
Type Classes

 1

Outline

 2

• Introduction to type classes

• Associated laws

• Tradeoffs and extensibility

• Relationship to dictionary pattern

• Multi-parameter type classes

What is a type class?

 3

An interface that is supported by many different types

class Eq a where
 (==) :: a -> a -> Bool

class Show a where
 show :: a -> String

class Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a
 ...

. . . similar to a Java/C# interface

A set of types that have a common behavior

types whose values can be  
compared for equality

types whose values can be  
shown as strings

types whose values can be  
manipulated like numbers

Constraining types

 4

class Eq a where
 (==) :: a -> a -> Bool

length :: [a] -> Int
length [] = 0
length (_:xs) = 1 + length xs

elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem y (x:xs) = x == y || elem y xs

List elements can be of any type

List elements must be of a type that supports equality!

use method ⇒ add constraint

Anatomy of a type class definition

 5

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool
  
 x == y = not (x /= y)
 x /= y = not (x == y)

class name
variable representing 
instance type

} methods

} default implementations
must define either  
(==) or (/=)

Anatomy of a type class instance

 6

instance Eq Bool where
 True == True = True
 False == False = True
 _ == _ = False

class name
type we're implementing 
the interface for

} regular function  
definition
don't need to define (/=)

Constraints on instances

 7

instance Eq a => Eq [a] where
 [] == [] = True
 (x:xs) == (y:ys) = x == y && xs == ys

if we can check equality of a then we can check equality of [a]

(==) for element type a recursively apply
(==) for type [a]

instance (Eq a, Eq b) => Eq (a,b) where
 (a1,b1) == (a2,b2) = a1 == a2 && b1 == b2

(==) for type a (==) for type b

Deriving type class instances

 8

Generate a “standard” instance for your own data type

• derived from the structure of your type

• possible only for some built-in type classes 
(Eq, Ord, Enum, Show, . . .)

data Set a = Empty
 | Elem a (Set a)
 deriving (Eq,Show)

instance Eq a => Eq (Set a) where
 Empty == Empty = True
 Elem a1 s1 == Elem a2 s2 = a1 == a2 && s1 == s2
 _ == _ = False
instance Show a => Show (Set a) where
 show Empty = "Empty"
 show (Elem a s) = "(Elem " ++ show a ++
 " " ++ show s ++ ")"

if this isn't what you want,  
write a custom instance!

(Time.hs)

Class extension

 9

class Eq a => Ord a where
 compare :: a -> a -> Ordering
 (<), (<=), (>=), (>) :: a -> a -> Bool
 max, min :: a -> a -> a

data Ordering = LT | EQ | GT

find :: Ord a => a -> Tree a -> Bool
find _ Leaf = False
find x (Node y l r) | x == y = True
 | x < y = find x l
 | otherwise = find y r

“superclass”
type class we’re  
defining a.k.a. “subclass”

any instance of Ord must
also be an instance of Eq

why don't we need a  
constraint for Eq?

Outline

 10

• Introduction to type classes

• Associated laws

• Tradeoffs and extensibility

• Relationship to dictionary pattern

• Multi-parameter type classes

Associated laws

 11

Most type classes come with laws
= equations or properties that every instance must satisfy

class Monoid a where
 mempty :: a
 mappend :: a -> a -> a

mappend x mempty <=> x

mappend mempty x <=> x

mappend x (mappend y z)  
 <=> mappend (mappend x y) z

left identity

right identity

associativity

library authors will assume your
instances follow the laws!

Outline

 12

• Introduction to type classes

• Associated laws

• Tradeoffs and extensibility

• Relationship to dictionary pattern

• Multi-parameter type classes

Type classes vs. explicit parameters

 13

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort [y | y <- xs, y < x]
 ++ [x]
 ++ qsort [y | y <- xs, y >= x]

(QSort.hs)

qsort :: (a -> a -> Bool) -> [a] -> [a]
qsort lt [] = []
qsort lt (x:xs) = qsort lt [y | y <- xs, lt y x]
 ++ [x]
 ++ qsort lt [y | y <- xs, not (lt y x)]

Compare via type class

Compare via higher-order comparison function

What are the tradeoffs of these approaches?

Type classes vs. explicit parameters

 14

Rely on type class:

• do the same thing for each type

• don’t need to pass around function parameter

Pass explicit parameter:

• can do different things for the same type

• must thread parameters through functions

In Data.List see *By functions for passing equivalence predicate  
rather than relying on Eq

Type classes and extensibility

 15
(ShapeData.hs, ShapeClass.hs)

Consider a shape library:
• easy to add new operations
• hard to add new shapes

Using type classes, we can
invert this extensibility problem!

type Radius = Float
type Length = Float
type Width = Float

data Shape = Circle Radius
 | Rectangle Length Width

area :: Shape -> Float
area (Circle r) = pi * r * r
area (Rectangle l w) = l * w

perim :: Shape -> Float
perim (Circle r) = 2 * pi * r
perim (Rectangle l w) = 2*l + 2*w

 | Triangle Length

area (Triangle l) = ...

perim (Triangle l) = l + l + l

“hard” = not modular

Type classes and extensibility

 16

data-type encoding type-class encoding

concept data type type class
cases data constructors data types
operations functions methods

• easy to add ops
• hard to add cases

• hard to add ops
• easy to add cases

What are some other tradeoffs of these approaches?

Later we’ll see encodings that support extension in both dimensions!

Outline

 17

• Introduction to type classes

• Associated laws

• Tradeoffs and extensibility

• Relationship to dictionary pattern

• Multi-parameter type classes

Type classes vs. dictionary pattern

 18

Phil Wadler, How to make ad-hoc polymorphism less ad hoc
POPL 1989

class Num a where
 (+) :: a -> a -> a

instance Num Int where
 (+) = primIntAdd

instance Num Float where
 (+) = primFloatAdd

double :: Num a => a -> a
double x = x + x

data NumD a = ND (a -> a -> a)

add :: NumD a -> a -> a -> a
add (ND f) = f

intD :: NumD Int
intD = ND primIntAdd

floatD :: NumD Float
floatD = ND primFloatAdd

double :: NumD a -> a -> a
double d x = add d x x

explicitly pass dictionary

(MonoidClass.hs)

Multiple constraints and super classes

 19

doubles :: (Num a, Num b) => a -> b -> (a,b)
doubles x y = (x + x, y + y)

Multiple class constraints:

doubles :: (NumD a, NumD b) -> a -> b -> (a,b)
doubles (da,db) x y = (add da x x, add db y y)

Lead to multiple dictionaries:

class Eq a where
 (==) :: a -> a -> Bool

class Eq a => Ord a where
 (<) :: a -> a -> Bool
 ...

Super classes:
data EqD a =
 ED (a -> a -> Bool)

data OrdD a =
 OD (EqD a) (a -> a -> Bool)
...

Lead to nested dictionaries:

Translating to the dictionary pattern

 20

Type classes are implemented in Haskell by dictionaries:

• translate type classes to dictionary data types

• translate instances to dictionary values

• translate constraints to function arguments

• use type system to automatically insert  
dictionary values

Phil Wadler, How to make ad-hoc polymorphism less ad hoc
POPL 1989

Outline

 21

• Introduction to type classes

• Associated laws

• Tradeoffs and extensibility

• Relationship to dictionary pattern

• Multi-parameter type classes

Multi-parameter type classes

 22

Defines a relation between types

(Cast.hs, Collection.hs)

Defines an interface for intersection of types

Can convert from a to b

class Cast a b where
 cast :: a -> b

Implement collection interface for pair of:
• c – container type
• a – element type

class Collection c a where
 empty :: c a
 insert :: a -> c a -> c a
 member :: a -> c a -> Bool

Turn on your GHC extensions!

