Purely Functional Data Structures

Purely Functional
Jata atructures
Chris Ohasaki 28020

4 44
ry vy

y yV y 4 4
ryvy

Outline

¢ Persistence

* Functional vs. imperative data structures
* Example: red-black trees

* Amortized complexity analysis

* Amortization for persistent data structures

Immutability/persistence of data in FP

Persistence: updates do not affect existing references

Haskell: Ruby:

xs = [1,2,3] xs = [1,2,3]

ys = [7,8] ys = [7,8]

ZS = XS ++ yS zs = xs.concat(ys)
> ZS > ZS

[112131718] [112131718]

> XS > XS

[1,2,3] [1,2,3,7,8]

Persistent data structures

Ephemeral (i.e. traditional) data structures:

* updates destroy old versions

Persistent data structures:
* old versions are unchanged by updates

Applications independent of pure FP: _—
e editors (undo), version control, etc. —
. a0 15‘ :ii__— O
e backtracking search X X2
[o[e :L_!

* thread-safe data sharing D el RH G e

e computational geometry algorithms

Degrees of persistence

* ho persistence % \

one version

e partial persistence o-0—-0—-0

update only last version

* full persistence o @
update all versions el @
N

Outline

* Persistence

¢ Functional vs. imperative data structures
* Example: red-black trees

* Amortized complexity analysis

* Amortization for persistent data structures

Example: imperative list concatenation

xs = [1,2,3]
ys = [7,8]
Zs = Xs.concat(ys)
o~ 1] e
! t ! |
;‘—I—»Z —|—>3o| >7‘—|—>8‘.|
zs —»| | I T

o efficient: O(l) time and space
* side-effects (error prone!)
® not persistent

Example: functional list concatenation

xs = [1,2,3]
ys = [7,8]
ZS = XS ++ yS

Xs —»| | —|—>2‘—|—>3- ys—»| / —|—>8
zSs —»| | ——»|) —|—>3 T

* O(|xs|) time and space requirement
* no side-effects (safe!)
* fully persistent

Model of functional data structures

data T=C ... | D ...
X
X 1: T T
x =D (C ...) ...
_ J
Y

X is represented as a
pointer data structure
(tree/graph) in the heap

To update the subterm y:
* update a copy of the corresponding cell y in the heap
e copy all nodes on the path from the root to y
* (rest of the data structure is shared between x and y)

Example: insert in binary search tree

insert :: Ord a == a -> Tree a -=> Tree a
insert x Leaf Node x Leaf Leaf
insert x (Nodey 1L r) | x <y Node y (insert x 1) r

| otherwise = Node y 1 (insert x r)
4 4
ZAN
/2\ /7><\ u = insert 5 t
1 3 6 6 8
5¢/ \\9

t = Node 4 (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
(Node 7 (Node 6 Leaf Leaf) (Node 8 Leaf (Node 9 Leaf Leaf))

Challenges

How to implement functional data structures efficiently?
 Optimize data type representation for common operations
* Goals: minimize traversal and copying

How to analyze their time and space complexity?
* Worst-case analysis is basically the same
* Amortized analysis is much harder!
e Lazy evaluation is crucial for amortizing w/ persistence

(Queue.hs) |

Outline

* Persistence

* Functional vs. imperative data structures
e Example: red-black trees

* Amortized complexity analysis

* Amortization for persistent data structures

Red-black trees

A self-balancing binary search tree:
* every node is red or black
* |eaves are valueless and black

Invariants:
* usual binary search tree invariant
e same # of black nodes on every root-to-leaf path
* every red node has two black children

Guarantee: longest path < 2 X shortest path

Examples

Valid red-black trees:

11

Invalid red-black trees:

Insertion

Balance invariants

~

-

(1) same # of black nodes on every root-to-leaf path
(2) every red node has two black children

~

Strategy:

always insert a red node

if added after a black node, we’re done!

else,“rebalance” to eliminate the red-red violation
(may cause a new red-red violation, so recurse up the tree)

set root to black

Rebalancing

After insert, . .
four possible —\ /—
invalid cases:
C
b

b
If y’s parent a c d

is red, must
rebalance
again!
g q a b C d .
b N _ d
b ¢ b ¢ 6

Outline

* Persistence

* Functional vs. imperative data structures
* Example: red-black trees

e Amortized complexity analysis

* Amortization for persistent data structures

Amortized vs. worst-case analysis

time time
n]
¢ S [TTTTTTT]1
ops ops
“worst” worst case: amortized worst case:
always assume maximal cost costs can be distributed over ops
n ops X O(n) cost n ops X O(l) amortized cost

e O(n?) total cost e O(n) total cost

Tradeoffs of amortized analysis

® more accurate over lifetime of data structure

* opens up new design space e.g. self-adjusting data structures

e can lead to overall faster data structures

(in practice, or asymptotically over lifetime)
e.g. splay trees, union-find

* weaker guarantees about individual operations

* not suitable for real-time applications

Banker’s method

4)
For each operation i, define:

e a;:amortized cost

e t; :actual cost

Each operation gets a; credits
. J

Opis... if... then...
cheap tj < a; save a; — tj credits

neutral ti = a;
expensive t; > a; spend @i — t; previously saved credits

To show that a; is the amortized cost:

Show that we never run out of credits N

Banker’s analysis of “two-stack” queue
(L and R)

Credits given (@i):
® enqueue: 2 credits
e dequeue: | credit

Actual cost (ti):
® enqueue: | credit
e dequeue:
e |[L| > 0: | credit
o |[L| =0: | +]|R|credits

S0, both operations have amortized O(1) cost
21

Outline

* Persistence

* Functional vs. imperative data structures
* Example: red-black trees

* Amortized complexity analysis

e Amortization for persistent data structures

22

Amortization and persistence

Bad news: if data structure is persistent, we can go into debt!

q = foldr enqueue empty [1..5]
rl = dequeue q
r2 = dequeue ¢

Problem: persistence is working against us

Solution: make lazy evaluation work for us :-)

Keys: structure data type and functions so that:
* expensive operations are memoized
* expensive operations can be “locally” paid for

(Queue.hs) -)3

