Syntax and Grammars

1/21

Outline

What is a language?

Abstract syntax and grammars

Abstract syntax vs. concrete syntax

Encoding grammars as Haskell data types

What is a language? 2/21

What is a language?

Language: a system of communication using “words” in a structured way

Natural language

e used for arbitrary communication
® complex, nuanced, and imprecise

Programming language
e used to describe aspects of computation
i.e. systematic transformation of representation
® programs have a precise structure and meaning

v

We use a broad interpretation of “programming language”

What is a language?

English, Chinese, Hindi,
Arabic, Spanish, ...

Haskell, Java, C, Python,

SQL, XML, HTML, CS§, ...

3/21

Object vs. metalanguage

METADATA!
7

Important to distinguish two kinds of languages:
® Object language: the language we're defining

* Metalanguage: the language we're using to define
the structure and meaning of the object language!

A single language can fill both roles at different times! (e.g. Haskell)

What is a language? 4/21

Syntax vs. semantics

Two main aspects of a language:
e syntax: the structure of its programs

® semantics: the meaning of its programs

Metalanguages for defining syntax: grammars, Haskell, ...

Metalanguages for defining semantics: mathematics, inference rules, Haskell, ...

What is a language? 5/21

Outline

Abstract syntax and grammars

Abstract syntax and grammars 6/21

Programs are trees!

Abstract syntax tree (AST): captures the essential structure of a program
e everything needed to determine its semantics

+ * if
N\, 7 N\ R N
/ N\ ANA /\

3 4 5 6 7 8

2 3

2 +3 *4 (5 +6) * (7 + 8) if true then (2+3) else 5

Abstract syntax and grammars 7/21

Grammars

Grammars are a metalanguage for describing syntax

The language we're defining is called the object language

syntactic category -} {- nonterminal symbol
s Sentence == nvn | sand s
ne Noun := cats | dogs | ducks) production rules
ve Verb := chase | cuddle

terminal symbol A

Abstract syntax and grammars 8/21

Generating programs from grammars

How to generate a program from a grammar

1. start with a nonterminal s
2. find production rules with s on the LHS
3. replace s by one possible case on the RHS

A program is in the language if and only if it can be generated by the grammar!

Animal behavior language

s € Sentence ::=
n € Noun ::=
v € Verb

nvn | sands
cats | dogs | ducks
chase | cuddle

Abstract syntax and grammars

0y

= nvan

= cats v n

= cats v ducks

= cats cuddle ducks

9/21

Exercise

Animal behavior language

s € Sentence = nvn | s and s
ne Noun := cats | dogs | ducks
ve Verb ::= chase | cuddle

Is each “program” in the animal behavior language?

® cats
® cats
* dogs
* dogs

Abstract syntax and grammars

chase dogs

and dogs chase ducks

cuddle cats and ducks chase dogs

chase cats and cats chase ducks and ducks chase dogs

10/21

Abstract syntax trees

Grammar (BNF notation) Example ASTs

t € Term true not

fal true if
alse

not
not ¢ / l \

1
true false true false

ifttt
Language generated by grammar: set of all ASTs
not if
Term = {true,false} U { | |[teTerm} U { / |\ |t t2,t5 € Term}

t 7, tp t3

Abstract syntax and grammars 11/21

Exercise

Arithmetic expression language

ielnt =
e € Expr =
|
|
|

1|12 ...
add e e
mul e e
neg e
i

Abstract syntax and grammars

. Draw two different ASTs for the

expression: 2+3+4

. Draw an AST for the expression:

-5%(6+7)

. What are the integer results of

evaluating the following ASTs:

neg add

| / N\

add neg 3

/ N\ |

5 3 5

12/21

Outline

Abstract syntax vs. concrete syntax

Abstract syntax vs. concrete syntax 13/21

Abstract syntax vs. concrete syntax

y

The Pro’s Choice Since 138 - ._“m“"‘\

[CONCRETE MIX |

S

Abstract syntax: captures the essential structure of programs
e typically tree-structured

SAKRETE 3| |
|

ExE B mS

* what we use when defining the semantics

MEZCLA DE CONCRETO| [

7

Concrete syntax: describes how programs are written down
e typically linear (e.g. as text in a file)
* what we use when we're writing programs in the language

Abstract syntax vs. concrete syntax 14/21

Parsing

Parsing: transforms concrete syntax into abstract syntax

source code abstract
(concrete syntax) syntax tree

Typically several steps:
¢ lexical analysis: chunk character stream into tokens
e generate parse tree: parse token stream into intermediate ‘concrete syntax tree”
e convert to AST: convert parse tree into AST

Not a focus of this class!

Abstract syntax vs. concrete syntax 15/21

Pretty printing

Pretty printing: transforms abstract syntax into concrete syntax

Inverse of parsing!

abstract Pretty source code
syntax tree | Printer (concrete syntax)

Abstract syntax vs. concrete syntax 16 /21

Abstract grammar vs. concrete grammar

Abstract grammar Concrete grammar
te Term := true te Term := true
| false | false
| nott | nott
| dift¢tt | if t then t else t
» | (t)

Our focus is on abstract syntax
e we're always writing trees, even if it looks like text

® use parentheses to disambiguate textual representation of ASTs
but they are not part of the syntax

Abstract syntax vs. concrete syntax 17/21

Outline

Encoding grammars as Haskell data types

Encoding grammars as Haskell data types 18/21

Encoding abstract syntax in Haskell

/\deﬁnes set

Abstract grammar Abstract syntax trees
b € Bool ::= true | false) not
true if |
teTerm := not t / | \ not
| ifttt I
b true false true false
Haskell data type definition Haskell values
data Term = Not Term ® Lit True
| If Term Term Term e If (Lit True)
| Lit Bool (Lit False)

\/ (Lit True)

defines set ® Not (Not (Lit False))

Encoding grammars as Haskell data types

linear
encoding

19/21

Translating grammars into Haskell data types

Strategy: grammar — Haskell

1. For each basic nonterminal, choose a built-in type, e.g. Int, Bool

2. For each other nonterminal, define a data type

3. For each production, define a data constructor

4. The nonterminals in the production determine the arguments to the constructor

Special rule for lists:
® ingrammars, s = t* isshorthandfor: s == ¢ | tsors ==¢ | t,s
e can translate any of these to a Haskell list:

data Term = ...
type Sentence = [Term]

Encoding grammars as Haskell data types

20/21

Example: Annotated arithmetic expression language

Abstract syntax
n e Nat ::=
c e Comm :=

e € Expr

(natural number)

(comment string)

neg e
e@c
e+ e
e * e
n

negation
comment
addition
multiplication
literal

Encoding grammars as Haskell data types

Haskell encoding

type Comment = String
data Expr = Neg Expr

| Annot Expr Comment
| Add Expr Expr

| Mul Expr Expr

| Lit Int

21/21

	What is a language?
	Abstract syntax and grammars
	Abstract syntax vs. concrete syntax
	Encoding grammars as Haskell data types

