Denotational Semantics and Domain Theory

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

How to define the meaning of a program?

Formal specifications

...

- operational semantics: defines how to evaluate a term
- denotational semantics: relates terms to (mathematical) values
- axiomatic semantics: defines the effects of evaluating a term

Informal/non-specifications

- reference implementation: execute/compile program in some implementation
- community/designer intuition: how people think a program should behave

Denotational semantics

A denotational semantics relates each term to a denotation

an abstract syntax tree 🧈

a value in some semantic domain

Valuation function

 $\llbracket \cdot
rbrace$: abstract syntax ightarrow semantic domain

Valuation function in Haskell

eval :: Term -> Value

Semantic domains

Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? - it depends on the language!

Example semantic domains		
Language	Meaning	
Boolean expressions	Boolean value	
Arithmetic expressions	Integer	
Imperative language	State transformation	
SQL query	Set of relations	
ActionScript	Animation	
MIDI	Sound waves	

Defining a language with denotational semantics

Example encoding in Haskell:

- 1. Define the **abstract syntax**, *T* **data Term = ...** *the set of abstract syntax trees*
- 2. Identify or define the **semantic domain**, *V* **type Value = ...** *the representation of semantic values*
- 3. Define the valuation function, $[\![\cdot]\!]: T \to V$ sem :: Term -> Value the mapping from ASTs to semantic values a.k.a. the "semantic function"

Example: simple arithmetic expressions

1. Define abstract syntax		
$n \in Nat$::=	0 1 2
$e \in Exp$::=	add e e
		mul e e
		neg e
		n

2. Define semantic domain Use the set of all integers, *Int*

Comes with some operations: $+, \times, -, toInt : Nat \rightarrow Int, ...$

3. Define the valuation function $\llbracket Exp \rrbracket : Int$ $\llbracket add e_1 e_2 \rrbracket = \llbracket e_1 \rrbracket + \llbracket e_2 \rrbracket$

 $[[mul e_1 e_2]] = [[e_1]] + [[e_2]]$ $[[mul e_1 e_2]] = [[e_1]] \times [[e_2]]$ [[neg e]] = -[[e]][[n]] = toInt(n)

Encoding denotational semantics in Haskell

- 1. abstract syntax: define a new data type, as usual
- 2. semantic domain: identify and/or define a new type, as needed
- 3. valuation function: define a function from ASTs to semantic domain

```
Valuation function in Haskell
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n
```

Desirable properties of a denotational semantics

Compositionality: a program's denotation is built from the denotations of its parts

- supports modular reasoning, extensibility
- supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program

- if not, language has expressiveness gaps, or semantic domain is too general
- ensures that semantic domain and language align

Soundness: two programs are "equivalent" iff they have the same denotation

- equivalence: same w.r.t. to some other definition
- ensures that the denotational semantics is correct

More on compositionality

Compositionality: a program's denotation is built from the denotations of its parts an AST *sub-ASTs*

Example: What is the meaning of **op** $e_1 e_2 e_3$?

- 1. Determine the meaning of e_1 , e_2 , e_3
- 2. Combine these submeanings in some way specific to **op**

Implications:

- The valuation function is probably **recursive**
- Often need different valuation functions for each syntactic category

Example: move language

A language describing movements on a 2D plane

- a **step** is an *n*-unit horizontal or vertical movement
- a move is described by a sequence of steps

Abstract sy	ntax	
$n \in Nat$::=	0 1 2
$d \in Dir$::=	N S E W
$s \in Step$::=	go d n
$m \in Move$::=	$\epsilon \mid s; m$

Semantics of move language

1. Abstract syntax

$n \in Nat$::=	0 1 2
$d \in Dir$::=	N S E W
$s \in Step$::=	go d n
$m \in Move$::=	$\epsilon \mid s; m$

2. Semantic domain

 $Pos = Int \times Int$

Domain: $Pos \rightarrow Pos$

3. Valuation function (*Step*)

$$\begin{split} S[\![Step]\!] &: Pos \to Pos \\ S[\![go N k]\!] &= \lambda(x,y). \ (x,y+k) \\ S[\![go S k]\!] &= \lambda(x,y). \ (x,y-k) \\ S[\![go E k]\!] &= \lambda(x,y). \ (x+k,y) \\ S[\![go W k]\!] &= \lambda(x,y). \ (x-k,y) \end{split}$$

3. Valuation function (Move) $M[\![Move]\!] : Pos \rightarrow Pos$ $M[\![\epsilon]\!] = \lambda p. p$ $M[\![s ; m]\!] = M[\![m]\!] \circ S[\![s]\!]$

Alternative semantics

Often multiple **interpretations** (semantics) of the same language

Example: Database schema One declarative spec, used to:

- initialize the database
- generate APIs
- validate queries
- normalize layout

• ...

Distance traveled $S_D[\![Step]\!] : Int$ $S_D[\![go \ d \ k]\!] = k$ $M_D[\![Move]\!] : Int$ $M_D[\![\epsilon]\!] = 0$ $M_D[\![s ; m]\!] = S_D[\![s]\!] + M_D[\![m]\!]$

Combined trip information $M_C[\![Move]\!]$: $Int \times (Pos \rightarrow Pos)$ $M_C[\![m]\!] = (M_D[\![m]\!], M[\![m]\!])$

Picking the right semantic domain

Simple semantic domains can be combined in two ways:

- **product**: contains a value from both domains
 - e.g. combined trip information for move language
 - use Haskell (a,b) or define a new data type
- sum: contains a value from one domain or the other
 - e.g. IntBool language can evaluate to Int or Bool
 - use Haskell **Either a b** or define a new data type

Can errors occur?

• use Haskell Maybe a or define a new data type

Does the language manipulate state or use naming?

• use a function type

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

What is domain theory?

Domain theory: a mathematical framework for constructing semantic domains

Historical notes

Origins of domain theory:

- Christopher Strachey, 1964
 - early work on denotational semantics
 - used *lambda calculus* for denotations
- Dana Scott, 1975
 - goal: denotational semantics for lambda calculus itself
 - created domain theory for meaning of recursive functions

More on Dana Scott:

- Turing award in 1976 for nondeterminism in automata theory
- PhD advisor: Alonzo Church, 20 years after Alan Turing

Dana Scott

Two views of denotational semantics

View #1 (Strachey): Translation from one formal system to another

• e.g. translate object language into lambda calculus

View #2 (Scott): "True meaning" of a program as a mathematical object

- e.g. map programs to elements of a semantic domain
- need **domain theory** to describe set of meanings

Domains as semantic algebras

A semantic domain can be viewed as an algebraic structure

a set of values the meanings of the programs
a set of operations on the values used to compose meanings of parts

Domains also have internal structure: **complete partial ordering** (later)

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains

Sum and product domains

Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Primitive domains

Values are **atomic**

- often correspond to built-in types in Haskell
- nullary operations for naming values explicitly

Domain: Bool

true : Bool false : Bool $not : Bool \rightarrow Bool$ $and : Bool \times Bool \rightarrow Bool$ $or : Bool \times Bool \rightarrow Bool$

Domain: Int

```
0, 1, 2, \dots: Int
negate : Int \rightarrow Int
plus : Int \times Int \rightarrow Int
times : Int \times Int \rightarrow Int
```

Domain: Unit
(): Unit

Also: Nat, Name, Addr, ...

Lifted domains

Construction: add \perp (*bottom*) to an existing domain

$$A_{\perp} = A \cup \{\perp\}$$

New operations

$$\perp : A_{\perp}$$

 $map : (A \rightarrow B) \times A_{\perp} \rightarrow B_{\perp}$
 $maybe : B \times (A \rightarrow B) \times A_{\perp} \rightarrow B$

Encoding lifted domains in Haskell

```
Option #1: Maybe

data Maybe a = Nothing

| Just a

fmap :: (a -> b) -> Maybe a -> Maybe b

maybe :: b -> (a -> b) -> Maybe a -> b
```

Can also use pattern matching!

Option #2: new data type with nullary constructor data Value = Success Int | Error

Best when combined with other constructions

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Sum domains

Construction: the disjoint union of two existing domains

• contains a value from either one domain or the other

$$A \oplus B = A \uplus B$$

New operations	
$inL: A ightarrow A \oplus B$	
$inR:B ightarrow A\oplus B$	
$case: (A \to C) \times (B \to C) \times (A \oplus B) \to C$	

Encoding sum domains in Haskell

```
Option #1: Either
data Either a b = Left a
| Right b
either :: (a -> c) -> (b -> c) -> Either a b -> c
```

Can also use pattern matching!

Option #2: new data type with multiple constructors data Value = I Int | B Bool

Best when combined with other constructions, or more than two options

Example: a language with multiple types

Design a denotational semantics for Exp

- 1. How should we define our semantic domain?
- 2. Define a valuation semantics function

- **neg** negates either a numeric or boolean value
- equal compares two values of the same type for equality
- cond equivalent to if-then-else

Solution

Product domains

Construction: the cartesian product of two existing domains

• contains a value from both domains

$$A\otimes B=\{(a,b)\mid a\in A, b\in B\}$$

New operations	
$pair: A imes B o A \otimes B$	
$fst: A \otimes B \to A$	
$snd: A \otimes B \to B$	

Encoding product domains in Haskell

Option #1: Tuples type Value a b = (a,b) fst :: (a,b) -> a snd :: (a,b) -> b

Can also use pattern matching!

Option #2: new data type with multiple arguments data Value = V Int Bool

Best when combined with other constructions, or more than two

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains

Function space domains

Construction: the set of functions from one domain to another

$$A \rightarrow B$$

Create a function: $A \rightarrow B$ Lambda notation: $\lambda x. y$ where $\Gamma, x : A \vdash y : B$

Eliminate a function $apply: (A \rightarrow B) \times A \rightarrow B$

Denotational semantics of naming

Environment: a function associating names with things

 $Env = Name \rightarrow Thing$

Naming concepts

declaration	add a new name to the environment
binding	set the thing associated with a name
reference	get the thing associated with a name

Example semantic domains for expressions with ...

immutable variables (Haskell)	$\mathit{Env} ightarrow \mathit{Val}$
mutable variables (C/Java/Python)	$Env \rightarrow Env \otimes Val$

Example: Denotational semantics of let language

1. Abstract syntax

 $i \in Int$::= (any integer) $v \in Var$::= (any variable name) $e \in Exp$::= i | add e e | let v e e| v

2. Identify semantic domain

- i. Result of evaluation: Int_{\perp}
- ii. Environment: $\mathit{Env} = \mathit{Var} \to \mathit{Int}_\perp$
- iii. Semantic domain: $\mathit{Env} \to \mathit{Int}_\perp$

3. Define a valuation function

 $\llbracket Exp \rrbracket : (Var \to Int_{\perp}) \to Int_{\perp}$

$$\label{eq:interm} \begin{split} \llbracket i \rrbracket &= \lambda m. \, i \\ \llbracket \text{add } e_1 \; e_2 \rrbracket &= \lambda m. \; \llbracket e_1 \rrbracket (m) +_{\!\!\!\perp} \; \llbracket e_2 \rrbracket (m) \\ \llbracket \text{let } v \; e_1 \; e_2 \rrbracket &= \lambda m. \; \llbracket e_2 \rrbracket (\lambda w. \, \text{if } w = v \\ & \text{then } \; \llbracket e_1 \rrbracket (m) \\ & \text{else } m(w)) \\ \llbracket v \rrbracket &= \lambda m. \, m(v) \end{split}$$

$$i +_{\!\!\!\perp} j = \left\{ egin{array}{cc} i+j & i \in \mathit{Int}, \ j \in \mathit{Int} \\ \perp & \mathit{otherwise} \end{array}
ight.$$

What is mutable state?

Mutable state: stored information that a program can read and write

Typical semantic domains with state domain *S*:

S
ightarrow S state mutation as **main effect**

 $S \rightarrow S \otimes Val$ state mutation as **side effect**

Often: lifted codomain if mutation can fail

Examples

- the memory cell in a calculator
- the stack in a stack language
- the store in many programming languages

$$S = Int$$

$$S = Stack$$

$$S = Name \rightarrow Val$$

Example: Single register calculator language

1. Abstract syntax		
$i \in Int$::=	(any integer)
$e \in Exp$::=	i
		e + e
		save e
		load

Examples:

save (3+2) + load
 ~→ 10
 save 1 +

2. Identify semantic domain i. State (side effect): *Int* ii. Result: *Int*

iii. Semantic domain: $Int \rightarrow Int \otimes Int$

Example: Single register calculator language

1. Abstract syntax $i \in Int$::= (any integer) $e \in Exp$::= i | e + e | save e| load

Examples:

```
• save 1 +
(save 10 + load) + load
~→ 31
```

3. Define valuation function $\llbracket Exp \rrbracket$: $Int \rightarrow Int \otimes Int$ $\llbracket i \rrbracket = \lambda s. (s, i)$ $[\![e_1 + e_2]\!] = \lambda s. \text{ let } (s_1, i_1) = [\![e_1]\!](s)$ $(s_2, i_2) = [e_2](s_1)$ in $(s_2, i_1 + i_2)$ \llbracket save $e \rrbracket = \lambda s$. let $(s', i) = \llbracket e \rrbracket(s)$ in (i, i)**[load** e] = $\lambda s. (s, s)$

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions Compositionality and well-definedness

Least fixed-point construction Internal structure of domains

Compositionality and well-definedness

Recall: a denotational semantics must be compositional

• a term's denotation is built from the denotations of its parts

Example: integer expressions

$i \in Int$ $e \in Exp$	<pre>::= (any integer) ::= i add e e mul e e</pre>		
	[[<i>Exp</i>]] : <i>Int</i>		
[[i]] = i			
[add	$\llbracket e_1 \ e_2 rbracket = \llbracket e_1 rbracket + \llbracket e_2 rbracket$		
[[mul	$\llbracket e_1 \ e_2 rbracket = \llbracket e_1 rbracket imes \llbracket e_2 rbracket$		

Compositionality ensures the semantics is **well-defined** by **structural induction**

Each AST has exactly one meaning

A non-compositional (and ill-defined) semantics

Anti-example: while statement

$$t \in Test$$
 ::= ...
 $s \in Stmt$::= ... | while t s

$$T \llbracket Test \rrbracket$$
 : State \rightarrow Bool

$$\begin{split} S[\![Stmt]\!] &: State \to State \\ S[\![while t b]\!] &= \lambda s. \text{ if } T[\![t]\!](s) \text{ then} \\ &\quad S[\![while t b]\!](S[\![b]\!](s)) \\ &\quad \text{else } s \end{split}$$

Meaning of **while** *t b* in state *s*:

- 1. evaluate *t* in state *s*
- 2. if true:
 - a. run b to get updated state s'
 - b. re-evaluate while in state s' (not compositional)
- 3. otherwise return *s* unchanged

Translational view: meaning is an **infinite** expression!

Mathematical view: may have **infinitely many** meanings! Extensional vs. operational definitions of a function

Mathematical function

Defined extensionally:

a relation between inputs and outputs

Computational function (e.g. Haskell)

Usually defined operationally:

• compute output by sequence of reductions

Example (intensional specification)

$$fac(n) = \begin{cases} 1 & n = 0 \\ n \cdot fac(n-1) & \text{otherwise} \end{cases}$$

 $\label{eq:extensional meaning} \begin{aligned} & \text{Extensional meaning} \\ & \{\ldots,(2,2),(3,6),(4,24),\ldots\} \end{aligned}$

Meaning of Recursive Definitions

Extensional meaning of recursive functions

$$grow(n) = \left\{ egin{array}{cc} 1 & n=0 \ grow(n+1)-2 & ext{otherwise} \end{array}
ight.$$

Best extension (use \perp if undefined):

• $\{(0,1),(1,\perp),(2,\perp),(3,\perp),(4,\perp),\ldots\}$

Other valid extensions:

- $\{(0,1), (1,2), (2,4), (3,6), (4,8) \ldots\}$
- $\{(0,1), (1,5), (2,7), (3,9), (4,11) \ldots\}$

Goal: best extension = **only** extension

Connection back to denotational semantics

A function space domain is a set of mathematical functions

Anti-example: while statement

 $t \in Test$::= ... $s \in Stmt$::= ... | while t s

$$T \llbracket Test \rrbracket : State \rightarrow Bool$$

```
\begin{split} S[\![Stmt]\!] &: State \to State\\ S[\![\texttt{while } t \ b]\!] &= \lambda s. \text{ if } T[\![t]\!](s) \text{ then}\\ &\quad S[\![\texttt{while } t \ b]\!](S[\![b]\!](s))\\ &\quad \text{ else } s \end{split}
```

Ideal semantics of *Stmt*:

- domain: $State \rightarrow State_{\perp}$
- contains (*s*, *s*') if *c* terminates
- contains (s, \perp) if c diverges

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction Internal structure of domains Basic idea:

- 1. a recursive function defines a set of non-recursive, finite subfunctions
- 2. its meaning is the "union" of the meanings of its subfunctions

Iteratively grow the extension until we reach a **fixed point**

• essentially encodes computational functions as mathematical functions

Example: unfolding a recursive definition

Recursive definition

$$\mathit{fac}(n) = \left\{ egin{array}{cc} 1 & n=0 \ n \cdot \mathit{fac}(n-1) & \mathrm{otherwise} \end{array}
ight.$$

Non-recursive, finite subfunctions

$$\begin{aligned} &fac_0(n) = \bot \\ &fac_1(n) = \left\{ \begin{array}{ll} 1 & n = 0 \\ &n \cdot fac_0(n-1) & \text{otherwise} \\ &fac_2(n) = \left\{ \begin{array}{ll} 1 & n = 0 \\ &n \cdot fac_1(n-1) & \text{otherwise} \\ & \ddots \end{array} \right. \end{aligned}$$

$$\begin{aligned} &\textit{fac}_0 = \{\} \\ &\textit{fac}_1 = \{(0,1)\} \\ &\textit{fac}_2 = \{(0,1),(1,1)\} \\ &\textit{fac}_3 = \{(0,1),(1,1),(2,2)\} \end{aligned}$$

$$fac = \bigcup_{i=0}^{\infty} fac_i$$

Fine print:

. . .

- each fac_i maps all other values to \perp
- \cup operation prefers non- \perp mappings

Computing the fixed point

In general
$$fac_0(n) = \bot$$

 $fac_i(n) = \left\{ egin{array}{c} 1 & n = 0 \\ n \cdot fac_{i-1}(n-1) & ext{otherwise} \end{array}
ight.$

Fixpoint operator fix : $(A \rightarrow A) \rightarrow A$ fix(g) = let x = g(x) in x

 $\mathbf{fix}(h) = h(h(h(h(h(\dots)))))$

A template to represent all fac_i functions:

$$F = \lambda f \cdot \lambda n \cdot \begin{cases} 1 & n = 0 \\ n \cdot f(n-1) & \text{otherwise} \end{cases}$$
takes fac_{i-1} as input

Factorial as a fixed point fac = fix(F)

Outline

Denotational Semantics

Basic Domain Theory

Introduction and history Primitive and lifted domains Sum and product domains Function domains

Meaning of Recursive Definitions

Compositionality and well-definedness Least fixed-point construction

Internal structure of domains

Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:

- each fac_i maps all other values to \perp
- \cup operation prefers non- \perp mappings

How can we generalize and formalize this idea?

Partial orderings and joins

Partial ordering:	$\sqsubseteq: D imes D o$	B
• reflexive:	$\forall x \in D.$	$x \sqsubseteq x$
 antisymmetric: transitive: 	$orall x,y\in D. \ orall x,y,z\in D.$	$\begin{array}{cccc} x \sqsubseteq y \land y \sqsubseteq x \implies x = y \\ x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z \end{array}$

Join: $\Box : D \times D \rightarrow D$

 $\forall a, b \in D$, the element $c = a \sqcup b \in D$, if it exists, is the **smallest** element that is **larger than both** a and b

i.e. $a \sqsubseteq c$ and $b \sqsubseteq c$, and there is no $d = a \sqcup b \in D$ where $d \sqsubseteq c$

(Scott) domains are directed-complete partial orderings

The \sqsubseteq relation captures the idea of relative "definedness"

A domain is a directed-complete partial ordered (dcpo) set

• finite approximations converge on their unique least fixed point (which might contain \perp s)

The meaning of a (Scott-continuous) recursive function f is: $\prod_{i=0} f_i$ where f_i are the finite approximations of f

 ∞

Well-defined semantics for the while statement

Syntax $t \in Test ::= \dots$ $s \in Stmt ::= \dots |$ while $t \ s$

Semantics

$$\begin{split} T[\![\textit{Test}]\!] &: \textit{State} \to \textit{Bool} \\ S[\![\textit{Stmt}]\!] &: \textit{State} \to \textit{State} \\ S[\![\textit{while } t \ b]\!] &= \textit{fix}(\lambda f.\lambda s. \textit{ if } T[\![t]\!](s) \textit{ then } f(S[\![b]\!](s)) \textit{ else } s) \end{split}$$