
Purely Functional Data Structures

 1

Outline

 2

• Persistence

• Functional vs. imperative data structures

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures

Immutability/persistence of data in FP

 3

xs = [1,2,3]
ys = [7,8]
zs = xs ++ ys

xs = [1,2,3]
ys = [7,8]
zs = xs.concat(ys)

> zs
[1,2,3,7,8]

> xs
[1,2,3]

> zs
[1,2,3,7,8]

> xs
[1,2,3,7,8]

Haskell: Ruby:

Persistence: updates do not affect existing references

data is persistent data is ephemeral

Persistent data structures

 4

Ephemeral (i.e. traditional) data structures:
• updates destroy old versions

Persistent data structures:
• old versions are unchanged by updates

Applications independent of pure FP:

• editors (undo), version control, etc.

• backtracking search
• thread-safe data sharing
• computational geometry algorithms

Degrees of persistence

 5

• no persistence 
one version

• partial persistence 
update only last version

• full persistence  
update all versions

Purely functional = all data structures are fully persistent

Outline

 6

• Persistence

• Functional vs. imperative data structures

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures

Example: imperative list concatenation

 7

xs = [1,2,3]
ys = [7,8]
zs = xs.concat(ys)

• efficient: O(1) time and space
• side-effects (error prone!)
• not persistent

21 3 • 7 8 •

xs ys
✘

zs

Example: functional list concatenation

 8

xs = [1,2,3]
ys = [7,8]
zs = xs ++ ys

• O(|xs|) time and space requirement
• no side-effects (safe!)
• fully persistent

21 3 • 7 8 •xs ys

zs 21 3

Model of functional data structures

 9

data T = C ... | D ...

x :: T
x = D (C ...) ...

x is represented as a
pointer data structure

(tree/graph) in the heap

x

y

To update the subterm y:

• update a copy of the corresponding cell y in the heap
• copy all nodes on the path from the root to y
• (rest of the data structure is shared between x and y)

Example: insert in binary search tree

 10

t = Node 4 (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
 (Node 7 (Node 6 Leaf Leaf) (Node 8 Leaf (Node 9 Leaf Leaf))

insert :: Ord a => a -> Tree a -> Tree a
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) | x < y = Node y (insert x l) r
 | otherwise = Node y l (insert x r)

u = insert 5 t

4

2

1 3

7

6 8

4

7

6

5 9

Challenges

 11

How to implement functional data structures efficiently?
• Optimize data type representation for common operations
• Goals: minimize traversal and copying

How to analyze their time and space complexity?
• Worst-case analysis is basically the same
• Amortized analysis is much harder!

• Lazy evaluation is crucial for amortizing w/ persistence

(Queue.hs)

• e.g. Haskell lists are optimized for stack operations  
but inefficient as queues

• these goals are the rationale for the zipper pattern

Outline

 12

• Persistence

• Functional vs. imperative data structures

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures

Red-black trees

 13images from: matt.might.net/articles/red-black-delete/

Invariants:
• usual binary search tree invariant
• same # of black nodes on every root-to-leaf path

• every red node has two black children

A self-balancing binary search tree:

• every node is red or black
• leaves are valueless and black

Guarantee: longest path ≤ 2 × shortest path

Examples

 14

Valid red-black trees: Invalid red-black trees:

Insertion

 15

Strategy:

• always insert a red node

• if added after a black node, we’re done!
• else, “rebalance” to eliminate the red-red violation  

(may cause a new red-red violation, so recurse up the tree)

• set root to black

(1) same # of black nodes on every root-to-leaf path
(2) every red node has two black children

Balance invariants

Rebalancing

 16

After insert,
four possible
invalid cases:

If y’s parent
is red, must
rebalance
again!

Outline

 17

• Persistence

• Functional vs. imperative data structures

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures

Amortized vs. worst-case analysis

 18

“worst” worst case: 
 always assume maximal cost

n

c

time

ops

amortized worst case:  
costs can be distributed over ops

n

c

time

ops

n ops × O(n) cost

∈ O(n2) total cost

n ops × O(1) amortized cost  
 ∈ O(n) total cost

Tradeoffs of amortized analysis

 19

• more accurate over lifetime of data structure

• opens up new design space e.g. self-adjusting data structures

• can lead to overall faster data structures 
(in practice, or asymptotically over lifetime)  
e.g. splay trees, union-find

• weaker guarantees about individual operations

• not suitable for real-time applications

Banker’s method

 20

For each operation i, define:
• ai : amortized cost
• ti : actual cost

Each operation gets ai credits

Op is … if … then …
cheap ti < ai save ai – ti credits

neutral ti = ai

expensive ti > ai spend ai – ti previously saved credits

To show that ai is the amortized cost:  
Show that we never run out of credits

credits are saved-to/spent-from  
locations in the data structure

Banker’s analysis of “two-stack” queue

 21

Credits given (ai):

• enqueue: 2 credits

• dequeue: 1 credit

Actual cost (ti):

• enqueue: 1 credit – save 1 credit to R
• dequeue:

• |L| > 0: 1 credit

• |L| = 0: 1 + |R| credits – spend the credits saved on R

(L and R)

So, both operations have amortized O(1) cost

Outline

 22

• Persistence

• Functional vs. imperative data structures

• Example: red-black trees

• Amortized complexity analysis

• Amortization for persistent data structures

Amortization and persistence

 23

Bad news: if data structure is persistent, we can go into debt!

q = foldr enqueue empty [1..5]
r1 = dequeue q
r2 = dequeue q

– save 5 credits on R
– spend all credits on R
– spend all credits on R again!

Problem: persistence is working against us

Keys: structure data type and functions so that:
• expensive operations are memoized

• expensive operations can be “locally” paid for

Solution: make lazy evaluation work for us :-)

buy them “on layaway”

(Queue.hs)

