
Lambda Calculus

1 / 43

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

Introduction and history 2 / 43

What is the lambda calculus?

A very simple, but Turing complete, programming language
• created before concept of programming language existed!
• helped to define what Turing complete means!

Lambda calculus syntax

v ∈ Var ::= x | y | z | . . .

e ∈ Exp ::= v variable reference
| e e application
| λv. e (lambda) abstraction

Examples
x λx. y x y (λx.y) x

λf.(λx.f (x x)) (λx.f (x x))

Introduction and history 3 / 43

Correspondence to Haskell

Lambda calculus is the theoretical foundation for functional programming

Lambda calculus Haskell
x x
f x f x
λx.x \x -> x
(λf.f x) (λy.y) (\f -> f x) (\y -> y)

Similar to Haskell with only: variables, application, anonymous functions
• amazingly, we don’t lose anything by omitting all of the other features!
(for a particular definition of “anything”)

Introduction and history 4 / 43

Early history of the lambda calculus

Origin of the lambda calculus:
• Alonzo Church in 1936, to formalize “computable function”
• proves Hilbert’s Entscheidungsproblem undecidable

• provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England . . .
• young Alan Turing invents the Turing machine
• devises halting problem and proves undecidable

Turing heads to Princeton, studies under Church
• prove lambda calculus, Turing machine, general recursion are equivalent
• Church–Turing thesis: these capture all that can be computed

Introduction and history 5 / 43

Alonzo Church

Why lambda?

Evolution of notation for a bound variable:

• Whitehead and Russell, Principia Mathematica, 1910
• 2x̂ + 3 – corresponds to f (x) = 2x + 3

• Church’s early handwritten papers
• x̂. 2x + 3 – makes scope of variable explicit

• Typesetter #1
• ^x. 2x + 3 – couldn’t typeset the circumflex!

• Typesetter #2
• λx. 2x + 3 – picked a prettier symbol

Barendregt, The Impact of the Lambda Calculus in Logic and Computer Science, 1997

Introduction and history 6 / 43

Impact of the lambda calculus

Turing machine: theoretical foundation for imperative languages
• Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, . . .

Lambda calculus: theoretical foundation for functional languages
• Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, . . .

In programming languages research:
• common language of discourse, formal foundation
• starting point for new features

• extend syntax, type system, semantics
• reveals precise impact and utility of feature

Introduction and history 7 / 43

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

Definition of lambda calculus 8 / 43

Syntax

Lambda calculus syntax

v ∈ Var ::= x | y | z | . . .

e ∈ Exp ::= v variable reference
| e e application
| λv. e (lambda) abstraction

Abstractions extend as far right as possible
so . . . λx.x y ≡ λx. (x y)

NOT (λx.x) y

Syntactic sugar

Multi-parameter functions:
λx. (λy. e) ≡ λxy. e

λx. (λy.(λz. e)) ≡ λxyz. e

Application is left-associative:
(e1 e2) e3 ≡ e1 e2 e3

((e1 e2) e3) e4 ≡ e1 e2 e3 e4
e1 (e2 e3) ≡ e1 (e2 e3)

Definition of lambda calculus 9 / 43

β-reduction: basic idea

A redex is an expression of the form: (λv. e1) e2
(an application with an abstraction on left)

Reduce by substituting e2 for every reference to v in e1

write this as: [e2/v]e1

lots of different notations for this!

[v/e2]e1
e1[v/e2]

e1[v := e2]

[v 7→ e2]e1
Simple example
(λx.x y x) z 7→ z y z

Definition of lambda calculus 10 / 43

e ∈ Exp ::= v | e e | λv. e

Operational semantics

Reduction semantics

(λv. e1) e2 7→ [e2/v]e1
e 7→ e′

λv. e 7→ λv. e′

e1 7→ e′1
e1 e2 7→ e′1 e2

e2 7→ e′2
e1 e2 7→ e1 e′2

Note: Reduction order is ambiguous!

Definition of lambda calculus 11 / 43

e ∈ Exp ::= v | e e | λv. e

Exercise

Apply β-reduction in the following expressions

Round 1:
• (λx.x) z
• (λxy.x) z
• (λxy.x) z u

Round 2:
• (λx.x x) (λy.y)
• (λx.(λy.y) z)
• (λx.(x (λy.x))) z

Definition of lambda calculus 12 / 43

e ∈ Exp ::= v | e e | λv. e

(λv. e1) e2 7→ [e2/v]e1
e 7→ e′

λv. e 7→ λv. e′

e1 7→ e′1
e1 e2 7→ e′1 e2

e2 7→ e′2
e1 e2 7→ e1 e′2

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

Definition of lambda calculus 13 / 43

Variable scoping

An abstraction consists of:
1. a variable declaration
2. a function body – the variable can be referenced in here

The scope of a declaration: the parts of a program where it can be referenced

A reference is bound by its innermost declaration

Mini-exercise: (λx. e1 (λy. e2 (λx. e3))) (λz. e4)
• What is the scope of each variable declaration?

Definition of lambda calculus 14 / 43

e ∈ Exp ::= v | e e | λv. e

Free and bound variables

A variable v is free in e if:
• v is referenced in e
• the reference is not enclosed in an abstraction declaring v (within e)

If v is referenced and enclosed in such an abstraction, it is bound

Closed expression: an expression with no free variables
• equivalently, an expression where all variables are bound

Definition of lambda calculus 15 / 43

e ∈ Exp ::= v | e e | λv. e

Exercise

1. Define the abstract syntax of lambda calculus as a Haskell data type

2. Define a function: free :: Exp -> Set Var
the set of free variables in an expression

3. Define a function: closed :: Exp -> Bool
no free variables in an expression

Definition of lambda calculus 16 / 43

e ∈ Exp ::= v | e e | λv. e

Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their static scope
• λx.(λy.(λx.y x)) x 7→ λx. λx.x x

2. how we name bound variables doesn’t really matter
• λx.x ≡ λy.y ≡ λz.z (α-equivalence)

If violated, we can’t reason about functions separately from their use!

Example with naive substitution
A binary function that always returns its first argument: λxy. x . . . or does it?

(λxy.x) y u 7→ (λy.y) u 7→ u

Definition of lambda calculus 17 / 43

Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: [e/v]e′

[e/v]v = e
[e/v]w = w v 6= w
[e/v](e1 e2) = [e/v]e1 [e/v]e2
[e/v](λu. e′) = λw. [e/v]([w/u]e′) w /∈ {v} ∪ FV(λu. e′) ∪ FV(e)

FV(e) is the
set of all free
variables in e

Example with safe substitution
(λxy.x) y u
7→ [y/x](λy. x) u = (λz. [y/x]([z/y]x)) u = (λz. [y/x]x) u = (λz.y) u
7→ [u/z]y = y

Definition of lambda calculus 18 / 43

Example

Recall example: λx. (λy.(λx.y x)) x 7→ λx.λx.x x

Reduction with safe substitution
λx. (λy.(λx.y x)) x
7→ λx. [x/y](λx. y x) = λx. λz. [x/y]([z/x](y x)) = λx. λz. [x/y](y z)

= λx.λz.x z

Definition of lambda calculus 19 / 43

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

Definition of lambda calculus 20 / 43

Normal form

Question: what is a value in the lambda calculus?
• how do we know when we’re done reducing?

One answer: a value is an expression that contains no redexes
• called β-normal form

Not all expressions can be reduced to a value!
(λx.xx) (λx.xx) 7→ (λx.xx) (λx.xx) 7→ (λx.xx) (λx.xx) 7→ . . .

Definition of lambda calculus 21 / 43

Does reduction order matter?

Recall: operational semantics is ambiguous
• in what order should we β-reduce redexes?
• does it matter?

e 7→ e′ ⊆ Exp× Exp

(λv. e1) e2 7→ [e2/v]e1
e 7→ e′

λv. e 7→ λv. e′

e1 7→ e′1
e1 e2 7→ e′1 e2

e2 7→ e′2
e1 e2 7→ e1 e′2

e 7→∗ e′ ⊆ Exp× Exp
s 7→∗ s

s 7→ s′ s′ 7→∗ s′′

s 7→∗ s′′

Definition of lambda calculus 22 / 43

Church–Rosser Theorem

Reduction is confluent
If e 7→∗ e1 and e 7→∗ e2, then
∃e′ such that e1 7→∗ e′ and e2 7→∗ e′

e1

e e′

e2

7→∗7→∗

7→∗ 7→∗

Corollary: any expression has at most one normal form
• if it exists, we can still reach it after any sequence of reductions
• . . . but if we pick badly, we might never get there!

Example: (λx.y) ((λx.xx) (λx.xx))

Definition of lambda calculus 23 / 43

Reduction strategies

Redex positions
leftmost redex: the redex with the leftmost λ
outermost redex: any redex that is not part of another redex
innermost redex: any redex that does not contain another redex

Label redexes
(λx.
(λy.x) z
((λy.y) z))

(λy.z)

Reduction strategies
normal order reduction: reduce the leftmost redex
applicative order reduction: reduce the leftmost of the innermost redexes

Compare reductions: (λx.y) ((λx.xx) (λx.xx))

Definition of lambda calculus 24 / 43

Exercises

Write two reduction sequences for each of the following expressions
• one corresponding to a normal order reduction
• one corresponding to an applicative order reduction

1. (λx.xx) ((λxy.yx) z (λx.x))
2. (λxyz.xz) (λz.z) ((λy.y)(λz.z)) x

Definition of lambda calculus 25 / 43

Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
• evaluates every argument exactly once, even if it’s not needed
• corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
• doesn’t evaluate unused arguments, but may re-evaluate each one many times
• guaranteed to reduce to normal form, if possible
• corresponds to “call by name” parameter passing scheme

Definition of lambda calculus 26 / 43

Brief notes on lazy evaluation

Lazy evaluation: reduces arguments only if used, but at most once
• essentially, an efficient implementation of normal order reduction
• only evaluates to “weak head normal form”
• corresponds to “call by need” parameter passing scheme

Expression e is in weak head normal form if:
• e is a variable or lambda abstraction
• e is an application with a variable in the left position

. . . in other words, e does not start with a redex

Definition of lambda calculus 27 / 43

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

Programming with lambda calculus 28 / 43

Church Booleans

Data and operations are encoded as functions in the lambda calculus

For Booleans, need lambda calculus terms for true, false, and if , where:
• if true e1 e2 7→∗ e1
• if false e1 e2 7→∗ e2

Church Booleans
true = λxy. x
false = λxy. y
if = λbte. bte

More Boolean operations
and = λpq. if pqp
or = λpq. if ppq
not = λp. if p false true

Programming with lambda calculus 29 / 43

Church numerals

A natural number n is encoded as a function that applies f to x n times

Church numerals
zero = λfx. x
one = λfx. fx
two = λfx. f(fx)
three = λfx. f(f(fx))
. . .
n = λfx. fn x

Operations on Church numerals
succ = λnfx. f(nfx)
add = λnmfx. nf(mfx)
mult = λnmf. n(mf)
isZero = λn. n(λx. false) true

Programming with lambda calculus 30 / 43

Encoding values of more complicated data types

At a minimum, need functions that encode how to:
• construct new values of the data type data constructors
• destruct and use values of the data type in a general way pattern matching

Can encode values of many data types as sums of products
• corresponds to Either and tuples in Haskell

data Val = A Nat | B Bool | C Nat Bool
≡

type Val’ = Either Nat (Either Bool (Nat,Bool))

Programming with lambda calculus 31 / 43

Exercise

data Val = A Nat | B Bool | C Nat Bool
≡

type Val’ = Either Nat (Either Bool (Nat,Bool))

Encode the following values of type Val as values of type Val’

• A 2
• B True
• C 3 False

Programming with lambda calculus 32 / 43

Products (a.k.a. tuples)

A tuple is defined by:
• a tupling function (constructor)
• a set of selecting functions (destructors)

Church pairs
pair = λxys. sxy
fst = λt. t (λxy.x)
snd = λt. t (λxy.y)

Church triples
tuple3 = λxyzs. sxyz
sel1/3 = λt. t (λxyz.x)
sel2/3 = λt. t (λxyz.y)
sel3/3 = λt. t (λxyz.z)

Programming with lambda calculus 33 / 43

Sums (a.k.a. tagged unions)

A tagged union is defined by:
• a case function: a tuple of functions (destructor)
• a set of tags that select the correct function and apply it (constructors)

Church either
either = λfgu. ufg
inL = λxfg. fx
inR = λyfg. gy

Church union
case3 = λfghu. ufgh
in1/3 = λxfgh. fx
in2/3 = λyfgh. gy
in3/3 = λzfgh. hz

Programming with lambda calculus 34 / 43

either :: (a -> c) -> (b -> c)
-> Either a b -> c

either f _ (Left x) = f x
either _ g (Right y) = g y

Exercise

data Val = A Nat | B Bool | C Nat Bool

foo :: Val -> Nat
foo (A n) = n
foo (B b) = if b then 0 else 1
foo (C n b) = if b then 0 else n

1. Encode the following values of type Val as lambda calculus terms
• A 2
• B True
• C 3 False

2. Encode the function foo in lambda calculus

Programming with lambda calculus 35 / 43

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

Programming with lambda calculus 36 / 43

Naming in lambda calculus

Observation: can use abstractions to define names

let succ = \n -> n+1
in ... succ 3 ... succ 7 ...

=⇒ (λsucc.
... succ 3 ... succ 7 ...

) (λn f x.f (n f x))

But this pattern doesn’t work for recursive functions!

let fac = \n ->
... n * fac (n-1)

in ... fac 5 ... fac 8 ...
=⇒ (λfac.

... fac 5 ... fac 8 ...
) (λn f x.... mult n (??? (pred n)))

Programming with lambda calculus 37 / 43

Recursion via fixpoints

Solution: Fixpoint function
Y = λf. (λx.f (x x)) (λx.f (x x))

Y g
7→ (λx.g (x x)) (λx.g (x x))
7→ g ((λx.g (x x)) (λx.g (x x)))
7→ g (g ((λx.g (x x)) (λx.g (x x))))
7→ g (g (g ((λx.g (x x)) (λx.g (x x)))))
7→ . . .

Example recursive function (factorial)
Y (λfac n. if (isZero n) one (mult n (fac (pred n))))

Programming with lambda calculus 38 / 43

Outline

Introduction and history

Definition of lambda calculus
Syntax and operational semantics
Minutia of β-reduction
Reduction strategies

Programming with lambda calculus
Church encodings
Recursion

De Bruijn indices

De Bruijn indices 39 / 43

The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics)
. . . but they’re annoying in implementations and proofs

Annoyances related to names
• safe substitution is complicated, requires generating fresh names
• checking and maintaining α-equivalence is complicated and expensive

Recall: α-equivalence
Expressions are the same up to variable renaming
• λx. x ≡ λy. y ≡ λz. z
• λxy. x ≡ λyx. y

De Bruijn indices 40 / 43

A nameless representation of lambda calculus

Basic idea: de Bruijn indices
• an abstraction implicitly declares its input (no variable name)

• a variable reference is a number n, called a de Bruijn index,
that refers to the nth abstraction up the AST

Nameless lambda calculus

n ∈ Nat ::= (any natural number)
e ∈ Exp ::= e e application

| λ e lambda abstraction
| n de Bruijn index

Named nameless
• λx. x λ 0
• λxy. x λλ1
• λxy. y λλ0
• λx. (λy.y) x λ (λ0) 0

Main advantage: α-equivalence is just syntactic equality!
De Bruijn indices 41 / 43

Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to skip when moving up the AST

λ 0 (λ 1 (λ 0 1 2) 0) λx. x (λy.x (λz.z y x) y)

Gotchas:
• the same variable will be a different number in different contexts
• scopes work the same as before; references respect the AST

• e.g. the blue 0 refers to the blue λ since it is not in scope of the green λ,
and the green λ does not count as a skip

De Bruijn indices 42 / 43

Free variables in nameless encoding

Free variable in e: a de Bruijn index that skips over all of the λs in e
• the same free variables will have the same number of λs left to skip

λ 1 (λ 2 3 0 1) 2 0 λx. w (λy.w v y x) v x

De Bruijn indices 43 / 43

	Introduction and history
	Definition of lambda calculus
	Syntax and operational semantics
	Minutia of -reduction
	Reduction strategies

	Programming with lambda calculus
	Church encodings
	Recursion

	De Bruijn indices

