Lambda Calculus

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus

Church encodings Recursion

De Bruijn indices

What is the lambda calculus?

A very simple, but Turing complete, programming language

- created before concept of *programming language* existed!
- helped to define what *Turing complete* means!

Lambda	calcu	lus sy	ntax/
--------	-------	--------	-------

$$v \in Var$$
 ::= $\mathbf{x} \mid \mathbf{y} \mid \mathbf{z} \mid ...$

 $e \in Exp$::= v variable reference | e e application $| \lambda v. e$ (lambda) abstraction

Exa	mples		
x	$\lambda x. y$	ху	(λ x .y) x
λf	⁻ . (λx.f ()	(x)) (λ	(.f(xx))

Correspondence to Haskell

Lambda calculus is the theoretical foundation for functional programming

Lambda calculus	Haskell	
Х	x	
fx	fx	
$\lambda \mathbf{x} \cdot \mathbf{x}$	\x -> x	
(λf.fx) (λy.y)	(\f->fx)(\y->y)	

Similar to Haskell with only: variables, application, anonymous functions

• amazingly, we don't lose anything by omitting all of the other features! (for a particular definition of "anything")

Early history of the lambda calculus

Origin of the lambda calculus:

- Alonzo Church in 1936, to formalize "computable function"
- proves Hilbert's Entscheidungsproblem undecidable
 - provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England ...

- young Alan Turing invents the Turing machine
- devises *halting problem* and proves undecidable

Turing heads to Princeton, studies under Church

- prove lambda calculus, Turing machine, general recursion are equivalent
- Church-Turing thesis: these capture all that can be computed

Alonzo Church

Why lambda?

Evolution of notation for a **bound variable**:

- Whitehead and Russell, Principia Mathematica, 1910
 - $2\hat{x} + 3$ corresponds to f(x) = 2x + 3
- Church's early handwritten papers
 - \hat{x} . 2x + 3 makes scope of variable explicit
- Typesetter #1
 - $x \cdot 2x + 3$ couldn't typeset the circumflex!
- Typesetter #2
 - $\lambda x. 2x + 3$ picked a prettier symbol

Barendregt, The Impact of the Lambda Calculus in Logic and Computer Science, 1997

Impact of the lambda calculus

Turing machine: theoretical foundation for imperative languages

• Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, ...

Lambda calculus: theoretical foundation for functional languages

• Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, ...

In programming languages research:

- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus Church encodings Recursion

De Bruijn indices

Syntax

Lambda calculus syntax

Abstractions extend as far right as possible so ... $\lambda x. x y \equiv \lambda x. (x y)$ NOT $(\lambda x. x) y$ Syntactic sugar *Multi-parameter functions:* $\lambda \mathbf{x}. (\lambda \mathbf{y}. e) \equiv \lambda \mathbf{x} \mathbf{y}. e$ $\lambda \mathbf{x}. (\lambda \mathbf{y}. (\lambda \mathbf{z}. e)) \equiv \lambda \mathbf{x} \mathbf{y} \mathbf{z}. e$ *Application is left-associative:* $(e_1 e_2) e_3 \equiv e_1 e_2 e_3$ $((e_1 e_2) e_3) e_4 \equiv e_1 e_2 e_3 e_4$ $e_1 (e_2 e_3) \equiv e_1 (e_2 e_3)$

β -reduction: basic idea

$$e \in Exp$$
 ::= $v \mid e \mid \lambda v \cdot e$

A **redex** is an expression of the form: ($\lambda v. e_1$) e_2

(an application with an abstraction on left)

Reduce by **substituting** e_2 for every reference to v in e_1

write this as: $[e_2/v]e_1$

 $[v/e_2]e_1$ $e_1[v/e_2]$ $e_1[v := e_2]$ $[v \mapsto e_2]e_1$

Simple example ($\lambda x. x y x$) $z \mapsto z y z$

Operational semantics

$$e \in Exp$$
 ::= $v \mid e \mid \lambda v \cdot e$

Reduction semantics	
($\lambda v. e_1$) $e_2 \mapsto [e_2/v]e_1$	$rac{e\mapsto e'}{oldsymbol{\lambda} v.e\mapsto oldsymbol{\lambda} v.e'}$
$rac{e_1\mapsto e_1'}{e_1\;e_2\mapsto e_1'\;e_2}$	$rac{e_2\mapsto e_2'}{e_1\ e_2\mapsto e_1\ e_2'}$

Note: Reduction order is ambiguous!

Exercise

Apply β -reduction in the following expressions

Round 1:

- (λx.x) z
- (λxy.x) z
- (λxy.x) z u

Round 2:

- (λx.x x) (λy.y)
- (λx.(λy.y) z)
- (λx.(x (λy.x))) z

$$e \in Exp ::= v \mid e \mid \lambda v. e$$

$$(\lambda v. e_1) \mid e_2 \mapsto [e_2/v]e_1 \qquad \frac{e \mapsto e'}{\lambda v. e \mapsto \lambda v. e'}$$

$$\frac{e_1 \mapsto e'_1}{e_1 \mid e_2 \mapsto e'_1 \mid e_2} \qquad \frac{e_2 \mapsto e'_2}{e_1 \mid e_2 \mapsto e_1 \mid e'_2}$$

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus

Church encodings Recursion

De Bruijn indices

Variable scoping

 $e \in Exp$::= $v \mid e \mid \lambda v \cdot e$

An abstraction consists of:

- 1. a variable declaration
- 2. a function body the variable can be referenced in here

The scope of a declaration: the parts of a program where it can be referenced

A reference is bound by its innermost declaration

Mini-exercise: $(\lambda \mathbf{x}. e_1 \ (\lambda \mathbf{y}. e_2 \ (\lambda \mathbf{x}. e_3))) \ (\lambda \mathbf{z}. e_4)$ • What is the scope of each variable declaration?

 $e \in Exp$::= $v \mid e \mid \lambda v \cdot e$

A variable *v* is **free** in *e* if:

- *v* is referenced in *e*
- the reference is *not* enclosed in an abstraction declaring v (within e)

If *v* is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables

• equivalently, an expression where all variables are bound

 $e \in Exp$::= $v \mid e \mid \lambda v \cdot e$

1. Define the abstract syntax of lambda calculus as a Haskell data type

 Define a function: free :: Exp -> Set Var the set of free variables in an expression

 Define a function: closed :: Exp -> Bool no free variables in an expression

Potential problem: variable capture

Principles of variable bindings:

- 1. variables should be bound according to their static scope
 - $\lambda \mathbf{x}. (\lambda \mathbf{y}. (\lambda \mathbf{x}. \mathbf{y} \mathbf{x})) \mathbf{x} \mapsto \lambda \mathbf{x}. \lambda \mathbf{x}. \mathbf{x} \mathbf{x}$
- 2. how we name bound variables doesn't really matter
 - $\lambda \mathbf{x} . \mathbf{x} \equiv \lambda \mathbf{y} . \mathbf{y} \equiv \lambda \mathbf{z} . \mathbf{z}$ (α -equivalence)

If violated, we can't reason about functions separately from their use!

Example with naive substitution A binary function that always returns its first argument: $\lambda x y. x$... or does it? $(\lambda x y. x) y u \mapsto (\lambda y. y) u \mapsto u$

Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: [e/v]e'

FV(e) is the set of all free variables in e

Example with safe substitution

Example

Recall example: $\lambda \mathbf{x}. (\lambda \mathbf{y}. (\lambda \mathbf{x}. \mathbf{y} \mathbf{x})) \mathbf{x} \mapsto \lambda \mathbf{x}. \lambda \mathbf{x}. \mathbf{x} \mathbf{x}$

Reduction with safe substitution $\lambda x. (\lambda y. (\lambda x. y x)) x$ $\mapsto \lambda x. [x/y](\lambda x. y x) = \lambda x. \lambda z. [x/y]([z/x](y x)) = \lambda x. \lambda z. [x/y](y z)$ $= \lambda x. \lambda z. x z$

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus

Church encodings Recursion

De Bruijn indices

Normal form

Question: what is a value in the lambda calculus?

• how do we know when we're done reducing?

One answer: a value is an expression that contains no redexes

• called *β*-normal form

Not all expressions can be reduced to a value! $(\lambda x. xx) (\lambda x. xx) \mapsto (\lambda x. xx) (\lambda x. xx) \mapsto (\lambda x. xx) \mapsto \dots$

Does reduction order matter?

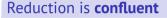
Recall: operational semantics is ambiguous

- in what order should we β -reduce redexes?
- does it matter?

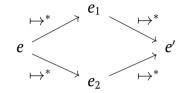
 $e \mapsto e' \subseteq Exp \times Exp$ $(\lambda v. e_1) e_2 \mapsto [e_2/v]e_1 \qquad \frac{e \mapsto e'}{\lambda v. e \mapsto \lambda v. e'}$ $\frac{e_1 \mapsto e'_1}{e_1 e_2 \mapsto e'_1 e_2} \qquad \frac{e_2 \mapsto e'_2}{e_1 e_2 \mapsto e_1 e'_2}$

$$e \mapsto^{*} e' \subseteq Exp \times Exp$$
$$s \mapsto^{*} s$$
$$\frac{s \mapsto s' \quad s' \mapsto^{*} s''}{s \mapsto^{*} s''}$$

Church-Rosser Theorem



If $e\mapsto^* e_1$ and $e\mapsto^* e_2$, then $\exists e'$ such that $e_1\mapsto^* e'$ and $e_2\mapsto^* e'$



Corollary: any expression has **at most one normal form**

- if it exists, we can still reach it after any sequence of reductions
- ... but if we pick badly, we might never get there!

```
Example: (\lambda \mathbf{x}, \mathbf{y}) ((\lambda \mathbf{x}, \mathbf{x} \mathbf{x}) (\lambda \mathbf{x}, \mathbf{x} \mathbf{x}))
```

Reduction strategies

Redex positions

leftmost redex: the redex with the leftmost λ **outermost redex**: any redex that is not part of another redex **innermost redex**: any redex that does not contain another redex

```
Label redexes
(λx.
(λy.x) z
((λy.y) z))
(λy.z)
```

Reduction strategies

normal order reduction: reduce the leftmost redex
applicative order reduction: reduce the leftmost of the innermost redexes

Compare reductions: $(\lambda x. y) ((\lambda x. xx) (\lambda x. xx))$

Exercises

Write two reduction sequences for each of the following expressions

- one corresponding to a normal order reduction
- one corresponding to an applicative order reduction

```
1. (\lambda \mathbf{x} \cdot \mathbf{x} \mathbf{x}) ((\lambda \mathbf{x} \mathbf{y} \cdot \mathbf{y} \mathbf{x}) \mathbf{z} (\lambda \mathbf{x} \cdot \mathbf{x}))
```

```
2. (\lambda x y z. x z) (\lambda z. z) ((\lambda y. y) (\lambda z. z)) x
```

Comparison of reduction strategies

Theorem

If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first

- evaluates every argument exactly once, even if it's not needed
- corresponds to "call by value" parameter passing scheme

Normal order: copies arguments first

- doesn't evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to "call by name" parameter passing scheme

Brief notes on lazy evaluation

Lazy evaluation: reduces arguments only if used, but at most once

- essentially, an efficient implementation of normal order reduction
- only evaluates to "weak head normal form"
- corresponds to "call by need" parameter passing scheme

Expression *e* is in weak head normal form if:

- *e* is a variable or lambda abstraction
- *e* is an application with a variable in the left position
- ... in other words, *e* does not start with a redex

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus Church encodings Recursion

De Bruijn indices

Church Booleans

Data and operations are encoded as **functions** in the lambda calculus

For Booleans, need lambda calculus terms for *true*, *false*, and *if*, where:

- *if true* $e_1 e_2 \mapsto^* e_1$
- *if false* $e_1 e_2 \mapsto^* e_2$

Churc	h B	ooleans
true	=	λху.х
false	=	λx y . y
if	=	$\lambda {\tt bte.bte}$
	_	

More	Boolean operations
and	$= \lambda p q. if p q p$
or	$=~\lambda$ pq. $i\!f$ ppq
not	$= \lambda p. if p false true$

Church numerals

A natural number n is encoded as a function that applies **f** to **x** n times

Church numerals $zero = \lambda f x. x$ $one = \lambda f x. f x$ $two = \lambda f x. f (f x)$ $three = \lambda f x. f (f (f x))$... $n = \lambda f x. f^{n} x$

Operations on Church numerals

succ	=	λ nfx.f(nfx)
add	=	λ nmfx.nf(mfx)
mult	=	λ nmf.n(mf)
isZero	=	$\lambda n. n (\lambda x. false) true$

Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- construct new values of the data type
- **destruct and use** values of the data type in a general way

data constructors pattern matching

Can encode values of many data types as sums of products

corresponds to Either and tuples in Haskell

Exercise

Encode the following values of type Val as values of type Val'

- A 2
- B True
- C 3 False

Products (a.k.a. tuples)

A tuple is defined by:

- a tupling function (constructor)
- a set of selecting functions (destructors)

Church pairs		
pair	$=\lambda$ xys.sxy	
fst	$= \lambda$ t.t (λ xy.x)	
snd	$= \lambda t.t (\lambda x y.y)$	

Church triples

$$tuple_3 = \lambda x y z s. s x y z$$

$$sel_{1/3} = \lambda t. t (\lambda x y z. x)$$

$$sel_{2/3} = \lambda t. t (\lambda x y z. y)$$

$$sel_{3/3} = \lambda t. t (\lambda x y z. z)$$

Sums (a.k.a. tagged unions)

```
either :: (a -> c) -> (b -> c)
-> Either a b -> c
either f _ (Left x) = f x
either _ g (Right y) = g y
```

A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

```
Church either

either = \lambda fgu. u fg

in_L = \lambda x fg. fx

in_R = \lambda y fg. gy
```

Church	n union	
case ₃	$=\lambda$ fghu.ufgh	
in _{1/3}	$= \lambda x fgh.fx$	
$in_{2/3}$	$=~\lambda$ yfgh.gy	
in _{3/3}	$=~\lambda$ zfgh.hz	

Exercise

```
data Val = A Nat | B Bool | C Nat Bool
foo :: Val -> Nat
foo (A n) = n
foo (B b) = if b then 0 else 1
foo (C n b) = if b then 0 else n
```

- 1. Encode the following values of type Val as lambda calculus terms
 - A 2
 - B True
 - C 3 False
- 2. Encode the function foo in lambda calculus

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus

Recursion

De Bruijn indices

Naming in lambda calculus

Observation: can use abstractions to define names

let succ =
$$\n \rightarrow n+1$$

in ... succ 3 ... succ 7 ... \Rightarrow (λ succ.
... succ 3 ... succ 7 ...
) (λ nfx.f(nfx))

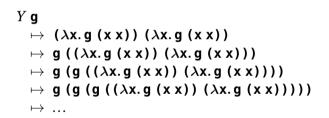
But this pattern doesn't work for recursive functions!

$$\begin{array}{c|c} \text{let fac} = \langle n \ -> \\ \dots \ n \ * \ \text{fac} \ (n-1) \\ \text{in} \ \dots \ \text{fac} \ 5 \ \dots \ \text{fac} \ 8 \ \dots \end{array} \end{array} \xrightarrow[]{} \left(\lambda \text{fac.} \\ \dots \ \text{fac} \ 5 \ \dots \ \text{fac} \ 8 \ \dots \\) \ (\lambda n \ f \ x \ \dots \ mult \ n \ (??? \ (pred \ n))) \end{array} \right)$$

Recursion via fixpoints

```
Solution: Fixpoint function
```

```
Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
```



Example recursive function (factorial)

Y (λ fac n. if (isZero n) one (mult n (fac (pred n))))

Outline

Introduction and history

Definition of lambda calculus

Syntax and operational semantics Minutia of β -reduction Reduction strategies

Programming with lambda calculus

Church encoding: Recursion

De Bruijn indices

The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics) ... but they're annoying in implementations and proofs

Annoyances related to names

- safe substitution is complicated, requires generating fresh names
- checking and maintaining α -equivalence is complicated and expensive

Recall: α -equivalence

Expressions are the same up to variable renaming

- $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
- $\lambda \mathbf{x} \mathbf{y} \cdot \mathbf{x} \equiv \lambda \mathbf{y} \mathbf{x} \cdot \mathbf{y}$

A nameless representation of lambda calculus

Basic idea: de Bruijn indices

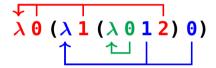
- an abstraction implicitly declares its input (no variable name)
- a variable reference is a number *n*, called a **de Bruijn index**, that refers to the *n*th abstraction up the AST

Nameless lambda calculusNamed \rightsquigarrow nameless $n \in Nat$::=(any natural number) $e \in Exp$::=eapplication λe lambda abstractionnde Bruijn index $\lambda x y. x \rightsquigarrow \lambda 1$ $\lambda x y. x \rightsquigarrow \lambda 0$ $\lambda x (\lambda y. y) x \rightsquigarrow \lambda \lambda 0$

Main advantage: α -equivalence is just syntactic equality!

Deciphering de Bruijn indices

De Bruijn index: the number of λ s you have to *skip* when moving up the AST



 $\lambda x. x (\lambda y. x (\lambda z. z y x) y)$

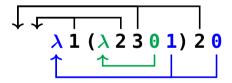
Gotchas:

- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue 0 refers to the blue λ since it is not in scope of the green λ , and the green λ does not count as a *skip*

Free variables in nameless encoding

Free variable in *e*: a de Bruijn index that skips over all of the λ s in *e*

• the same free variables will have the same number of λ s left to skip



 $\lambda x. w (\lambda y. w v y x) v x$