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How to define the meaning of a program?

Formal specifications
• operational semantics: defines how to evaluate a term
• denotational semantics: relates terms to (mathematical) values
• axiomatic semantics: defines the effects of evaluating a term
• . . .

Informal/non-specifications
• reference implementation: execute/compile program in some implementation
• community/designer intuition: how people think a program should behave
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Denotational semantics

A denotational semantics relates each term to a denotation

an abstract syntax tree a value in some
semantic domain

Valuation function
J · K : abstract syntax → semantic domain

Valuation function in Haskell
eval :: Term -> Value
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Semantic domains

Semantic domain: captures the set of possible meanings of a program/term

what is a meaning? — it depends on the language!

Example semantic domains
Language Meaning
Boolean expressions Boolean value
Arithmetic expressions Integer
Imperative language State transformation
SQL query Set of relations
ActionScript Animation
MIDI Sound waves
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Defining a language with denotational semantics

Example encoding in Haskell:

1. Define the abstract syntax, T data Term = ...
the set of abstract syntax trees

2. Identify or define the semantic domain, V type Value = ...
the representation of semantic values

3. Define the valuation function, J·K : T → V sem :: Term -> Value
the mapping from ASTs to semantic values
a.k.a. the “semantic function”
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Example: simple arithmetic expressions

1. Define abstract syntax

n ∈ Nat ::= 0 | 1 | 2 | . . .
e ∈ Exp ::= add e e

| mul e e
| neg e
| n

2. Define semantic domain
Use the set of all integers, Int

Comes with some operations:
+, ×, −, toInt : Nat→ Int, . . .

3. Define the valuation function

JExp K : Int

Jadd e1 e2K = Je1K + Je2K

Jmul e1 e2K = Je1K × Je2K

Jneg eK = −JeK

JnK = toInt(n)
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Encoding denotational semantics in Haskell

1. abstract syntax: define a new data type, as usual
2. semantic domain: identify and/or define a new type, as needed
3. valuation function: define a function from ASTs to semantic domain

Valuation function in Haskell
sem :: Exp -> Int
sem (Add l r) = sem l + sem r
sem (Mul l r) = sem l * sem r
sem (Neg e) = negate (sem e)
sem (Lit n) = n
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Desirable properties of a denotational semantics

Compositionality: a program’s denotation is built from the denotations of its parts
• supports modular reasoning, extensibility
• supports proof by structural induction

Completeness: every value in the semantic domain is denoted by some program
• if not, language has expressiveness gaps, or semantic domain is too general
• ensures that semantic domain and language align

Soundness: two programs are “equivalent” iff they have the same denotation
• equivalence: same w.r.t. to some other definition
• ensures that the denotational semantics is correct
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More on compositionality

Compositionality: a program’s denotation is built from the denotations of its parts

an AST sub-ASTs

Example: What is the meaning of op e1 e2 e3?
1. Determine the meaning of e1, e2, e3
2. Combine these submeanings in some way specific to op

Implications:
• The valuation function is probably recursive
• Often need different valuation functions for each syntactic category
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Example: move language

A language describing movements on a 2D plane
• a step is an n-unit horizontal or vertical movement
• a move is described by a sequence of steps

Abstract syntax

n ∈ Nat ::= 0 | 1 | 2 | . . .
d ∈ Dir ::= N | S | E | W
s ∈ Step ::= go d n

m ∈ Move ::= ε | s ; m

go N 3; go E 4; go S 1;
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Semantics of move language

1. Abstract syntax

n ∈ Nat ::= 0 | 1 | 2 | . . .
d ∈ Dir ::= N | S | E | W
s ∈ Step ::= go d n

m ∈ Move ::= ε | s ; m

2. Semantic domain
Pos = Int × Int
Domain: Pos→ Pos

3. Valuation function (Step)
SJ Step K : Pos→ Pos
SJgo N kK = λ(x, y). (x, y + k)
SJgo S kK = λ(x, y). (x, y − k)
SJgo E kK = λ(x, y). (x + k, y)
SJgo W kK = λ(x, y). (x − k, y)

3. Valuation function (Move)
MJMove K : Pos→ Pos

MJεK = λp. p
MJs ; mK = MJmK ◦ SJsK
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Alternative semantics

Often multiple interpretations (semantics) of the same language

Example: Database schema
One declarative spec, used to:
• initialize the database
• generate APIs
• validate queries
• normalize layout
• . . .

Distance traveled
SDJ Step K : Int
SDJgo d kK = k

MDJMove K : Int
MDJεK = 0

MDJs ; mK = SDJsK +MDJmK

Combined trip information
MCJMove K : Int × (Pos→ Pos)

MCJmK = (MDJmK,MJmK)
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Picking the right semantic domain

Simple semantic domains can be combined in two ways:

• product: contains a value from both domains
• e.g. combined trip information for move language
• use Haskell (a,b) or define a new data type

• sum: contains a value from one domain or the other
• e.g. IntBool language can evaluate to Int or Bool
• use Haskell Either a b or define a new data type

Can errors occur?
• use Haskell Maybe a or define a new data type

Does the language manipulate state or use naming?
• use a function type
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What is domain theory?

Domain theory: a mathematical framework for constructing semantic domains

Recall . . .
A denotational semantics relates each term to a denotation

an abstract syntax tree a value in some
semantic domain

Semantic domain: captures the set of possible meanings of a program/term
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Historical notes

Origins of domain theory:
• Christopher Strachey, 1964

• early work on denotational semantics
• used lambda calculus for denotations

• Dana Scott, 1975
• goal: denotational semantics for lambda calculus itself
• created domain theory for meaning of recursive functions

More on Dana Scott:
• Turing award in 1976 for nondeterminism in automata theory
• PhD advisor: Alonzo Church, 20 years after Alan Turing
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Two views of denotational semantics

View #1 (Strachey): Translation from one formal system to another
• e.g. translate object language into lambda calculus

View #2 (Scott): “True meaning” of a program as a mathematical object
• e.g. map programs to elements of a semantic domain
• need domain theory to describe set of meanings
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Domains as semantic algebras

A semantic domain can be viewed as an algebraic structure
• a set of values the meanings of the programs
• a set of operations on the values used to compose meanings of parts

Domains also have internal structure: complete partial ordering (later)
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Primitive domains

Values are atomic
• often correspond to built-in types in Haskell
• nullary operations for naming values explicitly

Domain: Bool

true : Bool
false : Bool
not : Bool→ Bool
and : Bool× Bool→ Bool
or : Bool× Bool→ Bool

Domain: Int

0, 1, 2, . . . : Int
negate : Int→ Int
plus : Int × Int→ Int
times : Int × Int→ Int

Domain: Unit

() : Unit

Also: Nat, Name, Addr, . . .
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Lifted domains

Construction: add ⊥ (bottom) to an existing domain

A⊥ = A ∪ {⊥}

New operations

⊥ : A⊥
map : (A→ B)× A⊥ → B⊥

maybe : B× (A→ B)× A⊥ → B
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Encoding lifted domains in Haskell

Option #1: Maybe
data Maybe a = Nothing

| Just a

fmap :: (a -> b) -> Maybe a -> Maybe b
maybe :: b -> (a -> b) -> Maybe a -> b

Can also use pattern matching!

Option #2: new data type with nullary constructor
data Value = Success Int | Error

Best when combined with other constructions
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Sum domains

Construction: the disjoint union of two existing domains
• contains a value from either one domain or the other

A⊕ B = A ] B

New operations

inL : A→ A⊕ B
inR : B→ A⊕ B
case : (A→ C)× (B→ C)× (A⊕ B)→ C
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Encoding sum domains in Haskell

Option #1: Either
data Either a b = Left a

| Right b

either :: (a -> c) -> (b -> c) -> Either a b -> c

Can also use pattern matching!

Option #2: new data type with multiple constructors
data Value = I Int | B Bool

Best when combined with other constructions,
or more than two options
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Example: a language with multiple types

b ∈ Bool ::= true | false
n ∈ Nat ::= 0 | 1 | 2 | . . .
e ∈ Exp ::= add e e

| neg e
| equal e e
| cond e e e
| n
| b

Design a denotational semantics for Exp

1. How should we define our semantic domain?
2. Define a valuation semantics function

• neg – negates either a numeric or boolean value
• equal – compares two values of the same type for equality
• cond – equivalent to if–then–else

Basic Domain Theory 27 / 52



Solution
JExp K : (Int ⊕ Bool)⊥

Jadd e1 e2K =

{
Je1K + Je2K Je1K ∈ Int, Je2K ∈ Int
⊥ otherwise

Jneg eK =

 −JeK JeK ∈ Int
¬JeK JeK ∈ Bool
⊥ otherwise

Jequal e1 e2K =

 Je1K =Int Je2K Je1K ∈ Int, Je2K ∈ Int
Je1K =Bool Je2K Je1K ∈ Bool, Je2K ∈ Bool
⊥ otherwise

Jcond e1 e2 e3K =

 Je2K Je1K = true
Je3K Je1K = false
⊥ otherwise

JnK = n

JbK = b
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Product domains

Construction: the cartesian product of two existing domains
• contains a value from both domains

A⊗ B = {(a, b) | a ∈ A, b ∈ B}

New operations

pair : A× B→ A⊗ B
fst : A⊗ B→ A
snd : A⊗ B→ B
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Encoding product domains in Haskell

Option #1: Tuples
type Value a b = (a,b)

fst :: (a,b) -> a
snd :: (a,b) -> b

Can also use pattern matching!

Option #2: new data type with multiple arguments
data Value = V Int Bool

Best when combined with other constructions,
or more than two
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Function space domains

Construction: the set of functions from one domain to another

A→ B

Create a function: A→ B
Lambda notation: λx. y

where Γ, x : A ` y : B

Eliminate a function

apply : (A→ B)× A→ B
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Denotational semantics of naming

Environment: a function associating names with things

Env = Name→ Thing

Naming concepts
declaration add a new name to the environment
binding set the thing associated with a name
reference get the thing associated with a name

Example semantic domains for expressions with . . .
immutable variables (Haskell) Env→ Val
mutable variables (C/Java/Python) Env→ Env⊗ Val
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Example: Denotational semantics of let language

1. Abstract syntax

i ∈ Int ::= (any integer)
v ∈ Var ::= (any variable name)
e ∈ Exp ::= i

| add e e
| let v e e
| v

2. Identify semantic domain
i. Result of evaluation: Int⊥
ii. Environment: Env = Var → Int⊥
iii. Semantic domain: Env→ Int⊥

3. Define a valuation function

JExp K : (Var → Int⊥)→ Int⊥

JiK = λm. i
Jadd e1 e2K = λm. Je1K(m) +⊥ Je2K(m)

Jlet v e1 e2K = λm. Je2K(λw. if w = v
then Je1K(m)

else m(w))

JvK = λm.m(v)

i+⊥ j =

{
i+ j i ∈ Int, j ∈ Int
⊥ otherwise
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What is mutable state?

Mutable state: stored information that a program can read and write

Typical semantic domains with state domain S:

S → S state mutation as main effect

S → S ⊗ Val state mutation as side effect

Often: lifted codomain if mutation can fail

Examples
• the memory cell in a calculator S = Int
• the stack in a stack language S = Stack
• the store in many programming languages S = Name→ Val
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Example: Single register calculator language

1. Abstract syntax

i ∈ Int ::= (any integer)
e ∈ Exp ::= i

| e + e
| save e
| load

Examples:
• save (3+2) + load
 10

• save 1 +
(save 10 + load) + load
 31

2. Identify semantic domain
i. State (side effect): Int
ii. Result: Int
iii. Semantic domain: Int→ Int ⊗ Int
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Example: Single register calculator language

1. Abstract syntax

i ∈ Int ::= (any integer)
e ∈ Exp ::= i

| e + e
| save e
| load

Examples:
• save (3+2) + load
 10

• save 1 +
(save 10 + load) + load
 31

3. Define valuation function

JExp K : Int→ Int ⊗ Int

JiK = λs. (s, i)
Je1 + e2K = λs. let (s1, i1) = Je1K(s)

(s2, i2) = Je2K(s1)
in (s2, i1 + i2)

Jsave eK = λs. let (s′, i) = JeK(s) in (i, i)
Jload eK = λs. (s, s)
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Compositionality and well-definedness

Recall: a denotational semantics must be compositional
• a term’s denotation is built from the denotations of its parts

Example: integer expressions

i ∈ Int ::= (any integer)
e ∈ Exp ::= i | add e e | mul e e

JExp K : Int
JiK = i

Jadd e1 e2K = Je1K + Je2K
Jmul e1 e2K = Je1K × Je2K

Compositionality ensures the semantics
is well-defined by structural induction

Each AST has exactly one meaning
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A non-compositional (and ill-defined) semantics

Anti-example: while statement

t ∈ Test ::= . . .
s ∈ Stmt ::= . . . | while t s

TJTest K : State→ Bool

SJ Stmt K : State→ State
SJwhile t bK = λs. if TJtK(s) then

SJwhile t bK(SJbK(s))
else s

Meaning of while t b in state s:
1. evaluate t in state s
2. if true:

a. run b to get updated state s′
b. re-evaluate while in state s′
(not compositional)

3. otherwise return s unchanged

Translational view:
meaning is an infinite expression!

Mathematical view:
may have infinitely many meanings!
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Extensional vs. operational definitions of a function

Mathematical function
Defined extensionally:
• a relation between inputs and outputs

Computational function (e.g. Haskell)
Usually defined operationally:
• compute output by sequence of reductions

Example (intensional specification)

fac(n) =

{
1 n = 0
n · fac(n− 1) otherwise

Extensional meaning
{. . . , (2, 2), (3, 6), (4, 24), . . .}

Operational meaning

fac(3) 3 · fac(2)

 3 · 2 · fac(1)

 3 · 2 · 1 · fac(0)

 3 · 2 · 1 · 1
 6

Meaning of Recursive Definitions 41 / 52



Extensional meaning of recursive functions

grow(n) =

{
1 n = 0
grow(n+ 1)− 2 otherwise

Best extension (use ⊥ if undefined):
• {(0, 1), (1,⊥), (2,⊥), (3,⊥), (4,⊥), . . .}

Other valid extensions:
• {(0, 1), (1, 2), (2, 4), (3, 6), (4, 8) . . .}
• {(0, 1), (1, 5), (2, 7), (3, 9), (4, 11) . . .}
• . . .

Goal: best extension = only extension
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Connection back to denotational semantics

A function space domain is a set of mathematical functions

Anti-example: while statement

t ∈ Test ::= . . .
s ∈ Stmt ::= . . . | while t s

TJTest K : State→ Bool

SJ Stmt K : State→ State
SJwhile t bK = λs. if TJtK(s) then

SJwhile t bK(SJbK(s))
else s

Ideal semantics of Stmt:
• domain: State→ State⊥
• contains (s, s′) if c terminates
• contains (s,⊥) if c diverges
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Least fixed points

Basic idea:

1. a recursive function defines a set of non-recursive, finite subfunctions

2. its meaning is the “union” of the meanings of its subfunctions

Iteratively grow the extension until we reach a fixed point
• essentially encodes computational functions as mathematical functions
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Example: unfolding a recursive definition

Recursive definition

fac(n) =

{
1 n = 0
n · fac(n− 1) otherwise

Non-recursive, finite subfunctions

fac0(n) = ⊥

fac1(n) =

{
1 n = 0
n · fac0(n− 1) otherwise

fac2(n) =

{
1 n = 0
n · fac1(n− 1) otherwise

. . .

fac0 = {}
fac1 = {(0, 1)}
fac2 = {(0, 1), (1, 1)}
fac3 = {(0, 1), (1, 1), (2, 2)}
. . .

fac =

∞⋃
i=0

faci

Fine print:

• each faci maps all other values to ⊥
• ∪ operation prefers non-⊥ mappings
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Computing the fixed point

In general

fac0(n) = ⊥

faci(n) =

{
1 n = 0
n · faci−1(n− 1) otherwise

A template to represent all faci functions:

F = λf .λn.
{
1 n = 0
n · f (n− 1) otherwise

takes faci−1 as input

Fixpoint operator
fix : (A→ A)→ A
fix(g) = let x = g(x) in x

fix(h) = h(h(h(h(h(. . .)))))

Factorial as a fixed point
fac = fix(F)
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Why domains are not flat sets

Internal structure of domains supports the least fixed-point construction

Recall fine print from factorial example:
• each faci maps all other values to ⊥
• ∪ operation prefers non-⊥ mappings

How can we generalize and formalize this idea?
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Partial orderings and joins

Partial ordering: v : D× D→ B
• reflexive: ∀x ∈ D. x v x
• antisymmetric: ∀x, y ∈ D. x v y ∧ y v x =⇒ x = y
• transitive: ∀x, y, z ∈ D. x v y ∧ y v z =⇒ x v z

Join: t : D× D→ D
∀a, b ∈ D, the element c = a t b ∈ D, if it exists,
is the smallest element that is larger than both a and b

i.e. a v c and b v c, and there is no d = a t b ∈ D where d v c
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(Scott) domains are directed-complete partial orderings

The v relation captures the idea of relative “definedness”

A domain is a directed-complete partial ordered (dcpo) set
• finite approximations converge on their unique least fixed point
(which might contain ⊥s)

The meaning of a (Scott-continuous) recursive function f is:
∞⊔
i=0

fi
where fi are the finite approximations of f
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Well-defined semantics for the while statement

Syntax

t ∈ Test ::= . . .
s ∈ Stmt ::= . . . | while t s

Semantics

TJTest K : State→ Bool

SJ Stmt K : State→ State
SJwhile t bK = fix(λf .λs. if TJtK(s) then f (SJbK(s)) else s)

Meaning of Recursive Definitions 52 / 52


	Denotational Semantics
	Basic Domain Theory
	Introduction and history
	Primitive and lifted domains
	Sum and product domains
	Function domains

	Meaning of Recursive Definitions
	Compositionality and well-definedness
	Least fixed-point construction
	Internal structure of domains


