Purely Functional Data Structures

Purely Functional Data Structures Chris Okasaki

• Persistence

- Functional vs. imperative data structures
- Example: red-black trees
- Amortized complexity analysis
- Amortization for persistent data structures

Immutability/persistence of data in FP

Persistence: updates do not affect existing references

Haskell:	Ruby:
xs = [1,2,3] ys = [7,8]	xs = [1,2,3] ys = [7,8]
zs = xs ++ ys	<pre>zs = xs.concat(ys)</pre>
> ZS	> ZS
[1,2,3,7,8]	[1,2,3,7,8]
> XS	> XS
[1,2,3]	[1,2,3,7,8]

data is **persistent**

data is **ephemeral**

Persistent data structures

Ephemeral (i.e. traditional) data structures:

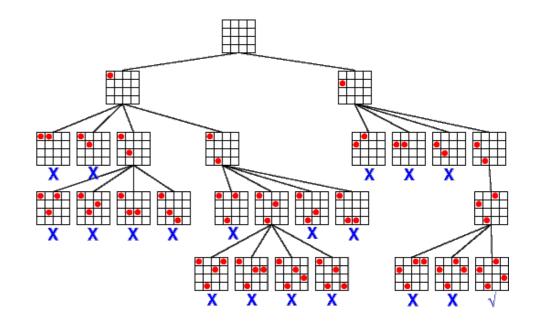
• updates destroy old versions

Persistent data structures:

• old versions are unchanged by updates

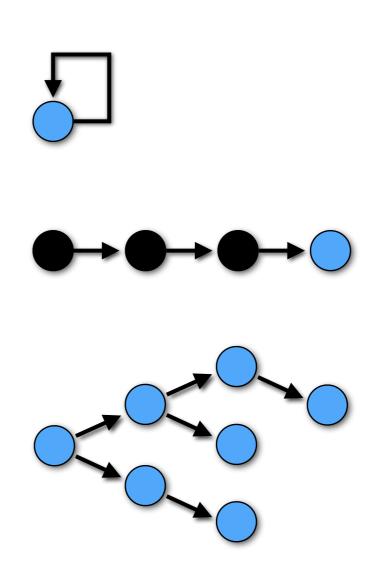
Applications independent of pure FP:

- editors (undo), version control, etc.
- backtracking search
- thread-safe data sharing
- computational geometry algorithms



Degrees of persistence

- **no persistence** one version
- partial persistence update only last version
- full persistence update all versions

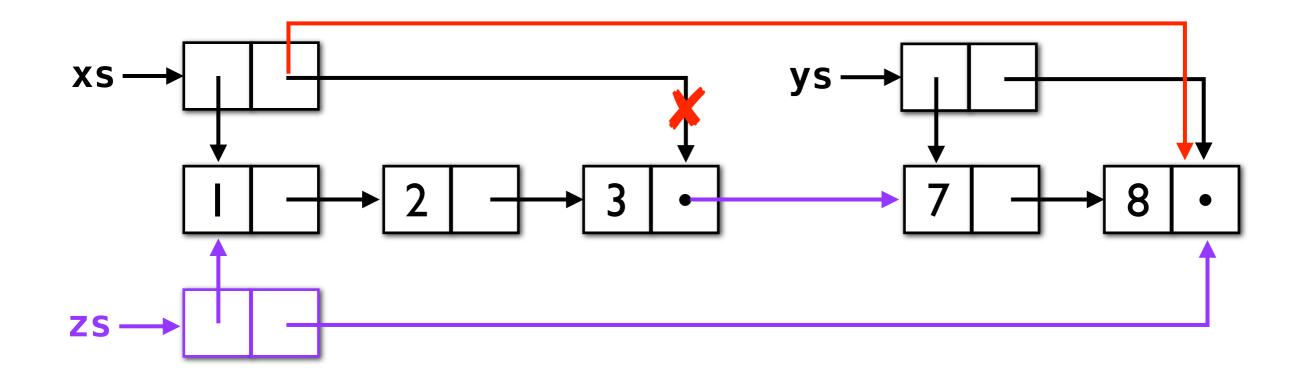


Purely functional = all data structures are **fully persistent**

- Persistence
- Functional vs. imperative data structures
- Example: red-black trees
- Amortized complexity analysis
- Amortization for persistent data structures

Example: imperative list concatenation

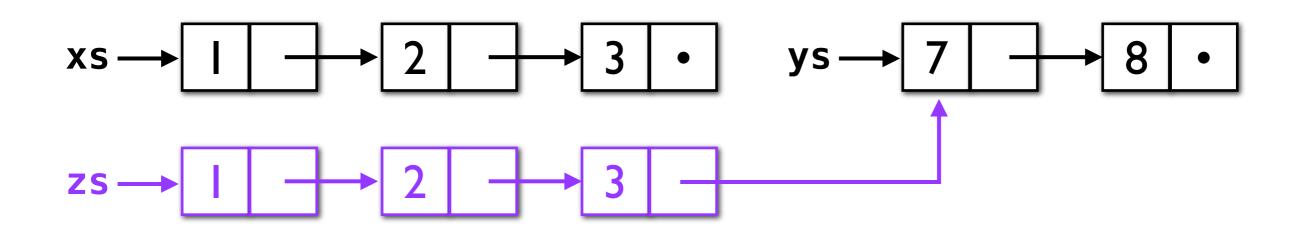
xs = [1,2,3]
ys = [7,8]
zs = xs.concat(ys)



- efficient: O(I) time and space
- side-effects (error prone!)
- not persistent

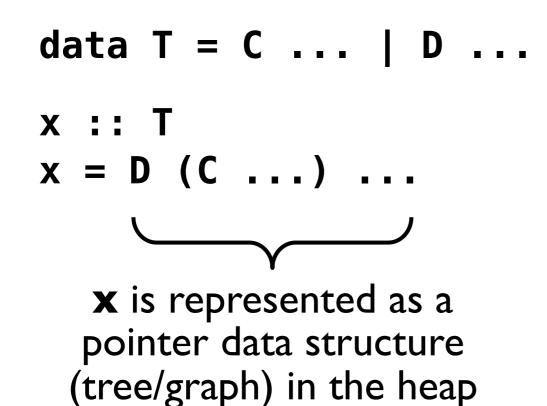
Example: functional list concatenation

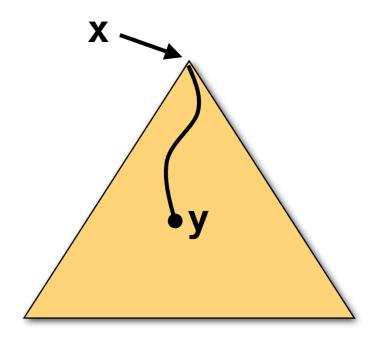
xs = [1,2,3] ys = [7,8] zs = xs ++ ys



- O(|xs|) time and space requirement
- no side-effects (safe!)
- fully persistent

Model of functional data structures



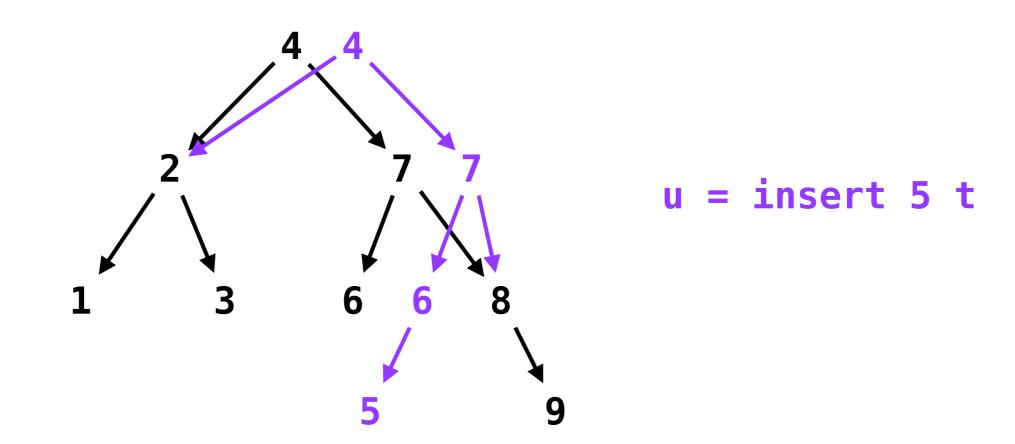


To update the subterm y:

- update a copy of the corresponding cell y in the heap
- copy all nodes on the *path* from the root to **y**
- (rest of the data structure is shared between x and y)

Example: insert in binary search tree

```
insert :: Ord a => a -> Tree a -> Tree a
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) | x < y = Node y (insert x l) r
| otherwise = Node y l (insert x r)
```



t = Node 4 (Node 2 (Node 1 Leaf Leaf) (Node 3 Leaf Leaf))
 (Node 7 (Node 6 Leaf Leaf) (Node 8 Leaf (Node 9 Leaf Leaf))

Challenges

How to implement functional data structures efficiently?

- Optimize data type representation for common operations
- Goals: minimize traversal and copying
 - e.g. Haskell lists are optimized for stack operations but inefficient as queues
 - these goals are the rationale for the **zipper** pattern

How to *analyze* their time and space complexity?

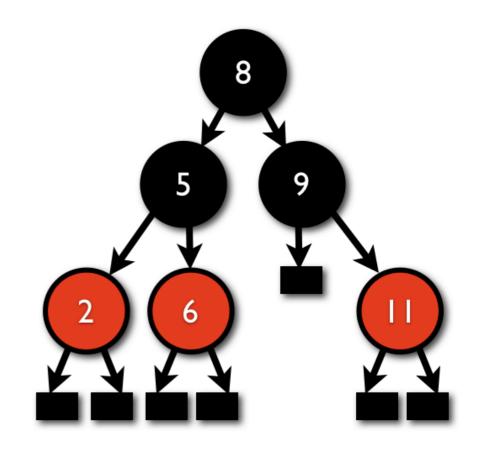
- Worst-case analysis is basically the same
- Amortized analysis is much harder!
 - Lazy evaluation is crucial for amortizing w/ persistence

- Persistence
- Functional vs. imperative data structures
- Example: red-black trees
- Amortized complexity analysis
- Amortization for persistent data structures

Red-black trees

A **self-balancing** binary search tree:

- every node is **red** or **black**
- leaves are valueless and **black**



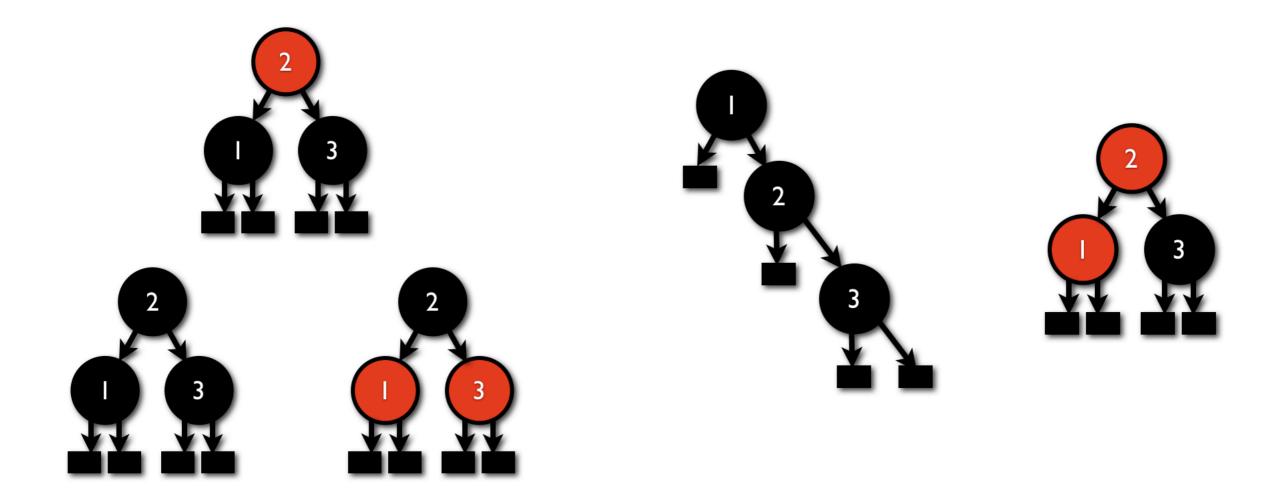
Invariants:

- usual binary search tree invariant
- same # of **black** nodes on every root-to-leaf path
- every red node has two black children

Guarantee: longest path $\leq 2 \times$ shortest path

Valid red-black trees:

Invalid red-black trees:



Insertion

Balance invariants

(1) same # of **black** nodes on every root-to-leaf path
(2) every **red** node has two **black** children

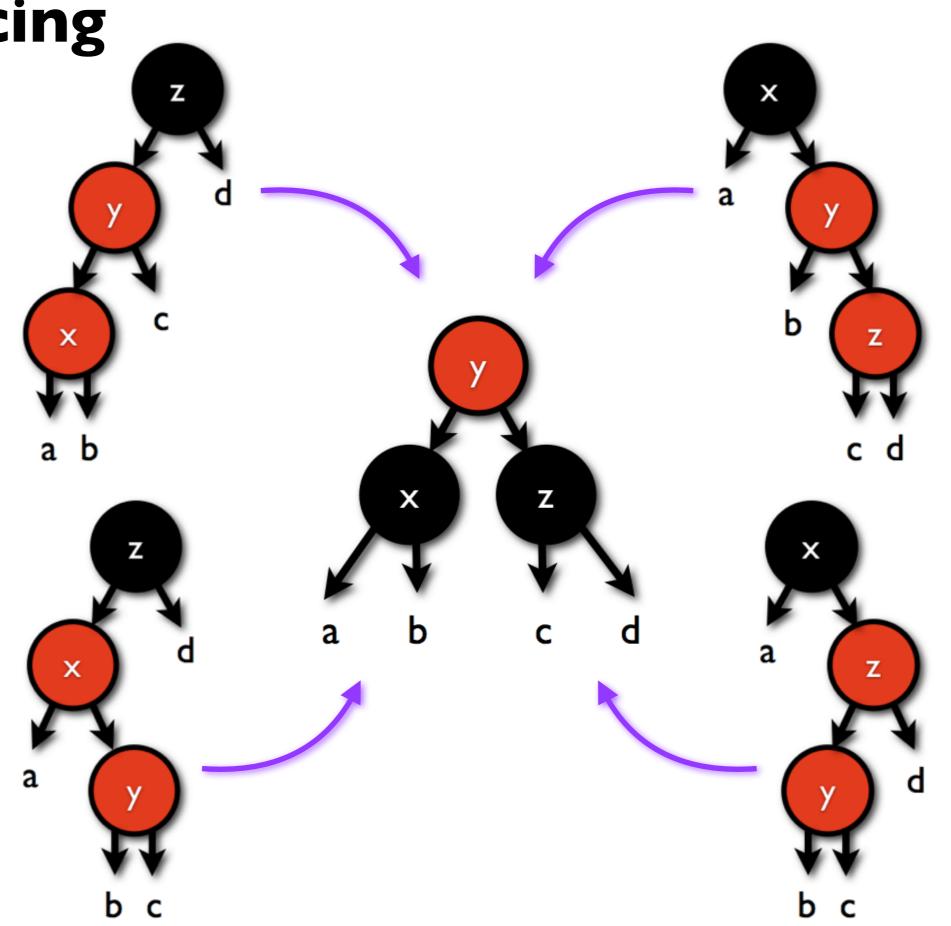
Strategy:

- always insert a **red** node
- if added after a **black** node, we're done!
- else, "rebalance" to eliminate the red-red violation (may cause a new red-red violation, so recurse up the tree)
- set root to black

Rebalancing

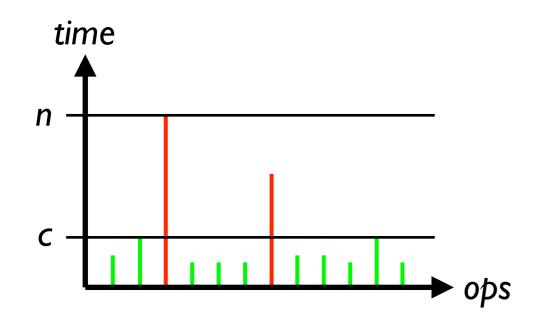
After insert, four possible invalid cases:

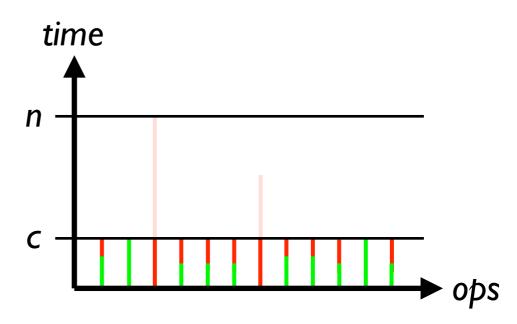
lf y's parent is red, must rebalance again!



- Persistence
- Functional vs. imperative data structures
- Example: red-black trees
- Amortized complexity analysis
- Amortization for persistent data structures

Amortized vs. worst-case analysis





"worst" worst case: always assume maximal cost

 $n \text{ ops } \times O(n) \text{ cost}$ $\in O(n^2) \text{ total cost}$

amortized worst case: costs can be distributed over ops

 $n \text{ ops } \times O(I) \text{ amortized cost}$ $\in O(n) \text{ total cost}$

Tradeoffs of amortized analysis

- more accurate over lifetime of data structure
- opens up new design space e.g. self-adjusting data structures
 - can lead to overall faster data structures (in practice, or asymptotically over lifetime) e.g. splay trees, union-find
- weaker guarantees about individual operations
 - not suitable for real-time applications

Banker's method

For each operation *i*, define:

- **a**_i: amortized cost
- t_i : actual cost

Each operation gets **a**_i credits

credits are saved-to/spent-from locations in the data structure

Op is ... if ... then ...

cheap $t_i < a_i$ save $a_i - t_i$ credits

neutral $t_i = a_i$

expensive $t_i > a_i$ spend $a_i - t_i$ previously saved credits

To show that a_i is the amortized cost:

Show that we never run out of credits

Banker's analysis of "two-stack" queue (L and R)

Credits given (**a**_i):

- enqueue: 2 credits
- dequeue: I credit

Actual cost (t_i) :

- enqueue: | credit save | credit to R
- dequeue:
 - **|L| > 0**: I credit
 - $|\mathbf{L}| = 0$: $|\mathbf{R}|$ credits spend the credits saved on \mathbf{R}

So, both operations have amortized O(I) cost

- Persistence
- Functional vs. imperative data structures
- Example: red-black trees
- Amortized complexity analysis
- Amortization for persistent data structures

Amortization and persistence

Bad news: if data structure is persistent, we can go into debt!

q = foldr enqueue empty [1..5] - save 5 credits on R
r1 = dequeue q - spend all credits on R
r2 = dequeue q - spend all credits on R again!

Problem: persistence is working against us

Solution: make lazy evaluation work for us :-)

Keys: structure data type and functions so that:

- expensive operations are memoized
- expensive operations can be "locally" paid for

buy them "on layaway" for

