bilbo, frodo, sam}

Binary predicate
likes(bilbo, frodo).
likes(frodo, bilbo).
likes(sam, frodo).
likes(frodo, ring).

likes = { (bilbo, frodo), (frodo, bilbo)
(sam, frodo), (frodo, ring) }

Logic programming basics 11 / 37

Simple goals and queries

Predicates are:
• defined in a file the program
• queried in the REPL running the program

Response to a query is a true/false answer
when true, provides a binding for each variable in the query

Is sam a hobbit?
?- hobbit(sam).
true.

Is gimli a hobbit?
?- hobbit(gimli).
false.

Who is a hobbit?
?- hobbit(X).
X = bilbo ;
X = frodo ;
X = sam .

Type ; after each response to search for another

Logic programming basics 12 / 37

Querying relations

You can query any argument of a predicate
• this is fundamentally different from passing arguments to functions!

Definition
likes(bilbo, frodo).
likes(frodo, bilbo).
likes(sam, frodo).
likes(frodo, ring).

?- likes(frodo,Y).
Y = bilbo ;
Y = ring .

?- likes(X,frodo).
X = bilbo ;
X = sam .

?- likes(X,Y).
X = bilbo,
Y = frodo ;
X = frodo,
Y = bilbo ;
X = sam,
Y = frodo ;
X = frodo,
Y = ring .

Logic programming basics 13 / 37

Overloading predicate names

Predicates with the same name but different arities are different predicates!

hobbit/1
hobbit(bilbo).
hobbit(frodo).
hobbit(sam).

hobbit/2
hobbit(bilbo, rivendell).
hobbit(frodo, hobbiton).
hobbit(sam, hobbiton).
hobbit(merry, buckland).
hobbit(pippin, tookland).

?- hobbit(X).
X = bilbo ;
X = frodo ;
X = sam.

?- hobbit(X,_).
...
X = merry ;
X = pippin .

Logic programming basics 14 / 37

Conjunction

Comma (,) denotes logical and of two predicates

Do sam and frodo like each other?
?- likes(sam,frodo), likes(frodo,sam).
true.

Do merry and pippin live in the same place?
?- hobbit(merry,X), hobbit(pippin,X).
false.

Do any hobbits live in the same place?
?- hobbit(H1,X), hobbit(H2,X), H1 \= H2.
H1 = frodo, X = hobbiton, H2 = sam. H1 and H2 must be different!

Logic programming basics 15 / 37

likes(frodo, sam).
likes(sam, frodo).
likes(frodo, ring).

hobbit(frodo, hobbiton).
hobbit(sam, hobbiton).
hobbit(merry, buckland).
hobbit(pippin, tookland).

Rules

Rule: head :- body
The head is true if the body is true

Examples
likes(X,beer) :- hobbit(X,_).
likes(X,boats) :- hobbit(X,buckland).

danger(X) :- likes(X,ring).
danger(X) :- likes(X,boats), likes(X,beer).

Note that disjunction is described by multiple rules

Logic programming basics 16 / 37

Outline

Programming paradigms

Logic programming basics
Introduction to Prolog
Predicates, queries, and rules

Understanding the query engine
Goal search and unification
Structuring recursive rules

Complex terms, numbers, and lists

Cuts and negation

Understanding the query engine 17 / 37

How does Prolog solve queries?

Basic algorithm for solving a (sub)goal
1. Linearly search database for candidate facts/rules
2. Attempt to unify candidate with goal
If unification is successful:
• if a fact – we’re done with this goal!
• if a rule – add body of rule as new subgoals

If unification is unsuccessful: keep searching
3. Backtrack if we reach the end of the database

Understanding the query engine 18 / 37

1. Search the database for candidate matches

What is a candidate fact/rule?
• fact: predicate matches the goal
• rule: predicate of its head matches the goal

Example goal: likes(merry,Y)

Candidates
likes(sam,frodo).
likes(merry,pippin).
likes(X,beer) :- hobbit(X).

Not candidates
hobbit(merry,buckland).
danger(X) :- likes(X,ring).
likes(merry,pippin,mushrooms).

Understanding the query engine 19 / 37

2. Attempt to unify candidate and goal

Unification
Find an assignment of variables that makes its arguments syntactically equal

Prolog: A = B means attempt to unify A and B

?- likes(merry,Y) = likes(sam,frodo).
false.

?- likes(merry,Y) = likes(merry,pippin).
Y = pippin .

?- likes(merry,Y) = likes(X,beer).
X = merry ; Y = beer .

2a. if fail, try next candidate

2b. if success, add new subgoals

Understanding the query engine 20 / 37

Tracking subgoals

Deriving solutions through rules
1. Maintain a list of goals that need to be solved

• when this list is empty, we’re done!
2. If current goal unifies with a rule head, add body as subgoals to the list
3. After each unification, substitute variables in all goals in the list!

Database
1 lt(one,two).
2 lt(two,three).
3 lt(three,four).
4 lt(X,Z) :- lt(X,Y), lt(Y,Z).

Sequence of goals for lt(one,four)

lt(one,four)
4: X=one,Z=four lt(one,Y1), lt(Y1,four)
1: Y1=two lt(two,four)
4: X=two,Z=four lt(two,Y2), lt(Y2,four)
2: Y2=three lt(three,four)
3: true done!

Understanding the query engine 21 / 37

3. Backtracking

For each subgoal, Prolog maintains:
• the search state (goals + assignments) before it was produced
• a pointer to the rule that produced it

When a subgoal fails:
• restore the previous state
• resume search for previous goal from the pointer

When the initial goal fails: return false

Understanding the query engine 22 / 37

Outline

Programming paradigms

Logic programming basics
Introduction to Prolog
Predicates, queries, and rules

Understanding the query engine
Goal search and unification
Structuring recursive rules

Complex terms, numbers, and lists

Cuts and negation

Understanding the query engine 23 / 37

Potential for infinite search

Why care about how goal search works?
One reason: to write recursive rules that don’t loop!

How not to encode symmetry
married(abe,mona).
married(clancy,jackie).
married(homer,marge).
married(X,Y) :- married(Y,X).

?- married(marge,homer).
true.

?- married(jackie,abe).
ERROR: Out of local stack

How not to encode transitivity
lt(one,two).
lt(two,three).
lt(three,four).
lt(X,Z) :- lt(X,Y), lt(Y,Z).

?- lt(one,three).
true.

?- lt(three,one).
ERROR: Out of local stack

Understanding the query engine 24 / 37

Strategies for writing recursive rules

How to avoid infinite search
1. Always list non-recursive cases first (in database and rule bodies)
2. Use helper predicates to enforce progress during search

Example: symmetry
married_(abe,mona).
married_(clancy,jackie).
married_(homer,marge).
married(X,Y) :- married_(X,Y).
married(X,Y) :- married_(Y,X).

?- married(jackie,abe).
false.

Example 2: transitivity
lt_(one,two).
lt_(two,three).
lt_(three,four).
lt(X,Y) :- lt_(X,Y).
lt(X,Z) :- lt_(X,Y), lt(Y,Z).

?- lt(three,one).
false.

Understanding the query engine 25 / 37

Outline

Programming paradigms

Logic programming basics
Introduction to Prolog
Predicates, queries, and rules

Understanding the query engine
Goal search and unification
Structuring recursive rules

Complex terms, numbers, and lists

Cuts and negation

Complex terms, numbers, and lists 26 / 37

Representing structured data

Can represent structured data by nested predicates

Example database
drives(bart, skateboard(green)).
drives(bart, bike(blue)).
drives(lisa, bike(pink)).
drives(homer, car(pink)).

?- drives(lisa, X).
X = bike(pink) .

?- drives(X, bike(Y)).
X = bart, Y = blue ;
X = lisa, Y = pink .

Variables can’t be used for predicates:
?- drives(X, Y(pink)). ← illegal!

Complex terms, numbers, and lists 27 / 37

Relationship to Haskell data types

Haskell data type
data Expr = Lit Int

| Neg Expr
| Add Expr Expr
| Mul Expr Expr

Add (Neg (Lit 3))
(Mul (Lit 4) (Lit 5))

• build values w/ data constructors
• data types statically define valid
combinations

Prolog predicate
expr(N) :- number(N).
expr(neg(E)) :- expr(E).
expr(add(L,R)) :- expr(L), expr(R).
expr(mul(L,R)) :- expr(L), expr(R).

add(neg(3),mul(4,5))

• build values w/ predicates
• use rules to dynamically identify or
enumerate valid combinations

Complex terms, numbers, and lists 28 / 37

Lists in Prolog

Lists are structured data with special syntax
• similar basic structure to Haskell
• but can be heterogeneous

[3,4] ≡ ’[|]’(3, ’[|]’(4, []))

cons nil

’[|]’

3 ’[|]’

4 []

["hi", [atom, p(x)], 6]

’[|]’

"hi" ’[|]’

’[|]’

atom ’[|]’

p(x) []

’[|]’

6 []

Complex terms, numbers, and lists 29 / 37

List patterns

[X|Y]

head
tail

Database
story([3,little,pigs]).

?- story([X|Y]).
X = 3,
Y = [little, pigs].

?- story([X,Y|Z]).
X = 3,
Y = little,
Z = [pigs].

?- story([X,Y,Z|V]).
X = 3,
Y = little,
Z = pigs,
V = [].

?- story([X,Y,Z]).
X = 3,
Y = little,
Z = pigs.

?- story([X,Y,Z,V]).
false.

Complex terms, numbers, and lists 30 / 37

Arithmetic in Prolog

Arithmetic expressions are also structured data (nested predicates)
• special syntax: can be written infix, standard operator precedence
• can be evaluated:

X is expr evaluate expr and bind to X
expr =:= expr evaluate expressions and check if equal

3*4+5*6 ≡ +(*(3, 4), *(5, 6))

?- X is 3*4+5*6.
X = 42.

?- 8 is X*2.
ERROR: is/2: Arguments are not
sufficiently instantiated

Arithmetic operations
+ - * / mod

Comparison operations
< > =< >= =:= =\=

Complex terms, numbers, and lists 31 / 37

Using arithmetic in rules

Example database
fac(1,1).
fac(N,M) :- K is N-1, fac(K,L), M is L*N.

?- fac(5,M).
M = 120.

?- fac(N,6).
ERROR: fac/2: Arguments are not sufficiently instantiated

Complex terms, numbers, and lists 32 / 37

Unification vs. arithmetic equality

Unification: A = B
Find an assignment of variables that makes its arguments syntactically equal

Arithmetic equality: A =:= B

Evaluate terms as arithmetic expressions and check if numerically equal

?- X = 3*5.
X = 3*5.

?- 8 = X*2.
false.

?- 4*2 = X*2.
X = 4.

?- X is 3*5.
X = 15.

?- 8 is X*2.
ERROR: is/2: Arguments are not
sufficiently instantiated

Complex terms, numbers, and lists 33 / 37

Outline

Programming paradigms

Logic programming basics
Introduction to Prolog
Predicates, queries, and rules

Understanding the query engine
Goal search and unification
Structuring recursive rules

Complex terms, numbers, and lists

Cuts and negation

Cuts and negation 34 / 37

How cut works

Cut is a special atom ! used to prevent backtracking
When encountered as a subgoal it:
• always succeeds
• commits the current goal search to the matches and assignments made so far

Database without cut
foo(1). foo(2).
bar(X,Y) :- foo(X), foo(Y).
bar(3,3).

?- bar(A,B).
A = 1, B = 1 ; A = 1, B = 2 ;
A = 2, B = 1 ; A = 2, B = 2 ;
A = 3, B = 3.

Database with cut
foo(1). foo(2).
bar(X,Y) :- foo(X), !, foo(Y).
bar(3,3).

?- bar(A,B).
A = 1, B = 1 ;
A = 1, B = 2.

Cuts and negation 35 / 37

Green cuts vs. red cuts

A green cut: doesn’t affect the members of a predicate
• only cuts paths that would have failed anyway
• the cut is used purely for efficiency

max(X,Y,Y) :- X < Y, !.
max(X,Y,X) :- X >= Y.

A red cut: any cut that isn’t green
• if removed, meaning of the predicate changes
• the cut is part of the “logic” of the predicate

find(X,[X|_]) :- !.
find(X,[_|L]) :- find(X,L).

Cuts and negation 36 / 37

Negation as failure

Negation predicate
not(P) :- P, !, fail.
not(P).

if P is true, commit that not(P) is false
otherwise, not(P) is true

Database
hobbit(frodo).
hobbit(sam).
hobbit(merry).
hobbit(pippin).

likes(frodo,ring).
likes(X,beer) :-
hobbit(X),
not(likes(X,ring)).

?- not(likes(frodo,beer)). “frodo doesn’t like beer”
true.

?- not(likes(sam,X)). “sam doesn’t like anything”
false.

?- not(likes(gimli,beer)). “gimli doesn’t like beer”
true.

?- not(likes(X,pizza)). “nobody likes pizza”
true.

Cuts and negation 37 / 37

	Programming paradigms
	Logic programming basics
	Introduction to Prolog
	Predicates, queries, and rules

	Understanding the query engine
	Goal search and unification
	Structuring recursive rules

	Complex terms, numbers, and lists
	Cuts and negation

