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Why learn (pure) functional programming?

1. This course: strong correspondence of core concepts to PL theory
• abstract syntax can be represented by algebraic data types
• denotational semantics can be represented by functions

2. It will make you a better (imperative) programmer
• forces you to think recursively and compositionally
• forces you to minimize use of state

. . . essential skills for solving big problems

3. It is the future!
• more scalable and parallelizable (MapReduce)
• functional features have been added to most mainstream languages
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What is a (pure) function?

A function is pure if:
• it always returns the same output for the same inputs
• it doesn’t do anything else — no “side effects”

In Haskell: whenever we say “function” we mean a pure function!
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What are and aren’t functions?

Always functions:
• mathematical functions f (x) = x2 + 2x + 3
• encryption and compression algorithms

Usually not functions:
• C, Python, JavaScript, . . . “functions” (procedures)
• Java, C#, Ruby, . . . methods

Haskell only allows you to write (pure) functions!
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Why procedures/methods aren’t functions

• output depends on environment
• may perform arbitrary side effects
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Getting into the Haskell mindset

Haskell
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

Java
int sum(List<Int> xs) {
int s = 0;
for (int x : xs) {
s = s + x;

}
return s;

}In Haskell, “=” means is not change to!
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Getting into the Haskell mindset

Quicksort in Haskell
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort (filter (<= x) xs)

++ x : qsort (filter (> x) xs)

Quicksort in C
void qsort(int low, int high) {
int i = low, j = high;
int pivot = numbers[low + (high-low)/2];

while (i <= j) {
while (numbers[i] < pivot) {
i++;

}
while (numbers[j] > pivot) {
j--;

}
if (i <= j) {
swap(i, j);
i++;
j--;

}
}
if (low < j)
qsort(low, j);

if (i < high)
qsort(i, high);

}

void swap(int i, int j) {
int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;

}
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Referential transparency

An expression can be replaced by its value
without changing the overall program behavior

length [1,2,3] + 4
⇒ 3 + 4

what if length was a Java method?

Corollary: an expression can be replaced by any expression
with the same value without changing program behavior

Supports equational reasoning
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Equational reasoning

Computation is just substitution!

sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

equations

sum [2,3,4]

⇒ sum (2:(3:(4:[])))

⇒ 2 + sum (3:(4:[]))

⇒ 2 + 3 + sum (4:[])

⇒ 2 + 3 + 4 + sum []

⇒ 2 + 3 + 4 + 0

⇒ 9
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Describing computations

Function definition: a list of equations that relate inputs to output
• matched top-to-bottom
• applied left-to-right

Example: reversing a list
imperative view: how do I rearrange the elements in the list? 7
functional view: how is a list related to its reversal? 3

reverse :: [a] -> [a]
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

Exercise: Use equational reasoning to compute the reverse of the list [2,3,4,5]
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First-order functions

Examples
• cos :: Float -> Float
• even :: Int -> Bool
• length :: [a] -> Int
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Higher-order functions

Examples
• map :: (a -> b) -> [a] -> [b]
• filter :: (a -> Bool) -> [a] -> [a]
• (.) :: (b -> c) -> (a -> b) -> a -> c
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Higher-order functions as control structures

map: loop for doing something to each element in a list

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

map f [2,3,4,5] = [f 2, f 3, f 4, f 5]

map even [2,3,4,5]
= [even 2, even 3, even 4, even 5]
= [True,False,True,False]

fold: loop for aggregating elements in a list

foldr :: (a->b->b) -> b -> [a] -> b
foldr f y [] = y
foldr f y (x:xs) = f x (foldr f y xs)

foldr f y [2,3,4] = f 2 (f 3 (f 4 y))

foldr (+) 0 [2,3,4]
= (+) 2 ((+) 3 ((+) 4 0))
= 2 + (3 + (4 + 0))
= 9
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Function composition

Can create new functions by composing existing functions
• apply the second function, then apply the first

Function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

(f . g) x = f (g x)

Types of existing functions
not :: Bool -> Bool
succ :: Int -> Int
even :: Int -> Bool
head :: [a] -> a
tail :: [a] -> [a]

Definitions of new functions
plus2 = succ . succ
odd = not . even
second = head . tail
drop2 = tail . tail
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Currying / partial application

In Haskell, functions that take multiple arguments are
implicitly higher order

plus :: Int -> Int -> Int

increment :: Int -> Int
increment = plus 1

Curried plus 2 3
plus :: Int -> Int -> Int

Uncurried plus (2,3)
plus :: (Int,Int) -> Int

a pair of ints
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Lazy evaluation

In Haskell, expressions are reduced:
• only when needed
• at most once

Supports:
• infinite data structures
• separation of concerns

nats :: [Int]
nats = 1 : map (+1) nats

fact :: Int -> Int
fact n = product (take n nats)

min3 :: [Int] -> [Int]
min3 = take 3 . sort

What is the running time of this function?
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Good Haskell style

Why it matters:
• layout is significant!
• eliminate misconceptions
• we care about elegance

Easy stuff:
• use spaces! (tabs cause layout errors)
• align patterns and guards

See style guides on course web page
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Formatting function applications

Function application:
• is just a space
• associates to the left
• binds most strongly

f(x) f x

(f x) y f x y

(f x) + (g y) f x + g y

Use parentheses only to override this behavior:
• f (g x)
• f (x + y)
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FP workflow (simple)

“obsessive compulsive refactoring disorder”
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FP workflow (detailed)
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Algebraic data types

Data type definition
• introduces new type of value
• enumerates ways to construct
values of this type

Some example data types
data Bool = True | False

data Nat = Zero | Succ Nat

data Tree = Node Int Tree Tree
| Leaf Int

Definitions consists of . . .
• a type name
• a list of data constructors
with argument types

Definition is inductive
• the arguments may recursively
include the type being defined
• the constructors are the only way
to build values of this type
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Anatomy of a data type definition

type name

data Expr = Lit Int
| Plus Expr Expr cases

data constructor types of arguments

Example: 2+ 3+ 4 Plus (Lit 2) (Plus (Lit 3) (Lit 4))

How to functional program 31 / 46



FP data types vs. OO classes

Haskell
data Tree = Node Int Tree Tree

| Leaf

• separation of type- and value-level
• set of cases closed
• set of operations open

Java
abstract class Tree { ... }
class Node extends Tree {
int label;
Tree left, right;
...

}
class Leaf extends Tree { ... }

• merger of type- and value-level
• set of cases open
• set of operations closed

Extensibility of cases vs. operations = the “expression problem”
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Type parameters

(Like generics in Java)type parameter

data List a = Nil
| Cons a (List a)

reference to
type parameter

recursive
reference to type

Specialized lists
type IntList = List Int
type CharList = List Char
type RaggedMatrix a = List (List a)
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Tools for defining functions

Recursion and other functions
sum :: [Int] -> Int
sum xs = if null xs then 0

else head xs + sum (tail xs)

(1) case analysis

Pattern matching
sum :: [Int] -> Int
sum [] = 0
sum (x:xs) = x + sum xs

(2) decomposition
Higher-order functions
sum :: [Int] -> Int
sum = foldr (+) 0

no recursion or variables needed!
How to functional program 35 / 46



What is type-directed programming?
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Use the type of a function
to help implement it



Type-directed programming

Basic goal: transform values of argument types into result type

If argument type is . . .

• atomic type (e.g. Int, Char)
• apply functions to it

• algebraic data type
• use pattern matching

• case analysis
• decompose into parts

• function type
• apply it to something

If result type is . . .
• atomic type

• output of another function
• algebraic data type

• build with data constructor
• function type

• function composition or
partial application

• build with lambda abstraction

How to functional program 37 / 46



Outline

Why learn functional programming?

The essence of functional programming

How to functional program

Refactoring and reuse
Refactoring
Type classes

Type inference

Refactoring and reuse 38 / 46



Refactoring in the FP workflow

“obsessive compulsive refactoring disorder”

Motivations:
• separate concerns
• promote reuse
• promote understandability
• gain insights
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Refactoring relations

Semantics-preserving laws can prove with equational reasoning + induction

• Eta reduction:
\x -> f x ≡ f

• Map–map fusion:
map f . map g ≡ map (f . g)

• Fold–map fusion:
foldr f b . map g ≡ foldr (f . g) b

“Algebra of computer programs”

John Backus, Can Programming be Liberated from the von Neumann Style?, ACM Turing Award Lecture, 1978
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What is a type class?

1. an interface that is supported by many different types
2. a set of types that have a common behavior

class Eq a where
(==) :: a -> a -> Bool

types whose values can be
compared for equality

class Show a where
show :: a -> String

types whose values can be
shown as strings

class Num a where
(+) :: a -> a -> a
(*) :: a -> a -> a
negate :: a -> a
...

types whose values can be
manipulated like numbers
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Type constraints

List elements can be of any type
length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

List elements must support equality!
elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem y (x:xs) = x == y || elem y xs

use method⇒ add type class constraint
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Type inference

How to perform type inference
If a literal, data constructor, or named function: write down the type – you’re done!
Otherwise:
1. identify the top-level application e1 e2
2. recursively infer their types e1 : T1 and e2 : T2
3. T1 should be a function type T1 = Targ → Tres
4. unify Targ =? T2, yielding type variable assignment σ
5. return e1 e2 : σTres (Tres with type variables substituted)
If any of these steps fails, it is a type error!

Example: map even
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Exercises

Given
data Maybe a = Nothing | Just a
gt :: Int -> Int -> Bool not :: Bool -> Bool
map :: (a -> b) -> [a] -> [b] even :: Int -> Bool
(.) :: (b -> c) -> (a -> b) -> a -> c

1. Just

2. not even 3

3. not (even 3)

4. not . even

5. even . not

6. map (Just . even)

Type inference 46 / 46


	Why learn functional programming?
	The essence of functional programming
	What is a function?
	Equational reasoning
	First-order vs. higher-order functions
	Lazy evaluation

	How to functional program
	Haskell style
	Functional programming workflow
	Data types
	Type-directed programming

	Refactoring and reuse
	Refactoring
	Type classes

	Type inference

