Lambda Calculus
Introduction and history

Definition of lambda calculus
- Syntax and operational semantics
- Minutia of β-reduction
- Reduction strategies

Programming with lambda calculus
- Church encodings
- Recursion

De Bruijn indices
What is the lambda calculus?

A very simple, but Turing complete, programming language

- created before concept of programming language existed!
- helped to define what Turing complete means!

Lambda calculus syntax

\[v \in \text{Var} ::= \; x \mid y \mid z \mid \ldots \]

\[e \in \text{Exp} ::= v \quad \text{variable reference} \]
\[\; e \; e \quad \text{application} \]
\[\lambda v. \; e \quad \text{(lambda) abstraction} \]

Examples

\[x \quad \lambda x. \; y \quad x \; y \quad (\lambda x. \; y) \; x \]
\[\lambda f. \; (\lambda x. \; f \; (x \; x)) \quad (\lambda x. \; f \; (x \; x)) \]
Lambda calculus is the **theoretical foundation** for functional programming

<table>
<thead>
<tr>
<th>Lambda calculus</th>
<th>Haskell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(x)</td>
</tr>
<tr>
<td>(f \ x)</td>
<td>(f \ x)</td>
</tr>
<tr>
<td>(\lambda x. x)</td>
<td>(\lambda x -> x)</td>
</tr>
<tr>
<td>((\lambda f. f \ x) \ (\lambda y. y))</td>
<td>((\lambda f -> f \ x) \ (\lambda y -> y))</td>
</tr>
</tbody>
</table>

Similar to Haskell with only: variables, application, anonymous functions

- amazingly, we don’t lose anything by omitting all of the other features!
 (for a particular definition of “anything”)
Early history of the lambda calculus

Origin of the lambda calculus:

• Alonzo Church in 1936, to formalize “computable function”
• proves Hilbert’s Entscheidungsproblem undecidable
 • provide an algorithm to decide truth of arbitrary propositions

Meanwhile, in England …

• young Alan Turing invents the Turing machine
• devises halting problem and proves undecidable

Turing heads to Princeton, studies under Church

• prove lambda calculus, Turing machine, general recursion are equivalent
• Church–Turing thesis: these capture all that can be computed
Why lambda?

Evolution of notation for a **bound variable**:

- **Whitehead and Russell**, *Principia Mathematica*, 1910
 - \(2\hat{x} + 3\) – corresponds to \(f(x) = 2x + 3\)

- **Church’s early handwritten papers**
 - \(\hat{x}. 2x + 3\) – makes scope of variable explicit

- **Typesetter #1**
 - \(^x. 2x + 3\) – couldn’t typeset the circumflex!

- **Typesetter #2**
 - \(\lambda x. 2x + 3\) – picked a prettier symbol

Impact of the lambda calculus

Turing machine: theoretical foundation for *imperative languages*
- Fortran, Pascal, C, C++, C#, Java, Python, Ruby, JavaScript, …

Lambda calculus: theoretical foundation for *functional languages*
- Lisp, ML, Haskell, OCaml, Scheme/Racket, Clojure, F#, Coq, …

In *programming languages research*:
- common language of discourse, formal foundation
- starting point for new features
 - extend syntax, type system, semantics
 - reveals precise impact and utility of feature
Outline

Introduction and history

Definition of lambda calculus
- Syntax and operational semantics
- Minutia of β-reduction
- Reduction strategies

Programming with lambda calculus
- Church encodings
- Recursion

De Bruijn indices
Syntax

Lambda calculus syntax

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v \in \text{Var})</td>
<td>(x \mid y \mid z \mid \ldots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e \in \text{Exp})</td>
<td>(v) \hspace{3mm} \text{variable reference}
</td>
</tr>
</tbody>
</table>

Abstractions extend as far right as possible

so \(\lambda x. x \ y \equiv \lambda x. (x \ y) \)

NOT \((\lambda x. x) \ y \)

Syntactic sugar

- **Multi-parameter functions:**
 \[
 \lambda x. (\lambda y. e) \equiv \lambda x \ y. e \\
 \lambda x. (\lambda y. (\lambda z. e)) \equiv \lambda x \ y \ z. e
 \]

- **Application is left-associative:**
 \[
 (e_1 \ e_2) \ e_3 \equiv e_1 \ e_2 \ e_3 \\
 (((e_1 \ e_2) \ e_3) \ e_4) \equiv e_1 \ e_2 \ e_3 \ e_4 \\
 e_1 \ (e_2 \ e_3) \equiv e_1 \ (e_2 \ e_3)
 \]

Definition of lambda calculus 9 / 43
\(\beta \)-reduction: basic idea

A redex is an expression of the form: \((\lambda v. e_1) e_2\)

(an application with an abstraction on left)

Reduce by **substituting** \(e_2\) for every reference to \(v\) in \(e_1\)

write this as: \([e_2/v]e_1\)

lots of different notations for this!

Simple example

\((\lambda x. x \ y \ x) \ z \mapsto z \ y \ z\)
Operational semantics

Definition of lambda calculus

\[e \in \text{Exp} \ ::= \, v \mid e \mid \lambda v. e \]

Reduction semantics

\[
\begin{align*}
(\lambda v. e_1) e_2 \mapsto [e_2/v]e_1 & \quad e \mapsto e' \\
\lambda v. e \mapsto \lambda v. e' \\
e_1 \mapsto e_1' & \quad e_2 \mapsto e_2' \\
e_1 e_2 \mapsto e_1' e_2' \\
\end{align*}
\]

Note: Reduction order is ambiguous!
Exercise

Apply β-reduction in the following expressions

Round 1:
- $(\lambda x. x) \ z$
- $(\lambda x y. x) \ z$
- $(\lambda x y. x) \ z \ u$

Round 2:
- $(\lambda x. x \ x) \ (\lambda y. y)$
- $(\lambda x. (\lambda y. y) \ z)$
- $(\lambda x. (x \ (\lambda y. x))) \ z$

Definition of lambda calculus

\[e \in \text{Exp} ::= \ v \mid e \ e \mid \lambda v. \ e \]

\[
\begin{align*}
(\lambda v. e_1) \ e_2 & \mapsto [e_2/v] e_1 \\
\lambda v. e & \mapsto \lambda v. e' \\
e_1 & \mapsto e_1' \\
e_2 & \mapsto e_2' \\
e_1 \ e_2 & \mapsto e_1' \ e_2' \\
\end{align*}
\]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Variable scoping

An abstraction consists of:

1. a variable declaration
2. a function body – the variable can be referenced in here

The scope of a declaration: the parts of a program where it can be referenced

A reference is bound by its innermost declaration

Mini-exercise: \((\lambda x. e_1 (\lambda y. e_2 (\lambda x. e_3))) (\lambda z. e_4))\)

- What is the scope of each variable declaration?
Free and bound variables

A variable v is **free** in e if:

- v is referenced in e
- the reference is *not* enclosed in an abstraction declaring v (within e)

If v is referenced and enclosed in such an abstraction, it is **bound**

Closed expression: an expression with no free variables

- equivalently, an expression where all variables are bound
1. Define the abstract syntax of lambda calculus as a Haskell data type

\[e \in \textit{Exp} \ ::= \ v \mid e \ e \mid \lambda v. \ e \]

2. Define a function: \textbf{free} :: Exp -> Set Var
 the set of free variables in an expression

3. Define a function: \textbf{closed} :: Exp -> Bool
 no free variables in an expression
Potential problem: variable capture

Principles of variable bindings:

1. variables should be bound according to their static scope
 • \(\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x \)

2. how we name bound variables doesn’t really matter
 • \(\lambda x. x \equiv \lambda y. y \equiv \lambda z. z \) \ (\alpha\text{-equivalence})

If violated, we can’t reason about functions separately from their use!

Example with naive substitution

A binary function that always returns its first argument: \(\lambda x. y. x \) ... or does it?

\[
(\lambda x. y. x) \ y \ u \mapsto (\lambda y. y) \ u \mapsto u
\]
Solution: capture-avoiding substitution

Capture-avoiding (safe) substitution: \([e/v]e'\)

\[
\begin{align*}
[e/v]v &= e \\
[e/v]w &= w & v \neq w \\
[e/v](e_1 e_2) &= [e/v]e_1 \ [e/v]e_2 \\
[e/v](\lambda u. e') &= \lambda w. [e/v]([w/u]e') & w \notin \{v\} \cup \text{FV}(\lambda u. e') \cup \text{FV}(e)
\end{align*}
\]

Example with safe substitution

\((\lambda x y. x) \ y \ u\)
\[
\begin{align*}
\mapsto [y/x](\lambda y. x) \ u &= (\lambda z. [y/x][z/y]x) \ u &= (\lambda z. [y/x]x) \ u &= (\lambda z y) \ u \\
\mapsto [u/z]y &= y
\end{align*}
\]

\(\text{FV}(e)\) is the set of all free variables in \(e\)
Example

Recall example: $\lambda x. (\lambda y. (\lambda x. y \ x)) \ x \mapsto \lambda x. \lambda x. x \ x$

Reduction with safe substitution

$\lambda x. (\lambda y. (\lambda x. y \ x)) \ x$

$\mapsto \lambda x. [x/y](\lambda x. y \ x) = \lambda x. \lambda z. [x/y][z/x](y \ x) = \lambda x. \lambda z. [x/y](y \ z) = \lambda x. \lambda z. x \ z$
Outline

Introduction and history

Definition of lambda calculus
- Syntax and operational semantics
- Minutia of β-reduction
 - Reduction strategies

Programming with lambda calculus
- Church encodings
- Recursion

De Bruijn indices
Question: what is a value in the lambda calculus?
• how do we know when we’re done reducing?

One answer: a value is an expression that contains no redexes
• called β-normal form

Not all expressions can be reduced to a value!

\[
(\lambda x. x x) \ (\lambda x. x x) \mapsto (\lambda x. x x) \ (\lambda x. x x) \mapsto (\lambda x. x x) \ (\lambda x. x x) \mapsto \ldots
\]
Does reduction order matter?

Recall: operational semantics is ambiguous
- in what order should we β-reduce redexes?
- does it matter?

\[
\begin{align*}
\lambda v. e_1 & \rightarrow [e_2/v] e_1 \\
\lambda v. e & \rightarrow \lambda v. e' \\
\hline
\end{align*}
\]

\[
\begin{align*}
e & \rightarrow e' \\
\hline
s & \rightarrow^* s \\
\end{align*}
\]
Church–Rosser Theorem

Reduction is **confluent**

If $e \xrightarrow{*} e_1$ and $e \xrightarrow{*} e_2$, then

$\exists e'$ such that $e_1 \xrightarrow{*} e'$ and $e_2 \xrightarrow{*} e'$

Corollary: any expression has **at most one normal form**

- if it exists, we can still reach it after any sequence of reductions
- … but if we pick badly, we might never get there!

Example: $(\lambda x. y) ((\lambda x. x x) (\lambda x. x x))$
Reduction strategies

Redex positions

leftmost redex: the redex with the leftmost λ

outermost redex: any redex that is not part of another redex

innermost redex: any redex that does not contain another redex

Label redexes

\[
(\lambda x. \\
(\lambda y. x) z \\
((\lambda y. y) z)) \\
(\lambda y. z)
\]

Reduction strategies

normal order reduction: reduce the leftmost redex

applicative order reduction: reduce the leftmost of the innermost redexes

Compare reductions: \[(\lambda x. y) ((\lambda x. x x) (\lambda x. x x))\]
Exercises

Write **two reduction sequences** for each of the following expressions

• one corresponding to a normal order reduction
• one corresponding to an applicative order reduction

1. \((\lambda x. x x) \ (\lambda x. y. x) \ z \ (\lambda x. x))\)

2. \((\lambda x. y z. x z) \ (\lambda z. z) \ ((\lambda y. y) \ (\lambda z. z)) \ x\)
Comparison of reduction strategies

Theorem
If a normal form exists, normal order reduction will find it!

Applicative order: reduces arguments first
- evaluates every argument exactly once, even if it’s not needed
- corresponds to “call by value” parameter passing scheme

Normal order: copies arguments first
- doesn’t evaluate unused arguments, but may re-evaluate each one many times
- guaranteed to reduce to normal form, if possible
- corresponds to “call by name” parameter passing scheme
Brief notes on lazy evaluation

Lazy evaluation: reduces arguments only if used, but at most once
- essentially, an efficient implementation of normal order reduction
- only evaluates to “weak head normal form”
- corresponds to “call by need” parameter passing scheme

Expression e is in weak head normal form if:
- e is a variable or lambda abstraction
- e is an application with a variable in the left position
... in other words, e does not start with a redex
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Church Booleans

Data and operations are encoded as **functions** in the lambda calculus.

For Booleans, need lambda calculus terms for *true*, *false*, and *if*, where:

- \(\text{if true } e_1 \ e_2 \mapsto^* \ e_1 \)
- \(\text{if false } e_1 \ e_2 \mapsto^* \ e_2 \)

Church Booleans

- \(\text{true} = \lambda x \ y. \ x \)
- \(\text{false} = \lambda x \ y. \ y \)
- \(\text{if} = \lambda \ b \ t \ e. \ b \ t \ e \)

More Boolean operations

- \(\text{and} = \lambda p \ q. \ \text{if } p \ p \ p \)
- \(\text{or} = \lambda p \ q. \ \text{if } p \ p \ q \)
- \(\text{not} = \lambda p. \ \text{if } p \ \text{false} \ \text{true} \)
A natural number n is encoded as a function that applies f to x n times.

Church numerals

<table>
<thead>
<tr>
<th>Value</th>
<th>Church numeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>zero</td>
<td>$\lambda f \ x \ . \ x$</td>
</tr>
<tr>
<td>one</td>
<td>$\lambda f \ x \ . \ f \ x$</td>
</tr>
<tr>
<td>two</td>
<td>$\lambda f \ x \ . \ f \ (f \ x)$</td>
</tr>
<tr>
<td>three</td>
<td>$\lambda f \ x \ . \ f \ (f \ (f \ x))$</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>$\lambda f \ x \ . \ f^n \ x$</td>
</tr>
</tbody>
</table>

Operations on Church numerals

- **succ** = $\lambda n \ f \ x \ . \ f \ (n \ f \ x)$
- **add** = $\lambda n \ m \ f \ x \ . \ n \ f \ (m \ f \ x)$
- **mult** = $\lambda n \ m \ f \ . \ n \ (m \ f)$
- **isZero** = $\lambda n \ . \ n \ (\lambda x \ . \ false) \ true$
Encoding values of more complicated data types

At a minimum, need **functions** that encode how to:

- **construct** new values of the data type
- **destruct and use** values of the data type in a general way

Can encode values of many data types as **sums** of **products**

- corresponds to **Either** and **tuples** in Haskell

```haskell
data Val = A Nat | B Bool | C Nat Bool
≡
type Val' = Either Nat (Either Bool (Nat,Bool))
```
data Val = A Nat | B Bool | C Nat Bool
≡
type Val' = Either Nat (Either Bool (Nat, Bool))

Encode the following values of type \textsf{Val} as values of type \textsf{Val'}

- A 2
- B True
- C 3 False
Products (a.k.a. tuples)

A tuple is defined by:
- a tupling function (constructor)
- a set of selecting functions (destructors)

Church pairs

\[
\begin{align*}
\text{pair} & = \lambda x y s. s x y \\
\text{fst} & = \lambda t. t (\lambda x y. x) \\
\text{snd} & = \lambda t. t (\lambda x y. y)
\end{align*}
\]

Church triples

\[
\begin{align*}
\text{tuple}_3 & = \lambda x y z s. s x y z \\
\text{sel}_{1/3} & = \lambda t. t (\lambda x y z. x) \\
\text{sel}_{2/3} & = \lambda t. t (\lambda x y z. y) \\
\text{sel}_{3/3} & = \lambda t. t (\lambda x y z. z)
\end{align*}
\]
A tagged union is defined by:

- a case function: a tuple of functions (destructor)
- a set of tags that select the correct function and apply it (constructors)

Church either

\[
\text{either} = \lambda f\ g\ u.\ u\ f\ g \\
\text{in}_L = \lambda x\ f\ g.\ f\ x \\
\text{in}_R = \lambda y\ f\ g.\ g\ y
\]

Church union

\[
\text{case}_3 = \lambda f\ g\ h\ u.\ u\ f\ g\ h \\
\text{in}_{1/3} = \lambda x\ f\ g\ h.\ f\ x \\
\text{in}_{2/3} = \lambda y\ f\ g\ h.\ g\ y \\
\text{in}_{3/3} = \lambda z\ f\ g\ h.\ h\ z
\]
Exercise

```haskell
data Val = A Nat | B Bool | C Nat Bool

foo :: Val -> Nat
foo (A n) = n
foo (B b) = if b then 0 else 1
foo (C n b) = if b then 0 else n
```

1. Encode the following values of type `Val` as lambda calculus terms
 - A 2
 - B True
 - C 3 False

2. Encode the function `foo` in lambda calculus
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
Observation: can use abstractions to define names

```ml
let succ = \n -> n+1
in ... succ 3 ... succ 7 ...
```

⇒

```ml
(\succ.
 ... succ 3 ... succ 7 ...
 ) (\n f x. f (n f x))
```

But this pattern doesn’t work for **recursive** functions!

```ml
let fac = \n ->
 ... n * fac (n-1)
in ... fac 5 ... fac 8 ...
```

⇒

```ml
(\fac.
 ... fac 5 ... fac 8 ...
 ) (\n f x. . . . mult n (??? (pred n)))
```
Recursion via fixpoints

Solution: Fixpoint function

\[Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x)) \]

\[Y \, g \]

\[\rightarrow (\lambda x. g (x x)) (\lambda x. g (x x)) \]
\[\rightarrow g ((\lambda x. g (x x)) (\lambda x. g (x x))) \]
\[\rightarrow g (g ((\lambda x. g (x x)) (\lambda x. g (x x)))) \]
\[\rightarrow g (g (g ((\lambda x. g (x x)) (\lambda x. g (x x))))) \]
\[\rightarrow \ldots \]

Example recursive function (factorial)

\[Y \, (\lambda \text{fac} \, n. \, \text{if} \, \text{isZero} \, n \, \text{one} \, (\text{mult} \, n \, (\text{fac} \, (\text{pred} \, n)))) \]
Outline

Introduction and history

Definition of lambda calculus
 Syntax and operational semantics
 Minutia of β-reduction
 Reduction strategies

Programming with lambda calculus
 Church encodings
 Recursion

De Bruijn indices
The role of names in lambda calculus

Variable names are a convenience for readability (mnemonics)
...but they’re annoying in implementations and proofs

Annoyances related to names

- safe substitution is complicated, requires generating fresh names
- checking and maintaining α-equivalence is complicated and expensive

Recall: α-equivalence

Expressions are the same up to variable renaming
- $\lambda x. x \equiv \lambda y. y \equiv \lambda z. z$
- $\lambda x y. x \equiv \lambda y x. y$
A nameless representation of lambda calculus

Basic idea: de Bruijn indices

• an abstraction implicitly declares its input (no variable name)
• a variable reference is a number \(n \), called a de Bruijn index, that refers to the \(n \)th abstraction up the AST

Nameless lambda calculus

\[
\begin{align*}
n &\in \text{Nat} \quad ::= \quad \text{(any natural number)} \\
e &\in \text{Exp} \quad ::= \quad e
 &\quad e \quad \text{application} \\
 &\quad \lambda e \quad \text{lambda abstraction} \\
 &\quad n \quad \text{de Bruijn index}
\end{align*}
\]

Named \(\rightsquigarrow \) nameless

\[
\begin{align*}
\lambda x. \, x &\rightsquigarrow \lambda \, \theta \\
\lambda x \, y. \, x &\rightsquigarrow \lambda \lambda \, 1 \\
\lambda x \, y. \, y &\rightsquigarrow \lambda \lambda \, \theta \\
\lambda x. \, (\lambda y. \, y) \, x &\rightsquigarrow \lambda \, (\lambda \theta) \, \theta
\end{align*}
\]

Main advantage: \(\alpha \)-equivalence is just syntactic equality!
Deciphering de Bruijn indices

De Bruijn index: the number of λs you have to *skip* when moving up the AST

Gotchas:
- the same variable will be a different number in different contexts
- scopes work the same as before; references respect the AST
 - e.g. the blue θ refers to the blue λ since it is not in scope of the green λ, and the green λ does not count as a *skip*
Free variable in e: a de Bruijn index that skips over all of the λs in e

- the same free variables will have the same number of λs left to skip