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What is a type class?
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An interface that is supported by many different types

class Eq a where 
  (==) :: a -> a -> Bool

class Show a where 
  show :: a -> String

class Num a where 
  (+) :: a -> a -> a 
  (*) :: a -> a -> a 
  negate :: a -> a 
  ...

. . . similar to a Java/C# interface

A set of types that have a common behavior

types whose values can be  
compared for equality

types whose values can be  
shown as strings

types whose values can be  
manipulated like numbers



Constraining types
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class Eq a where 
  (==) :: a -> a -> Bool

length :: [a] -> Int 
length []     = 0 
length (_:xs) = 1 + length xs

elem :: Eq a => a -> [a] -> Bool 
elem _ []     = False 
elem y (x:xs) = x == y || elem y xs

List elements can be of any type

List elements must be of a type that supports equality!

use method ⇒ add constraint



Anatomy of a type class definition
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class Eq a where 
  (==) :: a -> a -> Bool 
  (/=) :: a -> a -> Bool 
   
  x == y = not (x /= y) 
  x /= y = not (x == y)

class name
variable representing 
instance type

} methods

} default implementations
must define either  
(==) or (/=)



Anatomy of a type class instance
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instance Eq Bool where 
  True  == True  = True 
  False == False = True 
  _     == _     = False

class name
type we're implementing 
the interface for

} regular function  
definition
don't need to define (/=)



Constraints on instances

 7

instance Eq a => Eq [a] where 
  []     == []     = True 
  (x:xs) == (y:ys) = x == y && xs == ys

if we can check equality of a then we can check equality of [a]

(==) for element type a recursively apply
(==) for type [a]

instance (Eq a, Eq b) => Eq (a,b) where 
  (a1,b1) == (a2,b2) = a1 == a2 && b1 == b2

(==) for type a (==) for type b



Deriving type class instances
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Generate a “standard” instance for your own data type

• derived from the structure of your type

• possible only for some built-in type classes 
(Eq, Ord, Enum, Show, . . .)

data Set a = Empty 
           | Elem a (Set a) 
  deriving (Eq,Show)

instance Eq a => Eq (Set a) where 
  Empty      == Empty      = True 
  Elem a1 s1 == Elem a2 s2 = a1 == a2 && s1 == s2 
  _          == _          = False 
instance Show a => Show (Set a) where 
  show Empty      = "Empty" 
  show (Elem a s) = "(Elem " ++ show a ++ 
                    " " ++ show s ++ ")"

if this isn't what you want,  
write a custom instance!

(Time.hs)



Class extension
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class Eq a => Ord a where 
  compare              :: a -> a -> Ordering 
  (<), (<=), (>=), (>) :: a -> a -> Bool 
  max, min             :: a -> a -> a

data Ordering = LT | EQ | GT

find :: Ord a => a -> Tree a -> Bool 
find _ Leaf                     = False 
find x (Node y l r) | x == y    = True 
                    | x <  y    = find x l 
                    | otherwise = find y r

“superclass”
type class we’re  
defining a.k.a. “subclass”

any instance of Ord must
also be an instance of Eq

why don't we need a  
constraint for Eq?
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Associated laws
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Most type classes come with laws
= equations or properties that every instance must satisfy

class Monoid a where 
  mempty  :: a 
  mappend :: a -> a -> a

mappend x mempty  <=>  x 

mappend mempty x  <=>  x 

mappend x (mappend y z)  
  <=>  mappend (mappend x y) z

left identity

right identity

associativity

library authors will assume your 
instances follow the laws!
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Type classes vs. explicit parameters
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qsort :: Ord a => [a] -> [a]  
qsort []     = [] 
qsort (x:xs) = qsort [y | y <- xs, y < x] 
            ++ [x] 
            ++ qsort [y | y <- xs, y >= x]

(QSort.hs)

qsort :: (a -> a -> Bool) -> [a] -> [a] 
qsort lt []     = [] 
qsort lt (x:xs) = qsort lt [y | y <- xs, lt y x] 
               ++ [x] 
               ++ qsort lt [y | y <- xs, not (lt y x)] 

Compare via type class

Compare via higher-order comparison function

What are the tradeoffs of these approaches?



Type classes vs. explicit parameters
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Rely on type class:

• do the same thing for each type

• don’t need to pass around function parameter

Pass explicit parameter:

• can do different things for the same type

• must thread parameters through functions

In Data.List see *By functions for passing equivalence predicate  
rather than relying on Eq



Type classes and extensibility
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(ShapeData.hs, ShapeClass.hs)

Consider a shape library:
• easy to add new operations
• hard to add new shapes

Using type classes, we can 
invert this extensibility problem!

type Radius = Float 
type Length = Float 
type Width  = Float 

data Shape = Circle Radius 
           | Rectangle Length Width 

area :: Shape -> Float 
area (Circle r)      = pi * r * r 
area (Rectangle l w) = l * w

perim :: Shape -> Float 
perim (Circle r)      = 2 * pi * r 
perim (Rectangle l w) = 2*l + 2*w

           | Triangle Length

area (Triangle l)    = ...

perim (Triangle l)    = l + l + l

“hard” = not modular



Type classes and extensibility
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data-type encoding type-class encoding

concept data type type class
cases data constructors data types
operations functions methods

• easy to add ops
• hard to add cases

• hard to add ops
• easy to add cases

What are some other tradeoffs of these approaches?

Later we’ll see encodings that support extension in both dimensions!
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Type classes vs. dictionary pattern
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Phil Wadler, How to make ad-hoc polymorphism less ad hoc
POPL 1989

class Num a where 
  (+) :: a -> a -> a 

instance Num Int where 
  (+) = primIntAdd 

instance Num Float where 
  (+) = primFloatAdd 

double :: Num a => a -> a 
double x = x + x

data NumD a = ND (a -> a -> a) 

add :: NumD a -> a -> a -> a 
add (ND f) = f 

intD :: NumD Int 
intD = ND primIntAdd 

floatD :: NumD Float 
floatD = ND primFloatAdd 

double :: NumD a -> a -> a 
double d x = add d x x

explicitly pass dictionary

(MonoidClass.hs)



Multiple constraints and super classes
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doubles :: (Num a, Num b) => a -> b -> (a,b) 
doubles x y = (x + x, y + y)

Multiple class constraints:

doubles :: (NumD a, NumD b) -> a -> b -> (a,b) 
doubles (da,db) x y = (add da x x, add db y y)

Lead to multiple dictionaries:

class Eq a where 
  (==) :: a -> a -> Bool 

class Eq a => Ord a where 
  (<)  :: a -> a -> Bool 
  ...

Super classes:
data EqD a = 
  ED (a -> a -> Bool) 

data OrdD a = 
  OD (EqD a) (a -> a -> Bool) 
...

Lead to nested dictionaries:



Translating to the dictionary pattern
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Type classes are implemented in Haskell by dictionaries:

• translate type classes to dictionary data types

• translate instances to dictionary values

• translate constraints to function arguments

• use type system to automatically insert  
dictionary values

Phil Wadler, How to make ad-hoc polymorphism less ad hoc
POPL 1989
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Multi-parameter type classes
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Defines a relation between types

(Cast.hs, Collection.hs)

Defines an interface for intersection of types

Can convert from a to b

class Cast a b where 
  cast :: a -> b

Implement collection interface for pair of:
• c – container type
• a – element type

class Collection c a where 
  empty  :: c a 
  insert :: a -> c a -> c a 
  member :: a -> c a -> Bool

Turn on your GHC extensions!


