Monad Transformers




Background: abstracting over effects

works with any ef

4

fect

add :: Monad m => m Int -> m Int -> m Int

add mx my = do
X <- mx

y <- my
return (x + y)

>>> add readIO readIO
5
V4
12

>>> add [10,20] [1,3,5]
[11,13,15, 21,23, 25]

>>> add (Just 3) (Just 4)
Just 7

>>> add (Just 3) Nothing
Nothing



Monads and effects

Monads help us to structure effects:
e write effect logic once (in Monad instance)
* sequence effectful code (with bind/do-notation)
e abstract over a variety of effects

Monad transformers help us to combine effects:
* write interaction logic once (in MonadTrans instance)
e use multiple effects by layering monad transformers



Monad transformer

~+ =
P
*
1
Vv
*
'
1
Vv
%
1
V
%

Monad (t m) =>

class MonadTrans t where

l1ift :: Monad m => ma -> t m a
return for m return for t m
AV o

{lift . return <==> return}

1ift distributes over bind
[1ift (m >>= f) <==> 1ift m >>= (lift . f)J




Maybe monad transformer

MaybeT :: (* -> *) -> * -> *

{data MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) } ]

Equivalent to:

data MaybeT m a = MaybeT (m (Maybe a))

runMaybeT :: MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT Xx) = X

\ A




Maybe monad transformer
MaybeT :: (* -> *) -> * -> *

{data MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) } ]

~N

-

instance Monad m => Monad (MaybeT m) where
return = MaybeT . return . Just

x >>= f = MaybeT $ do may <- runMaybeT X

/ case may of
Nothing -> return Nothing

_ ' /
do-block in m. Just a -> runMaybeT (f a)

.

~N

-

instance MonadTrans MaybeT where
1ift m = MaybeT (m >>= return . Just)

A




Maybe monad transformer

MaybeT :: (* -> *) -> * -> *

{data MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) } ]

4 )

instance Monad m => MonadPlus (MaybeT m) where
mzero = MaybeT (return Nothing)

mplus x y = MaybeT $ do may <- runMaybeT X
case may of
Just _ -> return may
Nothing -> runMaybeT vy

(Password.hs)
]



State monad transformer
StateT :: * -> (* -> *) -> * -> *

[data StateT s m a = StateT (s ->m (a,s))]

Recall original state monad:

data State s a = State (s -> (a,s))

.

instance Monad (State s) where
return x = State (\s -> (X,s))

State ¢ >= f = State $ \s ->
let (x,t) = c s
State d = f x
ind t




State monad transformer
StateT :: * -> (* -> *) -> * -> *

[data StateT s m a = StateT (s ->m (a,s))]

Recall original state monad:
data State s a = State (s -> (a,s))]

.

instance Monad m => Monad (StateT s m) where
return x = StateT (\s -> return (X,s))

StateT ¢ >= f = StateT $ \s -> do
(x,t) <- ¢ s \do-block in m!

let StateT d = T Xx
return (d t)




Other monad transformers

Box-like monads:
MaybeT (m (Maybe a))
ListT (m [a])
ExceptT (m (Either e a))

Computation-like monads:

Original Transformer
Writer | Writer (a, w) WriterT (m (a, w))
Reader | Reader (r -> a) ReaderT (r -> m a)

State | State (s -> (a, s)) StateT (s -> m (a, s))



Identity monad

A trivial monad — useful base of a monad transformer stack

[data Identity a = Identity { runIdentity :: a }]

4 )

instance Monad Identity where
return = Identity
Identity x >>= f = f x

Maybe a <~> MaybeT Identity a
Writer w a <~> WriterT w Identity a
Reader w a <~> ReaderT w Identity a

State s a <~> StateT s Identity a




Ordering monad transformers

The order that you layer effects matters!

{StateT s (MaybeT Identity) a]

corresponds to: s -> Maybe (a, s)

{MaybeT (StateT s Identity) a]

corresponds to: s -> (Maybe a, s)

& new state even if
computation fails!



(Semi-) automatic lifting

Some type classes to ease or automate lifting in deep stacks

Lift an 10 action through all monad transformers:

class Monad m => MonadIO m where
1iftIO :: I0 a -> m a

“Primitives” that automate lifting:

class Monad m => MonadState s m | m -> s where
get :: ms
put :: s ->m ()

class Monad m => MonadError e m | m -> e where
throwError :: e -> m a
catchError :: ma -> (e ->ma) ->m a

(KitchenSink.hs)

|3



