
Graph Reduction

 1

How to interpret Haskell

 2

1. Translate Haskell into a small core language
• lambda calculus + literals + recursive let + case + ...

2. Represent core expressions as DAGs
• references are edges in the graph
• supports sharing during evaluation

3. Evaluate by “graph reduction”
• set of graph transformation rules
• implements lazy evaluation

Core language

 3

data Literal = ...

data Expr
 = Lit Literal
 | Ref Var
 | App Expr Expr
 | Lam Var Expr
 | Let Var Expr Expr
 | Case Expr [(Pat,Expr)]

data Pat
 = Default
 | Alt Literal [Var]

lambda calculus}

data constructors, primitive functions,
string and numeric literals, …

Example translation

 4

data Literal = ...

data Expr
 = Lit Literal
 | Ref Var
 | App Expr Expr
 | Lam Var Expr
 | Let Var Expr Expr
 | Case Expr [(Pat,Expr)]

data Pat
 = Default
 | Alt Literal [Var]

map f [] = []
map f (x:xs) = f x : map f xs

Haskell:

let map = λf.λl.
 case l of
 [] -> []
 (x:xs) -> f x : map f xs
in ...

Core (concrete):

Core (abstract):
Let "map" (Abs "f" (Abs "l"
 (Case (Ref "l")
 [(Alt "[]" [], Lit "[]")
 ,(Alt ":" ["x","xs"],
 App (Lit ":")
 (App (Ref "f") (Ref "x"))
 (App (App (Ref "map") (Ref "f"))
 (Ref "xs"))]
 ...

Recall: can translate  
type classes to dictionaries!

Encoding core expressions as graphs

 5

literals & primitives leaves

function application apply node: @

abstraction lambda node: λ

let-expression lambda + apply

references back/cross edges

2 + :

f e

f e

@
➔

λx.e
x e

λ
➔

let x = b in e 
≡  

(λx.e) b
➔

x e

λ b

@

Lazy evaluation

 6

an unevaluated application node is called a thunk

Goal: evaluate as few application nodes as possible

How do we know when we’re done?

An expression e is in weak head normal form (WHNF) if it is:

• a literal or a variable

• an abstraction

• a partially applied 
primitive function or constructor

In other words, e has no top-level redex!

= nothing left to reduce in call-by-need (lazy) evaluation

may contain thunks}

Graph reduction

 7

Repeat until graph is in WHNF:
• start from root, find redex

• if LHS is primitive function, reduce arguments
• perform reduction

e2

@

G e1

@

en

@

en-1

@

*

Finding a redex:  
first @ on left spine whose  
whose LHS is not an @

Constructor and primitive reduction

 8

If G is constructor of arity k < n

e2

@

G e1

@

en

@

en-1

@

*

1. substitute @ nodes w/ constructor node

If G is primitive of arity k < n

1. (reduce arguments)
2. apply function

β-reduction

 9

1. copy lambda body
2. redirect references to argument
3. overwrite root

e2

@

G e1

@

en

@

en-1

@

*

If G is a λ node

