Denotational Semantics

and
Domain Theory

Outline

Denotational Semantics

```
Basic Domain Theory
    Introduction and history
    Primitive and lifted domains
    Sum and product domains
    Function domains
Meaning of Recursive Definitions
    Compositionality and well-definedness
    Least fixed-point construction
    Internal structure of domains
```


How to define the meaning of a program?

Formal specifications

- operational semantics: defines how to evaluate a term
- denotational semantics: relates terms to (mathematical) values
- axiomatic semantics: defines the effects of evaluating a term
- ...

Informal/non-specifications

- reference implementation: execute/compile program in some implementation
- community/designer intuition: how people think a program should behave

Denotational semantics

A denotational semantics relates each term to a denotation

a value in some semantic domain

Valuation function

$\llbracket \cdot \rrbracket: ~ a b s t r a c t ~ s y n t a x ~ \rightarrow ~ s e m a n t i c ~ d o m a i n ~$

```
Valuation function in Haskell
eval :: Term -> Value
```


Semantic domains

Semantic domain: captures the set of possible meanings of a program/term what is a meaning? - it depends on the language!

Example semantic domains	
Language	Meaning
Boolean expressions	Boolean value
Arithmetic expressions	Integer
Imperative language	State transformation
SQL query	Set of relations
ActionScript	Animation
MIDI	Sound waves

Defining a language with denotational semantics

Example encoding in Haskell:

1. Define the abstract syntax, T the set of abstract syntax trees
2. Identify or define the semantic domain, V the representation of semantic values
3. Define the valuation function, $\llbracket \cdot \rrbracket: T \rightarrow V$ the mapping from ASTs to semantic values a.k.a. the "semantic function"
data Term = ...
type Value = ...
sem :: Term -> Value

Example: simple arithmetic expressions

1. Define abstract syntax	
$\begin{aligned} & n \in N a t \\ & e \in E x p \end{aligned}$	$\begin{aligned} & ::=0\|\mathbf{1}\| \mathbf{2} \mid \ldots \\ & ::=\text { add } e e \\ & \quad \operatorname{mul} e e \\ & \quad n e g e \\ & \quad n \end{aligned}$

2. Define semantic domain Use the set of all integers, Int

Comes with some operations:

$$
+, \times,-, \text { toInt }: \text { Nat } \rightarrow \text { Int }, \ldots
$$

3. Define the valuation function

$$
\llbracket E x p \rrbracket: I n t
$$

$$
\llbracket \text { add } e_{1} e_{2} \rrbracket=\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket
$$

$$
\llbracket m u l e_{1} e_{2} \rrbracket=\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
$$

$$
\llbracket \text { neg } e \rrbracket=-\llbracket e \rrbracket
$$

$$
\llbracket n \rrbracket=\operatorname{toInt}(n)
$$

Encoding denotational semantics in Haskell

1. abstract syntax: define a new data type, as usual
2. semantic domain: identify and/or define a new type, as needed
3. valuation function: define a function from ASTs to semantic domain
```
Valuation function in Haskell
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n
```


Desirable properties of a denotational semantics

Compositionality: a program's denotation is built from the denotations of its parts

- supports modular reasoning, extensibility
- supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program

- if not, language has expressiveness gaps, or semantic domain is too general
- ensures that semantic domain and language align

Soundness: two programs are "equivalent" iff they have the same denotation

- equivalence: same w.r.t. to some other definition
- ensures that the denotational semantics is correct

More on compositionality

Compositionality: a program's denotation is built from the denotations of its parts

Example: What is the meaning of op $e_{1} e_{2} e_{3}$?

1. Determine the meaning of e_{1}, e_{2}, e_{3}
2. Combine these submeanings in some way specific to op

Implications:

- The valuation function is probably recursive
- Often need different valuation functions for each syntactic category

Example: move language

A language describing movements on a 2D plane

- a step is an n-unit horizontal or vertical movement
- a move is described by a sequence of steps

Abstract syntax

```
go N 3; go E 4; go S 1;
```


Semantics of move language

1. Abstract syntax

$$
\begin{aligned}
n \in \text { Nat } & ::=\mathbf{0}|\mathbf{1}| \mathbf{2} \mid \ldots \\
d \in \text { Dir } & ::=\mathbf{N}|\mathbf{S}| \mathbf{E} \mid \mathbf{W} \\
s \in \text { Step } & ::=\mathbf{g o d} d \\
m \in \text { Move } & ::=\epsilon \mid s ; m
\end{aligned}
$$

2. Semantic domain

Pos $=$ Int \times Int
Domain: Pos \rightarrow Pos
3. Valuation function (Step)

$$
\begin{aligned}
S \llbracket \text { Step } \rrbracket & : P o s \rightarrow P o s \\
S \llbracket \text { go } N k \rrbracket & =\lambda(x, y) .(x, y+k) \\
S \llbracket \text { go S } k \rrbracket & =\lambda(x, y) .(x, y-k) \\
S \llbracket \text { go E } k \rrbracket & =\lambda(x, y) .(x+k, y) \\
S \llbracket \text { go W } k \rrbracket & =\lambda(x, y) .(x-k, y)
\end{aligned}
$$

3. Valuation function (Move)

$$
\begin{aligned}
M \llbracket \text { Move } \rrbracket & : P o s \rightarrow \text { Pos } \\
M \llbracket \epsilon \rrbracket & =\lambda p \cdot p \\
M \llbracket s ; m \rrbracket & =M \llbracket m \rrbracket \circ S \llbracket s \rrbracket
\end{aligned}
$$

Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema

One declarative spec, used to:

- initialize the database
- generate APIs
- validate queries
- normalize layout
- ...

$$
\begin{aligned}
& \text { Distance traveled } \\
& S_{D} \llbracket \text { Step } \rrbracket: \text { Int } \\
& S_{D} \llbracket \mathbf{g o d} d \rrbracket \rrbracket=k \\
& M_{D} \llbracket \text { Move } \rrbracket: \text { Int } \\
& M_{D} \llbracket \epsilon \rrbracket=0 \\
& M_{D} \llbracket s ; m \rrbracket=S_{D} \llbracket s \rrbracket+M_{D} \llbracket m \rrbracket
\end{aligned}
$$

Combined trip information

$$
\begin{gathered}
M_{C} \llbracket M o v e \rrbracket: ~ I n t \times(P o s \rightarrow P o s) \\
M_{C} \llbracket m \rrbracket=\left(M_{D} \llbracket m \rrbracket, M \llbracket m \rrbracket\right)
\end{gathered}
$$

Picking the right semantic domain

Simple semantic domains can be combined in two ways:

- product: contains a value from both domains
- e.g. combined trip information for move language
- use Haskell (\mathbf{a}, \mathbf{b}) or define a new data type
- sum: contains a value from one domain or the other
- e.g. IntBool language can evaluate to Int or Bool
- use Haskell Either a b or define a new data type

Can errors occur?

- use Haskell Maybe a or define a new data type

Does the language manipulate state or use naming?

- use a function type

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

What is domain theory?

Domain theory: a mathematical framework for constructing semantic domains

Recall ...

A denotational semantics relates each term to a denotation
 semantic domain

Semantic domain: captures the set of possible meanings of a program/term

Historical notes

Origins of domain theory:

- Christopher Strachey, 1964
- early work on denotational semantics
- used lambda calculus for denotations
- Dana Scott, 1975
- goal: denotational semantics for lambda calculus itself
- created domain theory for meaning of recursive functions

Dana Scott

More on Dana Scott:

- Turing award in 1976 for nondeterminism in automata theory
- PhD advisor: Alonzo Church, 20 years after Alan Turing

Two views of denotational semantics

View \#1 (Strachey): Translation from one formal system to another

- e.g. translate object language into lambda calculus

View \#2 (Scott): "True meaning" of a program as a mathematical object

- e.g. map programs to elements of a semantic domain
- need domain theory to describe set of meanings

Domains as semantic algebras

A semantic domain can be viewed as an algebraic structure

- a set of values the meanings of the programs
- a set of operations on the values used to compose meanings of parts

Domains also have internal structure: complete partial ordering (later)

Outline

Denotational Semantics
Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Primitive domains

Values are atomic

- often correspond to built-in types in Haskell
- nullary operations for naming values explicitly

Domain: Bool
true: Bool
false : Bool
not : Bool \rightarrow Bool
and: Bool \times Bool \rightarrow Bool
or : Bool \times Bool \rightarrow Bool

Domain: Int

$$
\begin{aligned}
& 0,1,2, \ldots: \text { Int } \\
& \text { negate }: \text { Int } \rightarrow \text { Int } \\
& \quad \text { plus }: \text { Int } \times \text { Int } \rightarrow \text { Int } \\
& \text { times }: \text { Int } \times \text { Int } \rightarrow \text { Int }
\end{aligned}
$$

Also: Nat, Name, Addr, ...

Lifted domains

Construction: add \perp (bottom) to an existing domain

$$
A_{\perp}=A \cup\{\perp\}
$$

New operations

$$
\begin{aligned}
\perp & : A_{\perp} \\
\text { map } & :(A \rightarrow B) \times A_{\perp} \rightarrow B_{\perp} \\
\text { maybe } & : B \times(A \rightarrow B) \times A_{\perp} \rightarrow B
\end{aligned}
$$

Encoding lifted domains in Haskell

```
Option #1: Maybe
data Maybe a = Nothing
    | Just a
fmap :: (a -> b) -> Maybe a -> Maybe b
maybe :: b -> (a -> b) -> Maybe a -> b
```

Can also use pattern matching!

Option \#2: new data type with nullary constructor data Value = Success Int | Error

Best when combined with other constructions

Outline

Denotational Semantics
Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Sum domains

Construction: the disjoint union of two existing domains

- contains a value from either one domain or the other

$$
A \oplus B=A \uplus B
$$

```
New operations
    \(\operatorname{inL}: A \rightarrow A \oplus B\)
    inR : \(B \rightarrow A \oplus B\)
    case : \((A \rightarrow C) \times(B \rightarrow C) \times(A \oplus B) \rightarrow C\)
```


Encoding sum domains in Haskell

```
Option #1: Either
data Either a b = Left a
    | Right b
either :: (a -> c) -> (b -> c) -> Either a b -> c
```

Can also use pattern matching!

Option \#2: new data type with multiple constructors data Value = I Int | B Bool

Best when combined with other constructions, or more than two options

Example: a language with multiple types

$b \in$ Bool	$::=$ true \mid false
$n \in$ Nat	$::=\mathbf{0}\|\mathbf{1}\| \mathbf{2} \mid \ldots$
$e \in \operatorname{Exp}$	$::=$ add $e e$
	$\|$neg e cond e n b

Design a denotational semantics for Exp

1. How should we define our semantic domain?
2. Define a valuation semantics function

- neg - negates either a numeric or boolean value
- equal - compares two values of the same type for equality
- cond - equivalent to if-then-else

Solution

$$
\begin{aligned}
& \llbracket \text { Exp } \rrbracket:(\text { Int } \oplus \text { Bool })_{\perp} \\
& \llbracket \text { add } e_{1} e_{2} \rrbracket= \begin{cases}\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket & \llbracket e_{1} \rrbracket \in \text { Int, } \llbracket e_{2} \rrbracket \in \text { Int } \\
\perp & \text { otherwise }\end{cases} \\
& \llbracket \text { neg } e \rrbracket= \begin{cases}-\llbracket e \rrbracket & \llbracket e \rrbracket \in \text { Int } \\
\checkmark \llbracket e \rrbracket & \llbracket e \rrbracket \in \text { Bool } \\
\perp & \text { otherwise }\end{cases} \\
& \begin{array}{ll}
\text { equal } e_{1} e_{2} \rrbracket & = \begin{cases}\llbracket e_{1} \rrbracket={ }_{\text {Int }} \llbracket e_{2} \rrbracket & \llbracket e_{1} \rrbracket \in \text { Int, } \llbracket e_{2} \rrbracket \in \text { Int } \\
\llbracket e_{1} \rrbracket=\text { Bool } \llbracket e_{2} \rrbracket & \llbracket e_{1} \rrbracket \in \text { Bool, } \llbracket e_{2} \rrbracket \in \text { Bool } \\
\perp & \text { otherwise }\end{cases} \\
\llbracket \text { cond } e_{1} e_{2} e_{3} \rrbracket & = \begin{cases}\llbracket e_{2} \rrbracket & \llbracket e_{1} \rrbracket=\text { true } \\
\llbracket e_{3} \rrbracket & \llbracket e_{1} \rrbracket=\text { false } \\
\perp & \text { otherwise }\end{cases} \\
\llbracket n \rrbracket & =n \\
\llbracket b \rrbracket & =b
\end{array}
\end{aligned}
$$

Product domains

Construction: the cartesian product of two existing domains

- contains a value from both domains

$$
A \otimes B=\{(a, b) \mid a \in A, b \in B\}
$$

$$
\begin{aligned}
& \text { New operations } \\
& \begin{array}{c}
\text { pair : } A \times B \rightarrow A \otimes B \\
\text { fst }: A \otimes B \rightarrow A \\
\text { snd }: A \otimes B \rightarrow B
\end{array}
\end{aligned}
$$

Encoding product domains in Haskell

```
Option #1: Tuples
type Value a b = (a,b)
fst :: (a,b) -> a
snd :: (a,b) -> b
```

Can also use pattern matching!

Option \#2: new data type with multiple arguments data Value = V Int Bool

Best when combined with other constructions, or more than two

Outline

Denotational Semantics

Basic Domain Theory
Introduction and history
Primitive and lifted domains
Sum and product domains
Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Function space domains

Construction: the set of functions from one domain to another

$$
A \rightarrow B
$$

Create a function: $A \rightarrow B$
Lambda notation: $\lambda x . y$ where $\Gamma, x: A \vdash y: B$

Eliminate a function

$$
\text { apply : }(A \rightarrow B) \times A \rightarrow B
$$

Denotational semantics of naming

Environment: a function associating names with things

$$
\text { Env }=\text { Name } \rightarrow \text { Thing }
$$

Naming concepts

declaration add a new name to the environment binding set the thing associated with a name reference get the thing associated with a name

$$
\begin{array}{ll}
\text { Example semantic domains for expressions with ... } \\
\text { immutable variables (Haskell) } & \text { Env } \rightarrow \text { Val } \\
\text { mutable variables (C/Java/Python) } & E n v \rightarrow \text { Env } \otimes \text { Val }
\end{array}
$$

Example: Denotational semantics of let language

1. Abstract syntax

$$
\begin{array}{rll}
i \in \operatorname{Int} & ::= & \text { (any integer) } \\
v \in \operatorname{Var} & ::= & \text { (any variable name) } \\
e \in \operatorname{Exp} & ::= & i \\
& & \text { add } e e \\
& \text { let } v e e \\
v
\end{array}
$$

2. Identify semantic domain

i. Result of evaluation: $I n t_{\perp}$
ii. Environment: Env $=\operatorname{Var} \rightarrow I n t_{\perp}$
iii. Semantic domain: Env \rightarrow Int \perp_{\perp}
3. Define a valuation function

$$
\begin{gathered}
\llbracket E x p \rrbracket:\left(\text { Var } \rightarrow \text { Int } L_{\perp}\right) \rightarrow \text { Int } \perp_{\perp} \\
\llbracket i \rrbracket= \\
\llbracket m . i \\
\llbracket \text { add } e_{1} e_{2} \rrbracket=\lambda m . \llbracket e_{1} \rrbracket(m)+_{\perp} \llbracket e_{2} \rrbracket(m) \\
\llbracket \text { let } v e_{1} e_{2} \rrbracket=\lambda m \cdot \llbracket e_{2} \rrbracket(\lambda w . \text { if } w=v \\
\text { then } \llbracket e_{1} \rrbracket(m) \\
\text { else } m(w)) \\
\llbracket v \rrbracket=\lambda m . m(v)
\end{gathered}
$$

What is mutable state?

Mutable state: stored information that a program can read and write

Typical semantic domains with state domain S :
$S \rightarrow S \quad$ state mutation as main effect
$S \rightarrow S \otimes V a l \quad$ state mutation as side effect
Often: lifted codomain if mutation can fail

Examples

- the memory cell in a calculator
- the stack in a stack language
- the store in many programming languages

$$
\begin{aligned}
& S=\text { Int } \\
& S=\text { Stack } \\
& S=\text { Name } \rightarrow \text { Val }
\end{aligned}
$$

Example: Single register calculator language

1. Abstract syntax
$i \in$ Int $::=$ (any integer)
$e \in \operatorname{Exp} \quad::=i$
$e+e$
save e
load
2. Identify semantic domain
i. State (side effect): Int
ii. Result: Int
iii. Semantic domain: \quad Int \rightarrow Int \otimes Int

Examples:

- save $(3+2)+$ load
$\rightsquigarrow 10$
- save 1 +
(save 10 + load) + load
$\rightsquigarrow 31$

Example: Single register calculator language

1. Abstract sy	ntax
$i \in$ Int $\quad::=$	(any integer)
$e \in \operatorname{Exp} \quad:=$	i
	$e+e$ save e
	load

Examples:

- save (3+2) + load

$$
\rightsquigarrow 10
$$

- save 1 + (save $10+$ load) + load $\rightsquigarrow 31$

3. Define valuation function

$$
\begin{aligned}
\llbracket E x p \rrbracket: & \text { Int } \rightarrow \text { Int } \otimes \text { Int } \\
\llbracket i \rrbracket= & \lambda s .(s, i) \\
\llbracket e_{1}+e_{2} \rrbracket= & \lambda s . \text { let }\left(s_{1}, i_{1}\right)=\llbracket e_{1} \rrbracket(s) \\
& \left(s_{2}, i_{2}\right)=\llbracket e_{2} \rrbracket\left(s_{1}\right) \\
& \text { in }\left(s_{2}, i_{1}+i_{2}\right) \\
\llbracket \text { save } e \rrbracket= & \lambda s . \text { let }\left(s^{\prime}, i\right)=\llbracket e \rrbracket(s) \text { in }(i, i) \\
\llbracket \text { load } e \rrbracket= & \lambda s .(s, s)
\end{aligned}
$$

Outline

Denotational Semantics

Basic Domain Theory
 Introduction and history
 Primitive and lifted domains
 Sum and product domains
 Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Compositionality and well-definedness

Recall: a denotational semantics must be compositional

- a term's denotation is built from the denotations of its parts

$$
\begin{aligned}
& \text { Example: integer expressions } \\
& \begin{aligned}
& i \in \text { Int }::=\text { (any integer) } \\
& e \in \operatorname{Exp}::=\quad i \mid \text { add } e e \mid \text { mul e e } \\
& \llbracket E x p \rrbracket: \text { Int } \\
& \llbracket i \rrbracket=i \\
& \llbracket \text { add } e_{1} e_{2} \rrbracket=\llbracket e_{1} \rrbracket+\llbracket e_{2} \rrbracket \\
& \llbracket \mathrm{mul} e_{1} e_{2} \rrbracket=\llbracket e_{1} \rrbracket \times \llbracket e_{2} \rrbracket
\end{aligned}
\end{aligned}
$$

Compositionality ensures the semantics is well-defined by structural induction

Each AST has exactly one meaning

A non-compositional (and ill-defined) semantics

```
Anti-example: while statement
    \(\begin{aligned} t \in \text { Test } & ::=\ldots \\ s \in \text { Stmt } & ::=\ldots\end{aligned}\)
    \(T \llbracket\) Test \(\rrbracket:\) State \(\rightarrow\) Bool
    \(S \llbracket\) Stmt \(\rrbracket:\) State \(\rightarrow\) State
    \(S \llbracket\) while \(t b \rrbracket=\lambda s\). if \(T \llbracket t \rrbracket(s)\) then
    \(S \llbracket\) while \(t b \rrbracket(S \llbracket b \rrbracket(s))\)
    else \(s\)
```

Meaning of while $t b$ in state s :

1. evaluate t in state s
2. if true:
a. run b to get updated state s^{\prime}
b. re-evaluate while in state s^{\prime} (not compositional)
3. otherwise return s unchanged

Translational view: meaning is an infinite expression!

Mathematical view: may have infinitely many meanings!

Extensional vs. operational definitions of a function

Mathematical function

Defined extensionally:

- a relation between inputs and outputs

Computational function (e.g. Haskell)
Usually defined operationally:

- compute output by sequence of reductions

Example (intensional specification)

$$
f a c(n)= \begin{cases}1 & n=0 \\ n \cdot f a c(n-1) & \text { otherwise }\end{cases}
$$

Extensional meaning
 $\{\ldots,(2,2),(3,6),(4,24), \ldots\}$

Operational meaning

$$
\begin{aligned}
f a c(3) & \rightsquigarrow 3 \cdot f a c(2) \\
& \rightsquigarrow 3 \cdot 2 \cdot f a c(1) \\
& \rightsquigarrow 3 \cdot 2 \cdot 1 \cdot \operatorname{fac}(0) \\
& \rightsquigarrow 3 \cdot 2 \cdot 1 \cdot 1 \\
& \rightsquigarrow 6
\end{aligned}
$$

Extensional meaning of recursive functions

$$
\operatorname{grow}(n)= \begin{cases}1 & n=0 \\ \operatorname{grow}(n+1)-2 & \text { otherwise }\end{cases}
$$

Best extension (use \perp if undefined):

- $\{(0,1),(1, \perp),(2, \perp),(3, \perp),(4, \perp), \ldots\}$

Other valid extensions:

- $\{(0,1),(1,2),(2,4),(3,6),(4,8) \ldots\}$
- $\{(0,1),(1,5),(2,7),(3,9),(4,11) \ldots\}$

Goal: best extension = only extension

Connection back to denotational semantics

A function space domain is a set of mathematical functions

Anti-example: while statement

$$
\begin{aligned}
t \in \text { Test }: & := \\
s \in \text { Stmt }: & \ldots \\
T \llbracket \text { Test } \rrbracket: & \text { State } \rightarrow \text { Bool } \\
S \llbracket \text { Stmile } t ~ & \\
S \llbracket \text { while } t b \rrbracket= & \text { State } \rightarrow \text { State } \\
& \lambda s \text {. if } T \llbracket t \rrbracket(s) \text { then } \\
& S \llbracket \text { while } t b \rrbracket(S \llbracket b \rrbracket(s)) \\
& \text { else } s
\end{aligned}
$$

Ideal semantics of Stmt:

- domain: State \rightarrow State $_{\perp}$
- contains $\left(s, s^{\prime}\right)$ if c terminates
- contains (s, \perp) if c diverges

Outline

Denotational Semantics

> Basic Domain Theory
> Introduction and history
> Primitive and lifted domains
> Sum and product domains
> Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Least fixed points

Basic idea:

1. a recursive function defines a set of non-recursive, finite subfunctions
2. its meaning is the "union" of the meanings of its subfunctions

Iteratively grow the extension until we reach a fixed point

- essentially encodes computational functions as mathematical functions

Example: unfolding a recursive definition

Recursive definition

$$
f a c(n)= \begin{cases}1 & n=0 \\ n \cdot f a c(n-1) & \text { otherwise }\end{cases}
$$

Non-recursive, finite subfunctions

$$
\begin{aligned}
& f a c_{0}(n)=\perp \\
& f a c_{1}(n)= \begin{cases}1 & n=0 \\
n \cdot f a c_{0}(n-1) & \text { otherwise }\end{cases} \\
& f a c_{2}(n)= \begin{cases}1 & n=0 \\
n \cdot f a c_{1}(n-1) & \text { otherwise }\end{cases}
\end{aligned}
$$

...

$$
\begin{aligned}
& \text { fac }_{0}=\{ \} \\
& \text { fac }_{1}=\{(0,1)\} \\
& \text { fac }_{2}=\{(0,1),(1,1)\} \\
& \text { fac }_{3}=\{(0,1),(1,1),(2,2)\}
\end{aligned}
$$

$$
f a c=\bigcup_{i=0}^{\infty} f a c_{i}
$$

Fine print:

- each $f a c_{i}$ maps all other values to \perp
- \cup operation prefers non- \perp mappings

Computing the fixed point

$$
\begin{aligned}
& \text { In general } \\
& \operatorname{fac}_{0}(n)=\perp \\
& f a c_{i}(n)= \begin{cases}1 & n=0 \\
n \cdot f a c_{i-1}(n-1) & \text { otherwise }\end{cases}
\end{aligned}
$$

Fixpoint operator

$$
\begin{aligned}
& \text { fix : }(A \rightarrow A) \rightarrow A \\
& \text { fix }(g)=\text { let } x=g(x) \text { in } x
\end{aligned}
$$

$$
\boldsymbol{f i x}(h)=h(h(h(h(h(\ldots)))))
$$

A template to represent all $f a c_{i}$ functions:

$$
F=\lambda f \cdot \lambda n . \begin{cases}1 & n=0 \\ n \cdot f(n-1) & \text { otherwise }\end{cases}
$$

takes $f a c_{i-1}$ as input

Factorial as a fixed point $f a c=\mathbf{f i x}(F)$

Outline

Denotational Semantics

> Basic Domain Theory
> Introduction and history
> Primitive and lifted domains
> Sum and product domains
> Function domains

Meaning of Recursive Definitions
Compositionality and well-definedness
Least fixed-point construction
Internal structure of domains

Why domains are not flat sets

Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:

- each $f a c_{i}$ maps all other values to \perp
- \cup operation prefers non- \perp mappings

How can we generalize and formalize this idea?

Partial orderings and joins

Partial ordering: $\sqsubseteq: D \times D \rightarrow \mathbb{B}$

- reflexive: $\quad \forall x \in D . x \sqsubseteq x$
- antisymmetric: $\quad \forall x, y \in D . \quad x \sqsubseteq y \wedge y \sqsubseteq x \Longrightarrow x=y$
- transitive: $\quad \forall x, y, z \in D . \quad x \sqsubseteq y \wedge y \sqsubseteq z \Longrightarrow x \sqsubseteq z$

Join: $\sqcup: D \times D \rightarrow D$
$\forall a, b \in D$, the element $c=a \sqcup b \in D$, if it exists, is the smallest element that is larger than both a and b
i.e. $a \sqsubseteq c$ and $b \sqsubseteq c$, and there is no $d=a \sqcup b \in D$ where $d \sqsubseteq c$

(Scott) domains are directed-complete partial orderings

The \sqsubseteq relation captures the idea of relative "definedness"

A domain is a directed-complete partial ordered (dcpo) set

- finite approximations converge on their unique least fixed point (which might contain \perp s)

Well-defined semantics for the while statement

```
Syntax
```

```
    t\in Test ::=
```

 t\in Test ::=
 s\inStmt ::=
s\inStmt ::=
while t s

```
while t s
```


Semantics

$$
\begin{array}{ll}
T \llbracket \text { Test } \rrbracket: ~ S t a t e ~
\end{array} \rightarrow \text { Bool } \quad \begin{aligned}
& S \llbracket \text { Stmt } \rrbracket: \text { State } \rightarrow \text { State }
\end{aligned}
$$

$$
S \llbracket \text { while } t b \rrbracket=\mathbf{f i x}(\lambda f . \lambda s \text {. if } T \llbracket t \rrbracket(s) \text { then } f(S \llbracket b \rrbracket(s)) \text { else } s)
$$

