Graph Reduction

gw—\ m =g
't’— . ¥ % RS .
- N % :
=] 3
— 4 : 1 s
¢ .. & .

| R
Pl 8l E S
P = o
- /
[} §¥e%n

How to interpret Haskell

. Translate Haskell into a small core language
e |lambda calculus + literals + recursive let + case + ...

2. Represent core expressions as DAGs
* references are edges in the graph
* supports sharing during evaluation

3. Evaluate by “graph reduction”
* set of graph transformation rules
* implements lazy evaluation

Core language

data constructors, primitive functions,

data Literal =
string and numeric literals, ...

data Expr
= Lit Literal
Ref Var
App Expr Expr } lambda calculus
Lam Var Expr
Let Var Expr Expr
Case Expr [(Pat,Expr)]

data Pat
= Default
| Alt Literal [Var]

Example translation

data Literal = ...

data Expr
= Lit Literal
Ref Var
App Expr Expr
Lam Var Expr
Let Var Expr Expr
Case Expr [(Pat,Expr)]

data Pat
= Default
| Alt Literal [Var]

Recall: can translate
tybe classes to dictionaries!

Haskell:

map f [] = []
map f (x:xs) = f x : map f xs

Core (concrete):

let map = Af.AL.
case L of
[] -> [1]
(x:xs) => f x :
in ...

map f xs

Core (abstract):

Let "map" (Abs "f" (Abs "1"
(Case (Ref "1")
[(ALt “[]1" [], Lit "[]")
, (ALt ":" ["x","xs"],
App (Lit ":")
(App (Ref "f") (Ref "x"))

(App (App (Ref "map") (Ref "f"))

(Ref "xs"))]

Encoding core expressions as graphs

literals & primitives leaves
function application apply node: @
abstraction lambda node: A
let-expression lambda + apply

references back/cross edges

Lazy evaluation

Goal: evaluate as few application nodes as possible

an unevaluated application node is called a thunk

An expression e is in weak head normal form (WHNF) if it is:
* a literal or a variable

® an abstraction

e a partially applied } may contain thunks
brimitive function or constructor

In other words, e has no top-level redex!

Graph reduction

4)

Repeat until graph is in WHNF:
e start from root, find redex
 if LHS is primitive function, reduce arguments

* perform reduction
N

Finding a redex:

first @ on left spine whose
whose LHS is not an @

Constructor and primitive reduction

If G is constructor of arity k < n

{I. substitute (@ nodes w/ constructor node}

If G is primitive of arity k < n
|. (reduce arguments)

2. apply function

I\ /

B-reduction

If Gis a N\ node

p
|. copy lambda body
2. redirect references to argument

3. overwrite root
_

