Refactoring

-

kl lﬂe OI\/L7/ \/A(,ig,{ M€ ASURE. Me /T
Cj Cocle QMALH"\/I WrFS/minn—f_

XLD’*A\
Wi F WTF ll/.g“‘~ /3“
_ [
/'_ —
R \ { J/
l P o
AN B
REeView ReView J = Ma
-1 wr
- “‘/ -
= 8
x
N Goock code . BAd cocle. 3'

Outline

e Good Haskell style
* What is refactoring?
* Strategies for refactoring

* Emphasizing function composition

Good Haskell style

Why it matters:
* layout is significant!
® expunging misconceptions
* we care about elegance

Easy stuff:
* use spaces (layout)

* align patterns and guards

See course web page for links to style guides

Formatting function applications

ME
@S

< o

Sy AR

Function application ...

®* is just a space f(x)
® associates to the left (F x) vy
* binds most strongly (f x) + (g vy)

Use parentheses only to override this behavior:

f X
f xvy

fx+gy

f (g9 x)

f (x + vy)

Use pattern matching

pop :: [a] -> (a, [a])

pop xs = 1if not (null xs)
then (head xs, tail xs)
else error “empty”

pop :: [a] -> (a, [a])

pop xs = case xs of
(y:ys) -> (y,ys)
[] -> error “empty”

pop :: [a] -> (a, [a])
pop (x:Xxs) = (X,Xs)
pop [] = error “empty”

Prefer pattern guards

-

S

elem Int -> Tree Int -> Bool
elem _ Leaf = False
elem x (Node y 1 r) =
if x == y then True
else if x < y then elem 1 Xx
else elem r x
elem Int -> Tree Int -> Bool
elem _ Leaf = False
elem x (Node y 1 r)
| X == vy = True
| X < vy = elem 1 Xx
| otherwise = elem r x

Outline

* Good Haskell style
e What is refactoring?
* Strategies for refactoring

* Emphasizing function composition

Why refactor?

* make code easier to read and maintain
* generalize to new/related problems

* identify reusable components
[Refactor j

~Q
s

* gain deeper insights

0..
v
ay

‘[Define functions j

»[|dentify/define types j

What is refactoring?

... a disciplined technique for restructuring existing code, altering

its internal structure without changing its external behavior
— Martin Fowler

sum xs = 1f null xs then 0
else head xs + sum (tail xs)

0)
X + sum Xs sum = foldr (+) ©

)

sum []
sum (X:xs)

Refactoring relations

Laws that are the formal basis for refactoring

Eta reduction

(\x -> f x) <==> f]

Map fusion

map f . map g <==> map (f . g)]

“Algebra of computer programs”™

John Backus, Can Programming be Liberated from the von Neumann style?
ACM Turing Award Lecture, 1978

Outline

* Good Haskell style
* What is refactoring?
e Strategies for refactoring

* Emphasizing function composition

Strategy: systematic generalization

commas :: [String] -> [String]
commas [] =[]

commas [X] [X]

commas (X:XS) X

" " . commas Xxs

... Introduce parameters for constants

seps :: String -> [String] -> [String]

seps _ [] = [1
seps _ [X] = [x]
seps S (X:xs) = X : s : seps S XS

... then broaden the types

intersperse :: a -> [a] -> [a]

intersperse _ [] =[]

intersperse _ [X] = [x]

intersperse s (X:Xs) = X : s : 1ntersperse s Xs

Strategy: abstract repeated templates

showResult :: Maybe Float -> String
showResult Nothing | = "ERROR" R d .
showResult | (Just v) = show v epeate structure.
getCommand :: Maybe Dir -> Command .
getCommand |Nothing | = Stay ¢ defGUIt value lfempty
getCommand{(Just d); = Move d o apply function otherwise
addToMaybe :: Int -> Maybe Int -> Int
addToMaybe x Nothing ' = x_
addToMaybe x(Just y)/ = X + Yy
p
maybe :: b -> (a -> b) -> Maybe a -> b]
maybe b _ Nothing = b P .
maybe _ fi(Just a)/=T a showResult = maybe "ERROR" show
> 1 getCommand = maybe Stay Move
addToMaybe x = maybe x (x+)

\ A

Notes on abstraction

abstraction: to separate a concept from its
specific instances and make it reusable

Haskell has powerful tools for abstraction:

¢ referential transparency
shared code can always safely be factored out

¢ higher-order functions
can capture high-level patterns as functions

¢ lazy evaluation
supports separation of concerns and
definition of new control structures

e type classes
describe common interface across many data types

Refactoring data types

data EXxpr

data EXxpr

data Op =

Lit
Ref
Add
Sub
Mul

Lit
Ref
Bin

Int
var
EXpr EXpr
EXpr EXpr
EXpr EXpr

simplifies writing many functions

... especially when we don't need

to distinguish these cases
Int

Var
Op EXpr EXpr

Add | Sub | Mul

Outline

* Good Haskell style
* What is refactoring?
* Strategies for refactoring

e Emphasizing function composition

Function composition

[(.) :: (b ->¢) -> (a ->b) ->a -> c]

{f (g x) <==> (f . g) x]

fi (f2 x (f3 (f4 y)))

(f1 . f2 x . f3 . f4) y

Advantages:
* emphasizes functions over results
* reveals opportunities for eta reduction (next slide)

Eta reduction (\x -> f x) <==> f]

data Base = A | C | G | T deriving Show
type DNA = [Base]

showDNA :: DNA -> String
showDNA bs = concat (map (\b“5>_$howab) bs)

showDNA :: DNA -> String Eta reduction
showDNA bs = concat (map show bs)

Rewrite as composition

showDNA :: DNA -> String f (g x) <==> (f . g) x
showDNA bs = (concat . map show) bs

To lambda-notation
showDNA :: DNA -> String fXxX=y<==>f=\x ->y
showDNA = \bs -> (concat . map show) bs

showDNA :: DNA -> String Eta reduction
showDNA concat . map show

Point-free style

Functions are defined:
* without referring to their arguments by name
* only by applying and composing other functions

sum :: [Int] -> Int
sum = foldr (+) ©

showDNA :: DNA -> String
showDNA = concat . map show

topGrades :: [(Name,Grade)] -> [Name]
topGrades = map fst . filter ((>= 0.9) . snd)

Point-free tradeoffs

Advantages:

* emphasize functions over data

e what does this function do? vs. how does it do it?
* result of refactoring — often leads to insights
* shows off how clever you are :-)

But ... it's easy to get carried away — leads to obfuscation

flip flip snd . (ap .) . flip flip fst .
((.) .) . flip . ((C.) - (,)) .)

“pointless style”

vs. (\f g (x,¥) -> (f x, gy))

20

Ordering arguments

Note that library functions are always:
* parameters first
* primary data structure last

map . (a -> b) -> [a] -> [b]
foldr :: (a ->b ->b) ->b ->[a] -> b
maybe :: b -> (a -> b) -> Maybe a -> a

Supports partial application and composition — you should do it too!

showMaybeInts :: [Maybe Int] -> String
showMaybeInts = concat . intersperse "," . map (maybe "" show)

21

