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What is a type class?

An interface that is supported by many different types

A set of types that have a common behavior

class Eq a where types whose values can be
(==) :: a -> a -> Bool compared for equality

class Show a where tybes whose values can be
show :: a -> String shown as strings

class Num a where tybes whose values can be
(+) :: a ->a ->a manipulated like numbers
(*) :: a ->a ->a
negate :: a -> a




class Eq a where
(==) :: a -> a -> Bool

Constraining types

List elements can be of any type

length :: [a] -> Int
length [] 0
length (_:xs) 1 + length xs

List elements must be of a type that supports equality!

elem ::a -> [a] -> Bool

elem _ [] = False

elem y (x:xs) =|| elem y xs



Anatomy of a type class definition

variable representing

class name instance type
o
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool methods
§ 72 ¥ 2 23: & éz % } default implementations




Anatomy of a type class instance

tybe we're implementing

class name the interface for
instance Eq Bool where
True == True True

regular function
definition

False == False = True }




Constraints on instances

instance | Eq a => Eq [a] where
[] =[] = True
(X:xs) == (y:ys) = x ==y && XS == ysS
7 X
(==) for element type a recursively apply

(==) for type [a]

instance (Eq a, Eq b) => Eq (a,b) where
(al1,bl) == (a2,b2) = al == a2 && bl == b2

z \

(==) for type a (==) fOI‘ type b




Deriving type class instances

Generate a “standard” instance for your own data type

* derived from the structure of your type

* possible only for some built-in type classes
(Eq, Ord, Enum, Show, . . .)

data Set a = Empty
Elem a (Set a)

deriving (Eq,Show ,:b

instance Eq a => Eq (Set a) where

if this isn't what you want,
write a custom instance!

Empty == Empty = True
Elem al s1 == Elem a2 s2 = al == a2 && sl == s2
_ == _ = False

instance Show a => Show (Set a) where

show Empty
show (Elem a s)

llEmptyll
"(Elem " ++ show a ++
]| ]| ++ ShOW S ++ II)II




Class extension

type class we're

“superclass” defining a.k.a. “subclass”
g o
class Eq a => Ord a where
compare ;. a -> a -> Ordering
(<), (<=), (=), (®) :: a -> a -> Bool
max, min . a -=>a ->a
data Ordering = LT | EQ | GT
find ::a -> Tree a -> Bool
find _ Lea = False
find x (Node y 1 r) | x == = True
|[(x< y] = find x 1
| O erw1se = find y r
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Associated laws

Most type classes come with laws
= equations or properties that every instance must satisfy

class Monoid a where
mempty :: a
mappend :: a -> a -> a

left identity ~ mappend X mempty <=> X
right identity mappend mempty x <=> X

associativity mappend x (mappend y z)
<=> mappend (mappend X y) z
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Type classes vs. explicit parameters

Compare via type class

gsort ::[a] -> [a]
gsort [] = 11
gsort (x:xs) = qsort [y | y <- xs, [y < x|
++ [X]
++ qsort [y | ¥ <- Xxs, |y >= X|

qsort :: (a -> a -> Bool) -> [a] -> [a]

gsort |1t| [] =[]

gsort |1t) (x:xs) = gsort |[1t| [y | V¥ <- xs, 1t y X]
++ [X]

++ qsort (1t [y | ¥ <- xs, |not (1t y Xx)]]

What are the tradeoffs of these approaches? (QSorths)
|13



Type classes vs. explicit parameters

Rely on type class:
* do the same thing for each type

* don’t need to pass around function parameter

Pass explicit parameter:

* can do different things for the same type

* must thread parameters through functions

In Data.List see *By functions for passing equivalence predicate
rather than relying on Eq



Type classes and extensibility

Consider a shape library:

type Radius = Float .
type Length = Float * easy to add new operations
type Width = Float  hard to add new shapes

data Shape = Circle Radius
| Rectangle Length Width

| Triangle Length

area :: Shape -> Float

area (Circle r) pL *r *r

area (Rectangle 1 w) =1 * w

area (Triangle 1) = Using type classes, we can
invert this extensibility problem!

perim :: Shape -> Float

perim (Circle r) =2 *p1r*r

perim (Rectangle 1 w) = 2*1 + 2*w

perim (Triangle 1) =1+1+1

>—

(ShapeData.hs, ShapeClass.hs) - s



Type classes and extensibility

data-type encoding type-class encoding

concept data type type class
cases data constructors  data types
operations |functions methods

* easy to add ops * hard to add ops
* hard to add cases * easy to add cases

What are some other tradeoffs of these approaches?

Later we’ll see encodings that support extension in both dimensions!
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Type classes vs. dictionary pattern

class Num a where data NumD a = ND (a -> a -> a)
(+) :: a -> a -> a
add :: NumD a -> a -> a -> a
instance Num Int where add (ND f) = f

(+) = primIntAdd

intD :: NumD Int

instance Num Float where intD = ND primIntAdd
(+) = primFloatAdd

floatD :: NumD Float
double :: Num a => a -> a floatD = ND primFloatAdd

double X = x + X
double :: NumD a -> a -> a

double d x = add d x Xx

)ﬂ

explicitly pass dictionary

Phil Wadler, How to make ad-hoc polymorphism less ad hoc =
POPL 1989 (MonoidClass.hs)
S— 18



Multiple constraints and super classes

Multiple class constraints:

doubles :: (Num a, Num b) => a -> b -> (a,b)
doubles Xy = (X + X, y + V)

Lead to multiple dictionaries:

doubles :: (NumD a, NumD b) -> a -> b -> (a,b)
doubles (da,db) x y = (add da x x, add db y y)

Super classes: Lead to nested dictionaries:
class Eq a where data EgD a =

(==) :: a -> a -> Bool ED (a -> a -> Bool)
class Eqg a => Ord a where data OrdD a =

(<) :: a ->a -> Bool oD (EqDb a) (a -> a -> Bool)



Translating to the dictionary pattern

Type classes are implemented in Haskell by dictionaries:

* translate type classes to dictionary data types
* translate instances to dictionary values
* translate constraints to function arguments

® use type system to automatically insert
dictionary values

Phil Wadler, How to make ad-hoc polymorphism less ad hoc
POPL 1989
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Multi-parameter type classes

Defines a relation between types

Can convert froma to b

class Cast a b where
cast :: a -> b

Defines an interface for intersection of types

Implement collection interface for pair of:
® C — container type
* g — element type

class Collection ¢ a where

empty :: Cc a
insert :: a ->c a -> ¢ a
member :: a -> ¢ a -> Bool

(Cast.hs, Collection.hs)
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