
Denotational Semantics
and

Domain Theory

1 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Denotational Semantics 2 / 52

How to define the meaning of a program?

Formal specifications
• operational semantics: defines how to evaluate a term
• denotational semantics: relates terms to (mathematical) values
• axiomatic semantics: defines the effects of evaluating a term
• . . .

Informal/non-specifications
• reference implementation: execute/compile program in some implementation
• community/designer intuition: how people think a program should behave

Denotational Semantics 3 / 52

Denotational semantics

A denotational semantics relates each term to a denotation

an abstract syntax tree a value in some
semantic domain

Valuation function
J · K : abstract syntax → semantic domain

Valuation function in Haskell
eval :: Term -> Value

Denotational Semantics 4 / 52

Semantic domains

Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? — it depends on the language!

Example semantic domains
Language Meaning
Boolean expressions Boolean value
Arithmetic expressions Integer
Imperative language State transformation
SQL query Set of relations
ActionScript Animation
MIDI Sound waves

Denotational Semantics 5 / 52

Defining a language with denotational semantics

Example encoding in Haskell:

1. Define the abstract syntax, T data Term = ...
the set of abstract syntax trees

2. Identify or define the semantic domain, V type Value = ...
the representation of semantic values

3. Define the valuation function, J·K : T → V sem :: Term -> Value
the mapping from ASTs to semantic values
a.k.a. the “semantic function”

Denotational Semantics 6 / 52

Example: simple arithmetic expressions

1. Define abstract syntax

n ∈ Nat ::= 0 | 1 | 2 | . . .
e ∈ Exp ::= add e e

| mul e e
| neg e
| n

2. Define semantic domain
Use the set of all integers, Int

Comes with some operations:
+, ×, −, toInt : Nat→ Int, . . .

3. Define the valuation function

JExp K : Int

Jadd e1 e2K = Je1K + Je2K

Jmul e1 e2K = Je1K × Je2K

Jneg eK = −JeK

JnK = toInt(n)

Denotational Semantics 7 / 52

Encoding denotational semantics in Haskell

1. abstract syntax: define a new data type, as usual
2. semantic domain: identify and/or define a new type, as needed
3. valuation function: define a function from ASTs to semantic domain

Valuation function in Haskell
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n

Denotational Semantics 8 / 52

Desirable properties of a denotational semantics

Compositionality: a program’s denotation is built from the denotations of its parts
• supports modular reasoning, extensibility
• supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program
• if not, language has expressiveness gaps, or semantic domain is too general
• ensures that semantic domain and language align

Soundness: two programs are “equivalent” iff they have the same denotation
• equivalence: same w.r.t. to some other definition
• ensures that the denotational semantics is correct

Denotational Semantics 9 / 52

More on compositionality

Compositionality: a program’s denotation is built from the denotations of its parts

an AST sub-ASTs

Example: What is the meaning of op e1 e2 e3?
1. Determine the meaning of e1, e2, e3
2. Combine these submeanings in some way specific to op

Implications:
• The valuation function is probably recursive
• Often need different valuation functions for each syntactic category

Denotational Semantics 10 / 52

Example: move language

A language describing movements on a 2D plane
• a step is an n-unit horizontal or vertical movement
• a move is described by a sequence of steps

Abstract syntax

n ∈ Nat ::= 0 | 1 | 2 | . . .
d ∈ Dir ::= N | S | E | W
s ∈ Step ::= go d n

m ∈ Move ::= ε | s ; m

go N 3; go E 4; go S 1;

Denotational Semantics 11 / 52

Semantics of move language

1. Abstract syntax

n ∈ Nat ::= 0 | 1 | 2 | . . .
d ∈ Dir ::= N | S | E | W
s ∈ Step ::= go d n

m ∈ Move ::= ε | s ; m

2. Semantic domain
Pos = Int × Int
Domain: Pos→ Pos

3. Valuation function (Step)
SJ Step K : Pos→ Pos
SJgo N kK = λ(x, y). (x, y + k)
SJgo S kK = λ(x, y). (x, y − k)
SJgo E kK = λ(x, y). (x + k, y)
SJgo W kK = λ(x, y). (x − k, y)

3. Valuation function (Move)
MJMove K : Pos→ Pos

MJεK = λp. p
MJs ; mK = MJmK ◦ SJsK

Denotational Semantics 12 / 52

Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema
One declarative spec, used to:
• initialize the database
• generate APIs
• validate queries
• normalize layout
• . . .

Distance traveled
SDJ Step K : Int
SDJgo d kK = k

MDJMove K : Int
MDJεK = 0

MDJs ; mK = SDJsK +MDJmK

Combined trip information
MCJMove K : Int × (Pos→ Pos)

MCJmK = (MDJmK,MJmK)

Denotational Semantics 13 / 52

Picking the right semantic domain

Simple semantic domains can be combined in two ways:

• product: contains a value from both domains
• e.g. combined trip information for move language
• use Haskell (a,b) or define a new data type

• sum: contains a value from one domain or the other
• e.g. IntBool language can evaluate to Int or Bool
• use Haskell Either a b or define a new data type

Can errors occur?
• use Haskell Maybe a or define a new data type

Does the language manipulate state or use naming?
• use a function type

Denotational Semantics 14 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Basic Domain Theory 15 / 52

What is domain theory?

Domain theory: a mathematical framework for constructing semantic domains

Recall . . .
A denotational semantics relates each term to a denotation

an abstract syntax tree a value in some
semantic domain

Semantic domain: captures the set of possible meanings of a program/term

Basic Domain Theory 16 / 52

Historical notes

Origins of domain theory:
• Christopher Strachey, 1964

• early work on denotational semantics
• used lambda calculus for denotations

• Dana Scott, 1975
• goal: denotational semantics for lambda calculus itself
• created domain theory for meaning of recursive functions

More on Dana Scott:
• Turing award in 1976 for nondeterminism in automata theory
• PhD advisor: Alonzo Church, 20 years after Alan Turing

Basic Domain Theory 17 / 52

Dana Scott

Two views of denotational semantics

View #1 (Strachey): Translation from one formal system to another
• e.g. translate object language into lambda calculus

View #2 (Scott): “True meaning” of a program as a mathematical object
• e.g. map programs to elements of a semantic domain
• need domain theory to describe set of meanings

Basic Domain Theory 18 / 52

Domains as semantic algebras

A semantic domain can be viewed as an algebraic structure
• a set of values the meanings of the programs
• a set of operations on the values used to compose meanings of parts

Domains also have internal structure: complete partial ordering (later)

Basic Domain Theory 19 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Basic Domain Theory 20 / 52

Primitive domains

Values are atomic
• often correspond to built-in types in Haskell
• nullary operations for naming values explicitly

Domain: Bool

true : Bool
false : Bool
not : Bool→ Bool
and : Bool× Bool→ Bool
or : Bool× Bool→ Bool

Domain: Int

0, 1, 2, . . . : Int
negate : Int→ Int
plus : Int × Int→ Int
times : Int × Int→ Int

Domain: Unit

() : Unit

Also: Nat, Name, Addr, . . .

Basic Domain Theory 21 / 52

Lifted domains

Construction: add ⊥ (bottom) to an existing domain

A⊥ = A ∪ {⊥}

New operations

⊥ : A⊥
map : (A→ B)× A⊥ → B⊥

maybe : B× (A→ B)× A⊥ → B

Basic Domain Theory 22 / 52

Encoding lifted domains in Haskell

Option #1: Maybe
data Maybe a = Nothing

| Just a

fmap :: (a -> b) -> Maybe a -> Maybe b
maybe :: b -> (a -> b) -> Maybe a -> b

Can also use pattern matching!

Option #2: new data type with nullary constructor
data Value = Success Int | Error

Best when combined with other constructions

Basic Domain Theory 23 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Basic Domain Theory 24 / 52

Sum domains

Construction: the disjoint union of two existing domains
• contains a value from either one domain or the other

A⊕ B = A] B

New operations

inL : A→ A⊕ B
inR : B→ A⊕ B
case : (A→ C)× (B→ C)× (A⊕ B)→ C

Basic Domain Theory 25 / 52

Encoding sum domains in Haskell

Option #1: Either
data Either a b = Left a

| Right b

either :: (a -> c) -> (b -> c) -> Either a b -> c

Can also use pattern matching!

Option #2: new data type with multiple constructors
data Value = I Int | B Bool

Best when combined with other constructions,
or more than two options

Basic Domain Theory 26 / 52

Example: a language with multiple types

b ∈ Bool ::= true | false
n ∈ Nat ::= 0 | 1 | 2 | . . .
e ∈ Exp ::= add e e

| neg e
| equal e e
| cond e e e
| n
| b

Design a denotational semantics for Exp

1. How should we define our semantic domain?
2. Define a valuation semantics function

• neg – negates either a numeric or boolean value
• equal – compares two values of the same type for equality
• cond – equivalent to if–then–else

Basic Domain Theory 27 / 52

Solution
JExp K : (Int ⊕ Bool)⊥

Jadd e1 e2K =

{
Je1K + Je2K Je1K ∈ Int, Je2K ∈ Int
⊥ otherwise

Jneg eK =

 −JeK JeK ∈ Int
¬JeK JeK ∈ Bool
⊥ otherwise

Jequal e1 e2K =

 Je1K =Int Je2K Je1K ∈ Int, Je2K ∈ Int
Je1K =Bool Je2K Je1K ∈ Bool, Je2K ∈ Bool
⊥ otherwise

Jcond e1 e2 e3K =

 Je2K Je1K = true
Je3K Je1K = false
⊥ otherwise

JnK = n

JbK = b

Basic Domain Theory 28 / 52

Product domains

Construction: the cartesian product of two existing domains
• contains a value from both domains

A⊗ B = {(a, b) | a ∈ A, b ∈ B}

New operations

pair : A× B→ A⊗ B
fst : A⊗ B→ A
snd : A⊗ B→ B

Basic Domain Theory 29 / 52

Encoding product domains in Haskell

Option #1: Tuples
type Value a b = (a,b)

fst :: (a,b) -> a
snd :: (a,b) -> b

Can also use pattern matching!

Option #2: new data type with multiple arguments
data Value = V Int Bool

Best when combined with other constructions,
or more than two

Basic Domain Theory 30 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Basic Domain Theory 31 / 52

Function space domains

Construction: the set of functions from one domain to another

A→ B

Create a function: A→ B
Lambda notation: λx. y

where Γ, x : A ` y : B

Eliminate a function

apply : (A→ B)× A→ B

Basic Domain Theory 32 / 52

Denotational semantics of naming

Environment: a function associating names with things

Env = Name→ Thing

Naming concepts
declaration add a new name to the environment
binding set the thing associated with a name
reference get the thing associated with a name

Example semantic domains for expressions with . . .
immutable variables (Haskell) Env→ Val
mutable variables (C/Java/Python) Env→ Env⊗ Val

Basic Domain Theory 33 / 52

Example: Denotational semantics of let language

1. Abstract syntax

i ∈ Int ::= (any integer)
v ∈ Var ::= (any variable name)
e ∈ Exp ::= i

| add e e
| let v e e
| v

2. Identify semantic domain
i. Result of evaluation: Int⊥
ii. Environment: Env = Var → Int⊥
iii. Semantic domain: Env→ Int⊥

3. Define a valuation function

JExp K : (Var → Int⊥)→ Int⊥

JiK = λm. i
Jadd e1 e2K = λm. Je1K(m) +⊥ Je2K(m)

Jlet v e1 e2K = λm. Je2K(λw. if w = v
then Je1K(m)

else m(w))

JvK = λm.m(v)

i+⊥ j =

{
i+ j i ∈ Int, j ∈ Int
⊥ otherwise

Basic Domain Theory 34 / 52

What is mutable state?

Mutable state: stored information that a program can read and write

Typical semantic domains with state domain S:

S → S state mutation as main effect

S → S ⊗ Val state mutation as side effect

Often: lifted codomain if mutation can fail

Examples
• the memory cell in a calculator S = Int
• the stack in a stack language S = Stack
• the store in many programming languages S = Name→ Val

Basic Domain Theory 35 / 52

Example: Single register calculator language

1. Abstract syntax

i ∈ Int ::= (any integer)
e ∈ Exp ::= i

| e + e
| save e
| load

Examples:
• save (3+2) + load
 10

• save 1 +
(save 10 + load) + load
 31

2. Identify semantic domain
i. State (side effect): Int
ii. Result: Int
iii. Semantic domain: Int→ Int ⊗ Int

Basic Domain Theory 36 / 52

Example: Single register calculator language

1. Abstract syntax

i ∈ Int ::= (any integer)
e ∈ Exp ::= i

| e + e
| save e
| load

Examples:
• save (3+2) + load
 10

• save 1 +
(save 10 + load) + load
 31

3. Define valuation function

JExp K : Int→ Int ⊗ Int

JiK = λs. (s, i)
Je1 + e2K = λs. let (s1, i1) = Je1K(s)

(s2, i2) = Je2K(s1)
in (s2, i1 + i2)

Jsave eK = λs. let (s′, i) = JeK(s) in (i, i)
Jload eK = λs. (s, s)

Basic Domain Theory 37 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Meaning of Recursive Definitions 38 / 52

Compositionality and well-definedness

Recall: a denotational semantics must be compositional
• a term’s denotation is built from the denotations of its parts

Example: integer expressions

i ∈ Int ::= (any integer)
e ∈ Exp ::= i | add e e | mul e e

JExp K : Int
JiK = i

Jadd e1 e2K = Je1K + Je2K
Jmul e1 e2K = Je1K × Je2K

Compositionality ensures the semantics
is well-defined by structural induction

Each AST has exactly one meaning

Meaning of Recursive Definitions 39 / 52

A non-compositional (and ill-defined) semantics

Anti-example: while statement

t ∈ Test ::= . . .
s ∈ Stmt ::= . . . | while t s

TJTest K : State→ Bool

SJ Stmt K : State→ State
SJwhile t bK = λs. if TJtK(s) then

SJwhile t bK(SJbK(s))
else s

Meaning of while t b in state s:
1. evaluate t in state s
2. if true:

a. run b to get updated state s′
b. re-evaluate while in state s′
(not compositional)

3. otherwise return s unchanged

Translational view:
meaning is an infinite expression!

Mathematical view:
may have infinitely many meanings!

Meaning of Recursive Definitions 40 / 52

Extensional vs. operational definitions of a function

Mathematical function
Defined extensionally:
• a relation between inputs and outputs

Computational function (e.g. Haskell)
Usually defined operationally:
• compute output by sequence of reductions

Example (intensional specification)

fac(n) =

{
1 n = 0
n · fac(n− 1) otherwise

Extensional meaning
{. . . , (2, 2), (3, 6), (4, 24), . . .}

Operational meaning

fac(3) 3 · fac(2)

 3 · 2 · fac(1)

 3 · 2 · 1 · fac(0)

 3 · 2 · 1 · 1
 6

Meaning of Recursive Definitions 41 / 52

Extensional meaning of recursive functions

grow(n) =

{
1 n = 0
grow(n+ 1)− 2 otherwise

Best extension (use ⊥ if undefined):
• {(0, 1), (1,⊥), (2,⊥), (3,⊥), (4,⊥), . . .}

Other valid extensions:
• {(0, 1), (1, 2), (2, 4), (3, 6), (4, 8) . . .}
• {(0, 1), (1, 5), (2, 7), (3, 9), (4, 11) . . .}
• . . .

Goal: best extension = only extension

Meaning of Recursive Definitions 42 / 52

Connection back to denotational semantics

A function space domain is a set of mathematical functions

Anti-example: while statement

t ∈ Test ::= . . .
s ∈ Stmt ::= . . . | while t s

TJTest K : State→ Bool

SJ Stmt K : State→ State
SJwhile t bK = λs. if TJtK(s) then

SJwhile t bK(SJbK(s))
else s

Ideal semantics of Stmt:
• domain: State→ State⊥
• contains (s, s′) if c terminates
• contains (s,⊥) if c diverges

Meaning of Recursive Definitions 43 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Meaning of Recursive Definitions 44 / 52

Least fixed points

Basic idea:

1. a recursive function defines a set of non-recursive, finite subfunctions

2. its meaning is the “union” of the meanings of its subfunctions

Iteratively grow the extension until we reach a fixed point
• essentially encodes computational functions as mathematical functions

Meaning of Recursive Definitions 45 / 52

Example: unfolding a recursive definition

Recursive definition

fac(n) =

{
1 n = 0
n · fac(n− 1) otherwise

Non-recursive, finite subfunctions

fac0(n) = ⊥

fac1(n) =

{
1 n = 0
n · fac0(n− 1) otherwise

fac2(n) =

{
1 n = 0
n · fac1(n− 1) otherwise

. . .

fac0 = {}
fac1 = {(0, 1)}
fac2 = {(0, 1), (1, 1)}
fac3 = {(0, 1), (1, 1), (2, 2)}
. . .

fac =

∞⋃
i=0

faci

Fine print:

• each faci maps all other values to ⊥
• ∪ operation prefers non-⊥ mappings

Meaning of Recursive Definitions 46 / 52

Computing the fixed point

In general

fac0(n) = ⊥

faci(n) =

{
1 n = 0
n · faci−1(n− 1) otherwise

A template to represent all faci functions:

F = λf .λn.
{
1 n = 0
n · f (n− 1) otherwise

takes faci−1 as input

Fixpoint operator
fix : (A→ A)→ A
fix(g) = let x = g(x) in x

fix(h) = h(h(h(h(h(. . .)))))

Factorial as a fixed point
fac = fix(F)

Meaning of Recursive Definitions 47 / 52

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Meaning of Recursive Definitions 48 / 52

Why domains are not flat sets

Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:
• each faci maps all other values to ⊥
• ∪ operation prefers non-⊥ mappings

How can we generalize and formalize this idea?

Meaning of Recursive Definitions 49 / 52

Partial orderings and joins

Partial ordering: v : D× D→ B
• reflexive: ∀x ∈ D. x v x
• antisymmetric: ∀x, y ∈ D. x v y ∧ y v x =⇒ x = y
• transitive: ∀x, y, z ∈ D. x v y ∧ y v z =⇒ x v z

Join: t : D× D→ D
∀a, b ∈ D, the element c = a t b ∈ D, if it exists,
is the smallest element that is larger than both a and b

i.e. a v c and b v c, and there is no d = a t b ∈ D where d v c

Meaning of Recursive Definitions 50 / 52

(Scott) domains are directed-complete partial orderings

The v relation captures the idea of relative “definedness”

A domain is a directed-complete partial ordered (dcpo) set
• finite approximations converge on their unique least fixed point
(which might contain ⊥s)

The meaning of a (Scott-continuous) recursive function f is:
∞⊔
i=0

fi
where fi are the finite approximations of f

Meaning of Recursive Definitions 51 / 52

Well-defined semantics for the while statement

Syntax

t ∈ Test ::= . . .
s ∈ Stmt ::= . . . | while t s

Semantics

TJTest K : State→ Bool

SJ Stmt K : State→ State
SJwhile t bK = fix(λf .λs. if TJtK(s) then f (SJbK(s)) else s)

Meaning of Recursive Definitions 52 / 52

	Denotational Semantics
	Basic Domain Theory
	Introduction and history
	Primitive and lifted domains
	Sum and product domains
	Function domains

	Meaning of Recursive Definitions
	Compositionality and well-definedness
	Least fixed-point construction
	Internal structure of domains

