
Introduction to Functional Programming in Haskell

1 / 46



Outline

Why learn functional programming?

The essence of functional programming
What is a function?
Equational reasoning
First-order vs. higher-order functions
Lazy evaluation

How to functional program
Haskell style
Functional programming workflow
Data types
Type-directed programming

Refactoring and reuse
Refactoring
Type classes

Type inference
2 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program

Refactoring and reuse

Type inference

Why learn functional programming? 3 / 46



Why learn (pure) functional programming?

1. This course: strong correspondence of core concepts to PL theory
• abstract syntax can be represented by algebraic data types
• denotational semantics can be represented by functions

2. It will make you a better (imperative) programmer
• forces you to think recursively and compositionally
• forces you to minimize use of state

. . . essential skills for solving big problems

3. It is the future!
• more scalable and parallelizable (MapReduce)
• functional features have been added to most mainstream languages

Why learn functional programming? 4 / 46



Outline

Why learn functional programming?

The essence of functional programming
What is a function?
Equational reasoning
First-order vs. higher-order functions
Lazy evaluation

How to functional program

Refactoring and reuse

Type inference

The essence of functional programming 5 / 46



What is a (pure) function?

A function is pure if:
• it always returns the same output for the same inputs
• it doesn’t do anything else — no “side effects”

In Haskell: whenever we say “function” we mean a pure function!

The essence of functional programming 6 / 46



What are and aren’t functions?

Always functions:
• mathematical functions f (x) = x2 + 2x + 3
• encryption and compression algorithms

Usually not functions:
• C, Python, JavaScript, . . . “functions” (procedures)
• Java, C#, Ruby, . . . methods

Haskell only allows you to write (pure) functions!

The essence of functional programming 7 / 46



Why procedures/methods aren’t functions

• output depends on environment
• may perform arbitrary side effects

The essence of functional programming 8 / 46



Outline

Why learn functional programming?

The essence of functional programming
What is a function?
Equational reasoning
First-order vs. higher-order functions
Lazy evaluation

How to functional program

Refactoring and reuse

Type inference

The essence of functional programming 9 / 46



Getting into the Haskell mindset

Haskell
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Java
int sum(List<Int> xs) {
int s = 0;
for (int x : xs) {
s = s + x;

}
return s;

}In Haskell, “=” means is not change to!

The essence of functional programming 10 / 46



Getting into the Haskell mindset

Quicksort in Haskell
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort (filter (<= x) xs)

++ x : qsort (filter (> x) xs)

Quicksort in C
void qsort(int low, int high) {
int i = low, j = high;
int pivot = numbers[low + (high-low)/2];

while (i <= j) {
while (numbers[i] < pivot) {
i++;

}
while (numbers[j] > pivot) {
j--;

}
if (i <= j) {
swap(i, j);
i++;
j--;

}
}
if (low < j)
qsort(low, j);

if (i < high)
qsort(i, high);

}

void swap(int i, int j) {
int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;

}

The essence of functional programming 11 / 46



Referential transparency

An expression can be replaced by its value
without changing the overall program behavior

length [1,2,3] + 4
⇒ 3 + 4

what if length was a Java method?

Corollary: an expression can be replaced by any expression
with the same value without changing program behavior

Supports equational reasoning

The essence of functional programming 12 / 46

a.k.a. referent



Equational reasoning

Computation is just substitution!

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

equations

sum [2,3,4]

⇒ sum (2:(3:(4:[])))

⇒ 2 + sum (3:(4:[]))

⇒ 2 + 3 + sum (4:[])

⇒ 2 + 3 + 4 + sum []

⇒ 2 + 3 + 4 + 0

⇒ 9

The essence of functional programming 13 / 46



Describing computations

Function definition: a list of equations that relate inputs to output
• matched top-to-bottom
• applied left-to-right

Example: reversing a list
imperative view: how do I rearrange the elements in the list? 7
functional view: how is a list related to its reversal? 3

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Exercise: Use equational reasoning to compute the reverse of the list [2,3,4,5]

The essence of functional programming 14 / 46



Outline

Why learn functional programming?

The essence of functional programming
What is a function?
Equational reasoning
First-order vs. higher-order functions
Lazy evaluation

How to functional program

Refactoring and reuse

Type inference

The essence of functional programming 15 / 46



First-order functions

Examples
• cos :: Float -> Float
• even :: Int -> Bool
• length :: [a] -> Int

The essence of functional programming 16 / 46



Higher-order functions

Examples
• map :: (a -> b) -> [a] -> [b]
• filter :: (a -> Bool) -> [a] -> [a]
• (.) :: (b -> c) -> (a -> b) -> a -> c

The essence of functional programming 17 / 46



Higher-order functions as control structures

map: loop for doing something to each element in a list

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map f [2,3,4,5] = [f 2, f 3, f 4, f 5]

map even [2,3,4,5]
= [even 2, even 3, even 4, even 5]
= [True,False,True,False]

fold: loop for aggregating elements in a list

foldr :: (a->b->b) -> b -> [a] -> b
foldr f y [] = y
foldr f y (x:xs) = f x (foldr f y xs)

foldr f y [2,3,4] = f 2 (f 3 (f 4 y))

foldr (+) 0 [2,3,4]
= (+) 2 ((+) 3 ((+) 4 0))
= 2 + (3 + (4 + 0))
= 9

The essence of functional programming 18 / 46



Function composition

Can create new functions by composing existing functions
• apply the second function, then apply the first

Function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

(f . g) x = f (g x)

Types of existing functions
not :: Bool -> Bool
succ :: Int -> Int
even :: Int -> Bool
head :: [a] -> a
tail :: [a] -> [a]

Definitions of new functions
plus2 = succ . succ
odd = not . even
second = head . tail
drop2 = tail . tail

The essence of functional programming 19 / 46



Currying / partial application

In Haskell, functions that take multiple arguments are
implicitly higher order

plus :: Int -> Int -> Int

increment :: Int -> Int
increment = plus 1

Curried plus 2 3
plus :: Int -> Int -> Int

Uncurried plus (2,3)
plus :: (Int,Int) -> Int

a pair of ints
The essence of functional programming 20 / 46

Haskell Curry



Outline

Why learn functional programming?

The essence of functional programming
What is a function?
Equational reasoning
First-order vs. higher-order functions
Lazy evaluation

How to functional program

Refactoring and reuse

Type inference

The essence of functional programming 21 / 46



Lazy evaluation

In Haskell, expressions are reduced:
• only when needed
• at most once

Supports:
• infinite data structures
• separation of concerns

nats :: [Int]
nats = 1 : map (+1) nats

fact :: Int -> Int
fact n = product (take n nats)

min3 :: [Int] -> [Int]
min3 = take 3 . sort

What is the running time of this function?

The essence of functional programming 22 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program
Haskell style
Functional programming workflow
Data types
Type-directed programming

Refactoring and reuse

Type inference

How to functional program 23 / 46



Good Haskell style

Why it matters:
• layout is significant!
• eliminate misconceptions
• we care about elegance

Easy stuff:
• use spaces! (tabs cause layout errors)
• align patterns and guards

See style guides on course web page

How to functional program 24 / 46



Formatting function applications

Function application:
• is just a space
• associates to the left
• binds most strongly

f(x) f x

(f x) y f x y

(f x) + (g y) f x + g y

Use parentheses only to override this behavior:
• f (g x)
• f (x + y)

How to functional program 25 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program
Haskell style
Functional programming workflow
Data types
Type-directed programming

Refactoring and reuse

Type inference

How to functional program 26 / 46



FP workflow (simple)

“obsessive compulsive refactoring disorder”

How to functional program 27 / 46



FP workflow (detailed)

How to functional program 28 / 46

Norman Ramsey, On Teaching “How to Design Programs”, ICFP’14



Outline

Why learn functional programming?

The essence of functional programming

How to functional program
Haskell style
Functional programming workflow
Data types
Type-directed programming

Refactoring and reuse

Type inference

How to functional program 29 / 46



Algebraic data types

Data type definition
• introduces new type of value
• enumerates ways to construct
values of this type

Some example data types
data Bool = True | False

data Nat = Zero | Succ Nat

data Tree = Node Int Tree Tree
| Leaf Int

Definitions consists of . . .
• a type name
• a list of data constructors
with argument types

Definition is inductive
• the arguments may recursively
include the type being defined
• the constructors are the only way
to build values of this type

How to functional program 30 / 46



Anatomy of a data type definition

type name

data Expr = Lit Int
| Plus Expr Expr cases

data constructor types of arguments

Example: 2+ 3+ 4 Plus (Lit 2) (Plus (Lit 3) (Lit 4))

How to functional program 31 / 46



FP data types vs. OO classes

Haskell
data Tree = Node Int Tree Tree

| Leaf

• separation of type- and value-level
• set of cases closed
• set of operations open

Java
abstract class Tree { ... }
class Node extends Tree {
int label;
Tree left, right;
...

}
class Leaf extends Tree { ... }

• merger of type- and value-level
• set of cases open
• set of operations closed

Extensibility of cases vs. operations = the “expression problem”

How to functional program 32 / 46



Type parameters

(Like generics in Java)type parameter

data List a = Nil
| Cons a (List a)

reference to
type parameter

recursive
reference to type

Specialized lists
type IntList = List Int
type CharList = List Char
type RaggedMatrix a = List (List a)

How to functional program 33 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program
Haskell style
Functional programming workflow
Data types
Type-directed programming

Refactoring and reuse

Type inference

How to functional program 34 / 46



Tools for defining functions

Recursion and other functions
sum :: [Int] -> Int
sum xs = if null xs then 0

else head xs + sum (tail xs)

(1) case analysis

Pattern matching
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

(2) decomposition
Higher-order functions
sum :: [Int] -> Int
sum = foldr (+) 0

no recursion or variables needed!
How to functional program 35 / 46



What is type-directed programming?

How to functional program 36 / 46

Use the type of a function
to help implement it



Type-directed programming

Basic goal: transform values of argument types into result type

If argument type is . . .

• atomic type (e.g. Int, Char)
• apply functions to it

• algebraic data type
• use pattern matching

• case analysis
• decompose into parts

• function type
• apply it to something

If result type is . . .
• atomic type

• output of another function
• algebraic data type

• build with data constructor
• function type

• function composition or
partial application

• build with lambda abstraction

How to functional program 37 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program

Refactoring and reuse
Refactoring
Type classes

Type inference

Refactoring and reuse 38 / 46



Refactoring in the FP workflow

“obsessive compulsive refactoring disorder”

Motivations:
• separate concerns
• promote reuse
• promote understandability
• gain insights

Refactoring and reuse 39 / 46



Refactoring relations

Semantics-preserving laws can prove with equational reasoning + induction

• Eta reduction:
\x -> f x ≡ f

• Map–map fusion:
map f . map g ≡ map (f . g)

• Fold–map fusion:
foldr f b . map g ≡ foldr (f . g) b

“Algebra of computer programs”

John Backus, Can Programming be Liberated from the von Neumann Style?, ACM Turing Award Lecture, 1978

Refactoring and reuse 40 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program

Refactoring and reuse
Refactoring
Type classes

Type inference

Refactoring and reuse 41 / 46



What is a type class?

1. an interface that is supported by many different types
2. a set of types that have a common behavior

class Eq a where
(==) :: a -> a -> Bool

types whose values can be
compared for equality

class Show a where
show :: a -> String

types whose values can be
shown as strings

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
...

types whose values can be
manipulated like numbers

Refactoring and reuse 42 / 46



Type constraints

List elements can be of any type
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

List elements must support equality!
elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem y (x:xs) = x == y || elem y xs

use method⇒ add type class constraint

Refactoring and reuse 43 / 46

class Eq a where
(==) :: a -> a -> Bool



Outline

Why learn functional programming?

The essence of functional programming

How to functional program

Refactoring and reuse

Type inference

Type inference 44 / 46



Type inference

How to perform type inference
If a literal, data constructor, or named function: write down the type – you’re done!
Otherwise:
1. identify the top-level application e1 e2
2. recursively infer their types e1 : T1 and e2 : T2
3. T1 should be a function type T1 = Targ → Tres
4. unify Targ =? T2, yielding type variable assignment σ
5. return e1 e2 : σTres (Tres with type variables substituted)
If any of these steps fails, it is a type error!

Example: map even

Type inference 45 / 46



Exercises

Given
data Maybe a = Nothing | Just a
gt :: Int -> Int -> Bool not :: Bool -> Bool
map :: (a -> b) -> [a] -> [b] even :: Int -> Bool
(.) :: (b -> c) -> (a -> b) -> a -> c

1. Just

2. not even 3

3. not (even 3)

4. not . even

5. even . not

6. map (Just . even)

Type inference 46 / 46


	Why learn functional programming?
	The essence of functional programming
	What is a function?
	Equational reasoning
	First-order vs. higher-order functions
	Lazy evaluation

	How to functional program
	Haskell style
	Functional programming workflow
	Data types
	Type-directed programming

	Refactoring and reuse
	Refactoring
	Type classes

	Type inference

