
Refactoring

 1

Outline

 2

• Good Haskell style

• What is refactoring?

• Strategies for refactoring

• Emphasizing function composition

Good Haskell style

 3

Easy stuff:
• use spaces (layout)
• align patterns and guards

Why it matters:
• layout is significant!
• expunging misconceptions
• we care about elegance

See course web page for links to style guides

Formatting function applications

 4

f(x) f x

Function application . . .
• is just a space

• associates to the left
• binds most strongly

(f x) y f x y

(f x) + (g y) f x + g y

f (g x)
Use parentheses only to override this behavior:

f (x + y)

Use pattern matching

 5

pop :: [a] -> (a, [a])
pop xs = if not (null xs)
 then (head xs, tail xs)
 else error “empty”

pop :: [a] -> (a, [a])
pop xs = case xs of
 (y:ys) -> (y,ys)
 [] -> error “empty”

pop :: [a] -> (a, [a])
pop (x:xs) = (x,xs)
pop [] = error “empty”

Prefer pattern guards

 6

elem :: Int -> Tree Int -> Bool
elem _ Leaf = False
elem x (Node y l r) =
 if x == y then True
 else if x < y then elem l x
 else elem r x

elem :: Int -> Tree Int -> Bool
elem _ Leaf = False
elem x (Node y l r)
 | x == y = True
 | x < y = elem l x
 | otherwise = elem r x

Outline

 7

• Good Haskell style

• What is refactoring?

• Strategies for refactoring

• Emphasizing function composition

Why refactor?

 8

Identify/define types

Define functions

Refactor

• make code easier to read and maintain
• generalize to new/related problems
• identify reusable components

• gain deeper insights

What is refactoring?

 9

. . . a disciplined technique for restructuring existing code, altering
its internal structure without changing its external behavior

— Martin Fowler

sum xs = if null xs then 0
 else head xs + sum (tail xs)

sum [] = 0
sum (x:xs) = x + sum xs sum = foldr (+) 0

Refactoring relations

 10

Laws that are the formal basis for refactoring

(\x -> f x) <==> f

Eta reduction

map f . map g <==> map (f . g)

Map fusion

John Backus, Can Programming be Liberated from the von Neumann style?
ACM Turing Award Lecture, 1978

“Algebra of computer programs”

Outline

 11

• Good Haskell style

• What is refactoring?

• Strategies for refactoring

• Emphasizing function composition

Strategy: systematic generalization

 12

commas :: [String] -> [String]
commas [] = []
commas [x] = [x]
commas (x:xs) = x : ", " : commas xs

. . . introduce parameters for constants
seps :: String -> [String] -> [String]
seps _ [] = []
seps _ [x] = [x]
seps s (x:xs) = x : s : seps s xs

intersperse :: a -> [a] -> [a]
intersperse _ [] = []
intersperse _ [x] = [x]
intersperse s (x:xs) = x : s : intersperse s xs

. . . then broaden the types

Strategy: abstract repeated templates

 13

showResult :: Maybe Float -> String
showResult Nothing = "ERROR"
showResult (Just v) = show v

getCommand :: Maybe Dir -> Command
getCommand Nothing = Stay
getCommand (Just d) = Move d

addToMaybe :: Int -> Maybe Int -> Int
addToMaybe x Nothing = x
addToMaybe x (Just y) = x + y

Repeated structure:

• pattern match

• default value if empty

• apply function otherwise

maybe :: b -> (a -> b) -> Maybe a -> b
maybe b _ Nothing = b
maybe _ f (Just a) = f a showResult = maybe "ERROR" show

getCommand = maybe Stay Move
addToMaybe x = maybe x (x+)

Notes on abstraction

 14

abstraction: to separate a concept from its
specific instances and make it reusable

Haskell has powerful tools for abstraction:

• referential transparency 
shared code can always safely be factored out

• higher-order functions 
can capture high-level patterns as functions

• lazy evaluation  
supports separation of concerns and 
definition of new control structures

• type classes 
describe common interface across many data types

Refactoring data types

 15

data Expr = Lit Int
 | Ref Var
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr

Factor out shared structure:

data Expr = Lit Int
 | Ref Var
 | Bin Op Expr Expr

data Op = Add | Sub | Mul

simplifies writing many functions

. . . especially when we don't need
to distinguish these cases

(BinOp.[1-3].hs)

Outline

 16

• Good Haskell style

• What is refactoring?

• Strategies for refactoring

• Emphasizing function composition

Function composition

 17

f (g x) <==> (f . g) x

f1 (f2 x (f3 (f4 y))) (f1 . f2 x . f3 . f4) y

Advantages:
• emphasizes functions over results
• reveals opportunities for eta reduction (next slide)

(.) :: (b -> c) -> (a -> b) -> a -> c

Eta reduction

 18

(\x -> f x) <==> f

showDNA :: DNA -> String
showDNA bs = concat (map (\b -> show b) bs)

data Base = A | C | G | T deriving Show
type DNA = [Base]

showDNA :: DNA -> String
showDNA bs = concat (map show bs)

showDNA :: DNA -> String
showDNA = concat . map show

showDNA :: DNA -> String
showDNA bs = (concat . map show) bs

showDNA :: DNA -> String
showDNA = \bs -> (concat . map show) bs

Eta reduction

Rewrite as composition

To lambda-notation

Eta reduction

f (g x) <==> (f . g) x

f x = y <==> f = \x -> y

Point-free style

 19

sum :: [Int] -> Int
sum = foldr (+) 0

Functions are defined:
• without referring to their arguments by name
• only by applying and composing other functions

topGrades :: [(Name,Grade)] -> [Name]
topGrades = map fst . filter ((>= 0.9) . snd)

showDNA :: DNA -> String
showDNA = concat . map show

Point-free tradeoffs

 20

Advantages:
• emphasize functions over data

• what does this function do? vs. how does it do it?
• result of refactoring – often leads to insights
• shows off how clever you are :-)

But . . . it's easy to get carried away – leads to obfuscation

flip flip snd . (ap .) . flip flip fst .
((.) .) . flip . (((.) . (,)) .)

(\f g (x,y) -> (f x, g y))vs.
“pointless style”

Ordering arguments

 21

Note that library functions are always:
• parameters first
• primary data structure last

map :: (a -> b) -> [a] -> [b]
foldr :: (a -> b -> b) -> b -> [a] -> b
maybe :: b -> (a -> b) -> Maybe a -> a

showMaybeInts :: [Maybe Int] -> String
showMaybeInts = concat . intersperse "," . map (maybe "" show)

Supports partial application and composition – you should do it too!

