
Monad Transformers

 1

Background: abstracting over effects

 2

add :: Monad m => m Int -> m Int -> m Int
add mx my = do
 x <- mx
 y <- my
 return (x + y)

works with any effect

>>> add (Just 3) (Just 4)
Just 7

>>> add (Just 3) Nothing
Nothing

Failure

>>> add [10,20] [1,3,5]
[11,13,15,21,23,25]

Nondeterminism

>>> add readIO readIO
5
7
12

IO

tracing, state, exceptions, …

Monads and effects

 3

Monads help us to structure effects:
• write effect logic once (in Monad instance)
• sequence effectful code (with bind/do-notation)

• abstract over a variety of effects

Monad transformers help us to combine effects:

• write interaction logic once (in MonadTrans instance)
• use multiple effects by layering monad transformers

What if we need more than one effect?

Monad transformer

 4

class MonadTrans t where
 lift :: Monad m => m a -> t m a

lift . return <==> return

return for m return for t m

lift (m >>= f) <==> lift m >>= (lift . f)

lift distributes over bind

Monad (t m) =>

m :: * -> *
t :: (* -> *) -> * -> *

Maybe monad transformer

 5

data MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

data MaybeT m a = MaybeT (m (Maybe a))

runMaybeT :: MaybeT m a -> m (Maybe a)
runMaybeT (MaybeT x) = x

Equivalent to:

MaybeT :: (* -> *) -> * -> *

Maybe monad transformer

 6

data MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

instance Monad m => Monad (MaybeT m) where
 return = MaybeT . return . Just

instance MonadTrans MaybeT where
 lift m = MaybeT (m >>= return . Just)

 x >>= f = MaybeT $ do may <- runMaybeT x
 case may of
 Nothing -> return Nothing
 Just a -> runMaybeT (f a)do-block in m!

MaybeT :: (* -> *) -> * -> *

Maybe monad transformer

 7

data MaybeT m a = MaybeT { runMaybeT :: m (Maybe a) }

 mplus x y = MaybeT $ do may <- runMaybeT x
 case may of
 Just _ -> return may
 Nothing -> runMaybeT y

instance Monad m => MonadPlus (MaybeT m) where
 mzero = MaybeT (return Nothing)

(Password.hs)

MaybeT :: (* -> *) -> * -> *

State monad transformer

 8

data StateT s m a = StateT (s -> m (a,s))

instance Monad (State s) where
 return x = State (\s -> (x,s))
 State c >>= f = State $ \s ->
 let (x,t) = c s
 State d = f x
 in d t

data State s a = State (s -> (a,s))

Recall original state monad:

StateT :: * -> (* -> *) -> * -> *

instance Monad m => Monad (StateT s m) where
 return x = StateT (\s -> return (x,s))
 StateT c >>= f = StateT $ \s -> do
 (x,t) <- c s
 let StateT d = f x
 return (d t)

State monad transformer

 9

data StateT s m a = StateT (s -> m (a,s))

data State s a = State (s -> (a,s))

Recall original state monad:

do-block in m!

StateT :: * -> (* -> *) -> * -> *

Other monad transformers

 10

Original Transformer

Writer Writer (a, w) WriterT (m (a, w))

Reader Reader (r -> a) ReaderT (r -> m a)

State State (s -> (a, s)) StateT (s -> m (a, s))

ExceptT (m (Either e a))

MaybeT (m (Maybe a))

ListT (m [a])

Box-like monads:

Computation-like monads:

Identity monad

 11

instance Monad Identity where
 return = Identity
 Identity x >>= f = f x

data Identity a = Identity { runIdentity :: a }

A trivial monad – useful base of a monad transformer stack

Maybe a <~> MaybeT Identity a
Writer w a <~> WriterT w Identity a
Reader w a <~> ReaderT w Identity a
State s a <~> StateT s Identity a

 ...

Ordering monad transformers

 12

The order that you layer effects matters!

StateT s (MaybeT Identity) a

MaybeT (StateT s Identity) a

corresponds to: s -> Maybe (a, s)

corresponds to: s -> (Maybe a, s)
new state even if
computation fails!

(Semi-) automatic lifting

 13

Some type classes to ease or automate lifting in deep stacks

class Monad m => MonadIO m where
 liftIO :: IO a -> m a

class Monad m => MonadState s m | m -> s where
 get :: m s
 put :: s -> m ()

class Monad m => MonadError e m | m -> e where
 throwError :: e -> m a
 catchError :: m a -> (e -> m a) -> m a

Lift an IO action through all monad transformers:

“Primitives” that automate lifting: check out the “mtl” library!

(KitchenSink.hs)

