
Monad Transformers and Modular Interpreters*

Sheng Liang Paul Hudak Mark Jonest

Yale University
Department of Computer Science

New Haven, CT 06520-8285
{li-ang, hudak, j ones -mark}@cs. yale. edu

Abstract

We show howa set of building blocks can be used to construct
programming language interpreters, and present implemen-
tations of such building blocks capable of supporting many
commonly known features, including simple expressions,
three different function call mechanisms (call-by-name, call-
by-value and lazy evaluation), references and assignment,
nondeterminism, first-class continuations, and program trac-
ing.

The underlying mechanism of our system is monad frans-
fonners, a simple form of abstraction for introducing a wide
range of computational behaviors, such as state, 1/0, con-

tinuations, and exceptions.
Our work is significant in the following respects. First,

we have succeeded in designing a fully modular interpreter
based on monad transformers that includes features miss-

ing from Steele’s, Espinosa’s, and Wadler’s earlier efforts.
Second, we have found new ways to lift monad operations

through monad transformers, in particular difficult cases not
achieved in Moggi’s original work. Third, we have demon-

strated that interactions between features are reflected in

liftings and that semantics can be changed by reordering

monad transformers. Finally, we have implemented our
interpreter in Gofer, whose constructor classes provide just

the added power over Haskell’s type classes to allow precise

and convenient expression of our ideas. This implementa-

tion includes a method for constructing extensible unions
and a form of subtyping that is interesting in its own right.

1 Introduction and Related Work

This paper discusses how to construct programming lan-

guage interpreters out of modular components. We will

show how an interpreter for a language with many features

can be composed from building blocks, each implementing

●This work was supported by the Advanced ResearchProject Agency
and the Oi%ce of Naval Research under Arpa Order 8888, Contract
NOO014-92-C-0153.

TCurrent addresa: Department of Computer science, uIIiVWSity Of
Nottingham, University Park, Nottingham NG7 2RD, England. Email:
mpj@cs. nott .ac. uk.

Permission to copy without fee all or part of this materfal is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyrigM notice and the
title of the publication and its date appear, and notice is given
that oopying is by permission of the Association of CompW”ng
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
POPL ’951/95 San Francisco CA USA
0 1995 ACM 0-89791 -692-1/95/0001$3.50

a specific feature. The interpreter writer is able to specify

the set of incorporated features at a very high level.
The motivation for building modular interpreters is to

isolate the semantics of individual programming language
features for the purpose of better understanding, simplifying,
and implementing the features and their interactions. The
lack of separability of traditional denotational semantics [19]

has long been recognized. Algebraic approaches such as

Mosses’ action semantics [16], and related efforts by Lee

[131, Wand [231, Appel & Jim [11, Kelsey & Hudak [111, and

others, attempt to solve parts of this problem, but fall short

in several crucial ways}

A ground-b~aking attempt to better solve the overall

problem began with Moggi’s [151 proposal to use monads to
structtue denotational semantics. Wadler [211 popularized

Moggi’s ideas in the functional programming community
by showing that many type constructors (such as List) were

monads and how monads could be used in a variety of

settings, many with an “imperative” feel (such as in Peyton
Jones & Wadler [17]). Wadler’s interpreter design, however,

treats the interpreter monad as a monolithic structure which

has to be reconstructed every time a new feature is added.

More recently Steele [181 proposed pseudomonadesas a way
to compose monads and thus build up an interpreter from

smaller parts, but he failed to properly incorporate important

features such as an environment and store, and struggled

with restrictions in the Haskell [71 type system when trying
to implement his ideas. In fact, pseudomonades are really

just a special kind of monad transformer, first suggested by
Moggi [15] as a potential way to leave a “hole” in a monad

for further extension.
Returning to Moggi’s original ideas, Espinosa [4] nicely

formulated in Scheme a system called Semantic Lego — the
first modular interpreter based on monad transformers —

and laid out the issues in lifting. Espinosa’s work reminded
the programming language community (including us) —

who had become distracted by the use of monads — that

Moggi himself, responsible in many ways for the interest in

monadic programming, had actually focussed more on the

importance of monad transformers.
We begin by realizing the limitations of Moggi’s frame-

work and Espinosa’s implementation, in particular the diffi-

culty in dealing with complicated operations such as callcc,

and investigate how common programming language fea-

lVery recently, CartWright and Felleisen [31have independently proposed
a modular semantics emphasizing a di?ectsemantics approach, which seems
somewhat more complex than ours; the pxecise dationship between the
appm=hes is, however, not yet clear.

333

type Term = OR TermA -- arithmetic type lnterpM = StateT Store - - memory cells

(OR TermF -- functions (EnvT Env - - environment

(OR TwmR -- assignment (ConfT Answer -- continuations

(OR TermL -- lazy evaluation (StateT String J - trace output

(OR TermT -- tracing (ErrorT

(OR TermC -- callcc List ll~~i~~~~&

TermN -- nondeterminism))))

)))))

type Value = OR Int (OR Fun ()) I

Figure 1: A modular interpreter

tures interact with each other. In so doing we are able to

express more modularity and more language features than in

previous work, solving several open problems that arose not
only in Moggi’s work, but in Steele’s and Espinosa’s as well.

Our work also shares results with Jones and Duponcheel’s

[101 work on composing monads.
Independently Espinosa [51 has continued working on

monad transformers, and has also recognized the limitations
of earlier approaches and proposed a solution quite different
from ours. His new approach relies on a notion of “higher-
order” monads (called situated monads) to relate different

layers of monad transformers, and he has investigated the

semantic implications of the order of monad transformer
composition. It is not yet clear how his new approach relates

to ours.

We use Gofer [81 syntax, which is very similar to Haskell’s,

throughout the paper. We choose Gofer over Haskellbecause
of its extended type system, and we choose a functional

language over mathematical syntax for three reasons: (1)

it is just about as concise as mathematical syntax,2 (2)
it emphasizes the fact that our ideas are implementable
(and thus have been debugged!), and (3) it shows how the
relatively new idea of constructor ckzsses [9] can be used

to represent some rather complex typing relationships. Of
course, monads can be expressed in a variety of other
(higher-order) programming languages, in particular SML

[141, whose type system is equally capable of expressing
some of our ideas. The system could also be expressed
in Scheme, but of course we would then lose the benefits
of strong static type-checking. Our Gofer source code is
available via anonymous ftp from nebuZa.cs.yaZe.eduin the

directory pub/yak- fi/modular-inferpre fer.
To appreciate the extent of our results, Figure 1 gives the

high-level definition of an interpreter, which is constructed
in a modular way, and supports arithmetic, three different

kinds of functions (call-by-name, call-by-value, and lazy),
references and assignment, nondeterminism, first-class con-
tinuations, and tracing. The rest of the paper will provide

the details of how the type declarations expand into a full
interpreter and how each component is built. For now just
note that OR is equivalent to the domain sum operator, and

Term, Value and InterpM denote the source-level terms, run-
time values, and supporting features (which can be regarded

as the run-time system), respectively. Int and Fun are the
semantic domains for integers and functions. TflmA, TermF,

etc. are the abstract syntax for arithmetic terms, function

2Although (for lack of space)we do not include any proofs, all constructs
(monads, monad transformers and liftinga) expressed as Gofer code have
been verified to satisfy the necessarypmpertiee stated in this paper.

expressions, etc. T~e constructors such as SfateT and ConfT
m$rs; they add features, and are used toare monad fransfor

1

transform the mona Listinto the monad InterpM used by
the interpreter,

To see how Term, alue, and InterpM constitute to modular
rinterpreters, in the ext section we will walk through some

simple examples.

2 An Example

I
A conventional inte preter maps, say a term, environment,
and store, to an ans er. In contrast, a monadic interpreter
such as ours maps t~rms to computations, where the details
of the environment, tore, etc. are “hidden”. Specifically:

interp :;

/

Term + nferpM Value

where “hzterpM Vu ue” is the interpreter monad of final
answers.

1
What makes ou interpreter modular is that all three

components above — the term type, the value type, and the

monad — are config rable. To illustrate, if we initially wish

I
to have an interpret r for a small arithmetic language, we

can fill in the definitions as follows:

type Value = /3RInt ()

type T~m

i

ermA

type InterpM z rrorT Id

The first line declar s the answer domain to be the union

of integers and the ~nit type (used as the base type). The

second line defines 4erms as TermA, the abstract syntax for

~

arithmetic operation . The final line defines the interpreter

monad as a transfo ation of the identify monad Id. The

monad transformer ErrorT accounts for the possibility of
errors; in this case, a “thmetic exceptions.

At this point the interpreter behaves like a calculator: 3

> ((1+4)*8)
40
> (3/0)
ERROR: divide by O

1
Now if we wish o add function calls, we can extend the

value domain with nction types, add the abstract syntax

L

for function calls to the term type, and apply the monad

transformer EnvT to introduce an environment Env.

type Value = R Int (OR Fun ())

type Term . bR TermF T~mA
type InterpM = knvT Env (ErrorTId)

3For lack of space,we ~omitthe details of parsing and printing.

334

Here is a test run

~’ ((\m(z + 4)) 7)
L1

> (2+4)
ERROR: unbound variable: x

By adding other features, we can arrive at (and go beyond)
the interpreter in Figure 1. In the process of adding new

source-level terms, whenever a new value domain (such as
Boolean) is needed, we extend the Value type, and to add a

new semantic feature (such as a store or continuation), we
apply the corresponding monad transformer.

Why monads? In a sense, monads are nothing more than

a good example of data abstraction. But they just happen
to be a particularly good abstraction, and by using them in
a disciplined (and appropriate) way, we generally obtain
well-structured, modular programs. In our application, they
are surprisingly useful for individually capturing the essence
of a wide range of programming language features, while

abstracting away from low-level details. Then with monad
transformers we can put the individual features together,

piece-by-piece in different orders, to create full-featured

interpreters.

3 The Constructor Class System

For readers not familiar with the Gofer type system (in
particular, constructor classes [9]), this section provides a

motivating example.
Constructor classes support abstraction of common fea-

tures among type constructors. Haskell, for example, pro-

vides the standard map function to apply a function to each
element of a given list

map :: (a+ b)+ [a] +- [b]

Meanwhile, we can define similar functions for a wide range

of other datatypes. For example

data Tree a = Leaf a
I Node (Tree a) (Tree a)

mapTree :: (a+ b) + Tree a + Tree b

rrupTree $ (Leaf z) = Leaf (~ z)
mapTree ~ (Node 2 r) = Node (mapTree ~ 1) (mapTree ~ r)

The mapTree function has similar type and functionality to

those of map. With this in mind, it seems a shame that we

have to use different names for each of these variants. Indeed,
Gofer allows type variables to stand for type constructors, on

which the Haskell type class system has been extended to
support overloading. To solve the problem with map, we can
introduce a new constructor class Functor (in a categorical
sense):

class Functor f where

map:: (a+ b)+ fa+fb

Now the standard list (List) and the user-defined type con-
structor Tree are both instances of Functon

instance Functor List where

~Pf[l = [1
mflpf(x:xs) = fx:mapfxs

instance Functor Tree where

map f (Leaf x) = Leaj (f a)
map f (Node i r) = Node (map f 1) (map f r)

In building modular interpreters, we will find constructor

classes extremely useful for dealing with multiple instances
of monads and monad transformers (which are all type

constructors).

4 Extensible Union Types

We begin with a discussion of a key idea in our framework
how values and terms may be expressed as extensible union
types. (This facility has nothing to do with monads.)

The disjoint union of two types is captured by the

datatype OR.

data ORab = Lal Rb

where Land Rare used to perform the conventional injection

of a summand type into the union; conventional pattern-

matching is used for projection. However, such injections
and projections only work if we know the exact structure

of the union; in particular, an extensible union may be

arbitrarily nested, and we would like a sing.k pair of injection

and projection functions to work on all such constructions.

To achieve this, we define a type class to capture the

summand/union type relationship, which we refer to as a

“subtype” relationship:

class SubType sub sup where
inj :: sub + SUP . - injection

prj :: sup + Maybe sub -- projection

data Maybe a = Just a I Nothing

The Maybe datatype is used because the projection function

may fail. We can now express the relationships that we

desire:

instance SubT~e a (OR a b) where
inj L

prj (L z) ~ Just z
prj - = Nothing

instance SubT~e a b + SubT~e a (OR c b) where

inj = R.inj
prj (R a) = prj a
prj. = Nothing

Now we can see, for example, how the Value domain
used in the interpreter example given earlier is actually

constructed:

type Value = OR Int (OR Fun ())

type Fun = InterpM Value + InterpM Value

Whh these definitions the Gofer type system will infer that Int
and Function are both “subtypes” of Value, and the coercion

functions inj and prj will be generated automatically.4 (Note

that the representation of a function is quite general — it
maps amputations to computations. As will be seen, this
generality allows us to model both call-by-name and call-by-
value semantics.)

Awe +~”ld point cm here that most of the typing problems Steele
encountered disappear with the use of our extensible union types; in
particular, there is no need for Steele’s “towers” of datetypes.

335

5 The Interpreter Building Blocks

As in the example of Section 2, the Term type is also
constructed as an extensible union (of subterm types). We

define additionally a class InterpC to characterize the term
types that we wish to interpret:

class InferpC t where
interp :: t -+ lnterpM Value

The behavior of interp on unions of terms is given in the
obvious way:

instance (InterpC tl, InterpC t2) *

InterpC (OR tl t2) where

inferp (.L t) = irzte~ t

interp (R t) = interp t

The interp function mentioned in the opening example is just

the method associated with the top-level type Term.

In the remainder of this section we define several repre-

sentative interpreter buikling blocks, each an instance of class
InterpC and written in a monadic style. We will more for-
mally define monads later, but for now we note that the
interpreter monad In ferpM comes equipped with two basic
operations:

unit :: a + InterpM a “
bind :: InterpM a + (a + In ferpM b) + InterpM b

Intuitively InferpM a denotes a computation returning a

result of type a. “Unit f’ is a null computation that just

returns x as result, whereas “m ‘bind’ k“ runs m and passes

the result to the rest of the computation k As will be seen,
besides unit and bind, each interpreter building block has
several other operations that are specific to its purpose.

5.1 The Arithmetic Building Block

Our (very tiny) arithmetic sublanguage is given by

data TermA = Num Int

I Add Term Term

whose monadic interpretation is given by:

instance InterpC TermA where

interp (Num z) = unifInj x
interp (Add x y) = interp x ‘bindPrj’ \i +

interp y ‘bindPrj’ \j +
zmitIrzj ((i+ j) :: Int)

unitInj = unit . inj
m ‘bindPrj’ k =

m ‘bind’ /a --+

case (p-j a) of
Just x + kx

Nothing -+ err “run-time type error”

err :: string+ lnterpM a -- defined later

Note the simple use of inj and prj to inject/project the integer
result into/out of the Value domain, regardless of how Value
is eventually defined (unifhzj and bindPrj make this a tad
easier, and will be used later as well). Err is an operation for
reporting errors to be defined later.

5.2 The Function E

Our “function” subk

data TermF = Vu
I La
I La
I Ap

which supports two
name, the other for c

We assume a ~
variable names witl
“closure” mode of e

tions:

lookupEnv :: Na

exfendEnv :: (M

type Name = Sfr

In addition, we will

rdEnv and inEnv, thi
perform a computatil

rdEnv :: InterpM
inEnv :: Env + I

The interpretation o
given in Figure 2.

The difference b~

is clear: the former r
the function body, w

application, the func
checks if it is indee

is packaged up wit;
closure, which is the

realize dynamic SCOF
computation of ez ak

When applying a
putation which gets

the function body. A
not correspond to ar

however, we expect
information or a spef

will enable us to opti
We note that Stel

preter always had an
was only used in the

environment-related
rdEnv), we achieve e:

5.3 The References

A sublanguage of ref

data TermR = R<

I De

1 As

Given a heap of n
managing it:

allocLoc :: Infe7
lookupLoc :: Loc
updafeLoc :: (Lot

type Loc = Int

we can then give an
language feattires:

336

ilding Block

guage is given by:

!Vame
5daN Name Term

5daV Name Term

Term Term

.- cbn
-- cbv

inds of abstractions, one for call-by-
l-by-value.
Env of environments that associates
computations (corresponding to the
luation [2]), and that has two opera-

? + Env + Maybe (InferpM Value)
W, InterpM Value) -+ Env d Env

g

lefine later two monadic operations,

return the current environment and

(in a given environment, respectively:

‘2’0
erpM a q InterpM a

the applicative sublanguage is then

veen call-by-value and call-by-name

lutes the argument before evaluating
lreas the latter does not. In a function

m itself is evaluated first, and bindPrj

a function. The computation of ez

the current environment to form a
passed to ~. We could just as easily

Lg by passing not the closure, but the
e.
N-by-value function, we build a com-

valuated immediately upon entering

bough semantically correct, this does
?fficient implementation. In practice,

at the presence of some kind of type

J syntax for call-by-value application

tie away this overhead.
? felt it unsatisfactory that his inter-

nvironment argument, even though it
mction building block. By abstracting

Oerations as two functions (inEnv and
ctly what Steele wished for.

md Assignment Building Block

:ences and assignment is given by:

Term

-f‘ Term

!@zTerm Term

mory cells and three functions for

M LOC
, InterpM Value
InferpM Value) + InferpM ()

‘Appropriate interpretation to the new

instance IntermC TermF where
interp (V&v) =

interp (LambdaNs t) =

interp (LambdaVs t) =

irzterp (App el e2) =

rdEnv ‘bind’ \env +

case lookupEnv v env of

Just val + val

Nothing + err (“unbound uartible: “++ v)

rdEnv ‘bind’ \env +
zmithj (\arg + inEnv (extendEnv (s, arg) env) (itzterp t))

rdEnv ‘bind’ \env +

unitInj (\arg + arg ‘bind’ \v +
inEnv (extendEnv (s, unit v) env) (interp t))

interp el ‘bindPrj’ \ f +
rdEnv ‘bind’ \env -+

~ (inEnv env (interp ez))

Figure 2: The function building block

instance InterpC TermR where
interp (Re~ x) =

interp x ‘bind’ /val -i
allocLoc ‘bind’ \loc +

updateLoc (1oc, unit val) ‘bind’ \. +
unithj 10C

interp (Deref x) =
interp z ‘bindPrj’ \loc -+
lookupLoc 10C

interp (Assign lhs rhs) =
interp lhs ‘bindPrj’ \loc +

inte~ rhs ‘bind’ \val +

updateLoc (1oc, unit val) ‘bind’ \- +

unit val

5.4 A Lazy Evaluation Building Block

Using this same heap of memory cells for references, we can
implement “lazy” abstractions:

data TermL = LambdaL Name Term

whose operational semantics implies “caching” of results.

instance InterpC TermL where

interp (LambdaLs t) =
rdEnv ‘bind’ \env ~

unitInj (\arg +
allocLoc ‘bind’ \loc +

let thunk = arg ‘bind’ \v +
updateLoc (20c, unit v) ‘bind’ \.+

unit v
in

updateLoc (Ioc, thunk) ‘bind’ \.+
inEnv (extendEnv (s, 2ookupLoc Ioc) env)

(interp t))

Upon entering a lazy function, the interpreter first allocates

a memory cell and stores a thunk (updatable closure) in it.
When the argument is first evaluated in the function body
the interpreter evaluates the thunk and stores the result back
into the memory cell, overwriting the thunk itself.

5.5 A Program Tracing Building Block

Given a function

write :: String+ InterpM ()

which writes a string output and continues the computation,
we can define a “tracing” sublanguage, which attaches labels

to expressions which cause a “trace record” to be invoked
whenever that expression is evaluated:

data TermT = Tracz String Term

instance InterpC TermT where
interp (Trace t t) =

write (“enter “ ++ 1) ‘bind’ \-+

interp t ‘bind’ \v +

write (“leave “ ++ l++ “ with:” ++ show v) ‘bind’ \.. +
unit v

Here we see that some of the features in Kishon et al.’s
system [12] are easily incorporated into our interpreter.

5.6 The Continuation Building Block

First-class continuations can be included in our language
with

data TermC = CallCC

Using the callcc semantic function (to be defined later):

allcc :: ((u + InterpM b) + InterpM a) + Inte~M u

we can give an interpretation for CallCC:

instance InterpC TermC where

interp Ca21CC = unitInj (\j -+

f ‘bindPrj’ \f’ +
udlcc (\/c + (f’ (unitInj (\a +. a ‘bind’ k)))))

CallCC is interpreted as a (strict) builtin function. Interp in

this case does nothing more than inject and project values to

the right domains.

337

Feature Function

Error handling err:: String +InterpMa

Nondeterminism merge:: [htterpMa] +hzterpMa

Environment rdEnv:: IntervM Env

inEnv:: Env + Interph a + InterpM a
Store allocLoc:: I nterpM Int

lookupLoc:: Int + InterpM Value

updateLoc:: (Int, InterpM Value) + InterpM Int

String output write :: String + InterpM ()

Continuations callcc :: Ka + IntervM b) + IntervM a) + IntervM a

Table 1: Monad operations used by the interpreter

5.7 The Nondeterminism Building Block

Our nondeterministic sublanguage is given by:

data TermN = Amb [Term]

Given a function:

merge :: [InterpM a] + InterpM a

which merges a list of computations into a single (nondeter-
ministic) computation, nondeterminism interpretation can
be expressed as:

instance InterpC TermN where
interp (Arnb t) = merge (map interp t)

6 Monads With Operations

As mentioned earlier, particular monads have other opera-
tions besides unit and bind. Indeed, from the last section, it
is clear that operations listed in Table 1 must be supported.

If we were building an interpreter in the traditional way,
now is the time to set up the domains and implement the
functions listed in the table. The major drawback of this
monolithic approach is that we have to take into account all
other features when we define an operation for one specific
feature. When we define callcc, for example, we have to
decide how it interacts with the store and environment etc.
And if we later want to add more features, the semantic
domains and all the functions in the table will have to be
updated.

Monad transformers, on the other hand, allow us to individ-

ually capture the essence of language features. Furthermore,
the concept of lifting allows us to account for the interactions
between various features. These are the topics of the next
two sections.

To simplify the set of operations somewhat, we note that
both the store and output (used by the tracer) have to do
with some notion of state. Thus we define allocLoc, lookupLoc,
updateLoc, and write in terms of just one function

update :: (s+ s) + InterpMs

for some suitably chosens. We can read the state by passing
update the identity function, and change the state bypassing
it a state transformer. For example:

write msg = update (\ sofar + sofar ++ msg)
‘bind’ \.+ unit ()

7 Monad Transformers

To get an intuitive feel for monad transformers, consider
the merging of a state monad with an arbitrary monad, an
example adapted from Jones’s constructor class paper [9]:

type StateTsma = s+m(s, a)

Note that the type variable m above stands for a type
constructor, a fact automatically determined by the Gofer
kind inference system. It turns out that if rn is a monad, so

is “StateTs m“.5 “ StateT s“ is thus a monad transformer.
For example, if we substitute the identity monad:

type Ida = a

for m in the above monad transformer, we arrive at:

StateTs Id a = s + Id (s, a)
= s+(s, a)

which is the standard state monad found, for example, in
Wadler’s work [21].

The power of monad transformers is two-fold. First, they
add operations (i.e. introduce new features) to a monad. The
StateT monad transformer above, for example, adds states to
the monad it is applied to, and the resulting monad accepts
update as a legitimate operation on it.

Second, monad transformers compose easily. For exam-
ple, applying both “StateT s“ and “StateT t“ to the identity
monad, we get:

StateT t (StateTs Id) a = t + (StateTs Id) (t, a)
= t+s+(s, (t, a))

which is the expected type signature for transforming both
states s and t. The observant reader will note, however,
an immediate problem: in the resulting monad, which state
does update act upon? In general, this is the problem of
lifting monad operations through transformers, and will
be addressed in detail later. But first we define monads
and monad transformers more formally, and then describe
monad transformers covering the features listed in Section
5.

We can formally define monads as follows:

srnfact.Wat~’T~# is only legal in the current version of Gofer if 5’tateT

is a datatype rather than a type synonym. This does not limit our results.,
but does introduce superfluous data constructors that slightly complicate
the presentation, so we will use type declarations as if they worked as data
declarations.

338

class Monad m where

unit :: a+ma
bind :: ma+(admb)+mb

map :: (a+ b)+ma+mb

join :: m(ma)+ma

mapfm = m ‘bind’ \a ~ unit (f a)

join z = z ‘bind’ id

The two functions map and join, together with unit provide

an equivalent definition of monads, but are easily defined
(as default methods) in terms of bind and unit.

To be a monad, bind and unit must satisfy the well-known

Monad Laws [21]:

Left unit
(unit a) ‘bind’ k = k a

Right unit:
m ‘bind’ unit = m

Associativity:

m ‘bind’ \a -i (k a ‘bind’ h) = (m ‘bind’ k) ‘bind’ h

We define a monad transformer as any type constructor t
such that if m is a monad (based on the above laws), so

is “tm“. We can express this (other than the verification
of the laws, which is generally undecidable) using the two-

parameter constructor class MonadZ

class (Monad m, Monad (t m)) + MonadT t m where

lij? :: ma+tma

The member function lift embeds a computation in monad

m into monad “t m“. Furthermore, we expect a monad

transformer to add features, without changing the nature of
an existing computation. We introduce Monad Transformer

Laws to capture the properties of hjl:

lip . unitm = unittm

lijl (m ‘bind~’ k) = lift m ‘bind,~’ (lifi . k)

The above laws say that lifting a null computation results

in a null computation, and that lifting a sequence of com-
putations is equivalent to first lifting them individually and

then combining them in the lifted monad.
Specific monad transformers are described in the remain-

der of this section. Some of these (StateT, ContT, and ErrorT)
appear in an abstract form in Moggi’s note [15]. The envi-

ronment monad is similar to the state reader by Wadler [22].
The state and environment monad transformers are related to

ideas found in Jones and Duponcheel’s [9] [10] work.

7.1 State Monad Transformer

Recall the definition of state monad transformer StateT:

type StateT’s m a = s + m (s)a)

Using instance declarations, we now wish to declare both
that “StateTs m“ is a monad (given m is a monad), and that

“StateT s“ is a monad transformer (for each of the monad
transformers defined in subsequent subsections, we will do

exactly the same thing).
First, we establish the monad definition for “StateTs m“,

involving methods for unit and bind

instance Monad m $ Monad (StateTs m) where

unit x = \s + unit (s, z)
m ‘bind’ k = \so + m so ‘bind’ \(sl, a) +

kasl

Note that these definitions are not recursive; the constructor
class system automatically infers that the bind and unit

appearing on the right are for monad m.

Next, we define “StuteT s“ as a monad transformer

instance (Monad m, Monad (StateTs m)) +
MonadT (StateTs) m where

lijl m = \s + m ‘bind’ \x -+ unit (s, x)

Note that lift simply runs m in the new context, while
preserving the state.

Finally as explained earlier, a state monad must support
the operation update. To keep things modular, we define a
class of state monads:

class Monad m + StateMonads m where

update :: (s+s)+ms

In particular, “StateT s“ transforms any monad into a state

monad, where “update f” applies f to the state, and returns
the old state

instance Monad m + StateMonads (StateTs m) where

update f = \s + unit (fs,s)

7.2 Environment Monad Transformer

“EnvT/’ transforms any monad into an environment monad.
The definition of bind tells us that two subsequent compu-

tation steps run under the same environment r. (Compare
this with the state monad, where the second computation

is run in the state returned by the first computation.) Liji
just performs a computation — which cannot depend on the

environment — and ignores the environment, InEnv ignores
the environment carried inside the monad, and performs the

computation in a given environment.

type EnvTrma = r+ma

instance Monad m ~ Monad (EnvT r m) where
unit a = \r + unit a

m ‘bind’ k = \r+mr’bind’\a+kar

instance (Monad m, Monad (EnvT r m)) +
MonadT (EnvT r) m where

lift m = \r+m

class Monad m ~ EnvMonad env m where

inEnv :: env+ma+ma
rdEnv :: m env

instance Monad m + EnvMonad r (EnvT r m) where
inEnv r m = \.+mr
rdEnv = \r + unit r

7,3 Error Monad Transformer

Monad Error completes a series of computations if all suc-

ceed, or aborts as soon as an error occurs. The monad
transformer ErrorT transforms a monad into an error monad.

data EYYor a = Ok a I Error String

type ErrorT m a = m (Ejror a)
.

339

instance Monad m ~ Monad (ErrorT m) where

unit = unit . Ok
m ‘bind’ k =

m ‘bind’ /a +
case a of

(ok x) + kz
(Error msg) -+ unit (Error msg)

instance (Monad m, Monad (ErrorT m)) q
MonadT ErrorT m where

lift = map unit

class Monad m ~ ErrMonad m where

err :: String + m a

instance Monad m ~ ErrMonad (ErrorT m) where
err = unit . Error

7.4 Continuation Monad Transformer

We define the continuation monad transformer as:

type ContTans m a = (a +- mans) + mans

instance Monad m + Monad (ContT ans m) where
unit x = \k-+kx

m’bind’f = \k-+m(\a-+fak)

ConfT introduces an additional continuation argument (of
type “a+ mans”), and by the above definitions of unit and

bind, all computations in monad “ContT ans m“ are carried
out in a continuation passing style.

Lift for “Cent ans m“ turns out to be the same as bind for
m. (It is easy to see this from the type signature.) “Callcc

f” invokes the computation in f, passing it a continuation
that once applied, throws away the current continuation

(denoted as “-”) and invokes the captured continuation k.

instance (Monad m, Monad (ContT ans m)) a
MonadT (ContT ans) m where

lift = bind

class Monad m + ContMonad m where

callcc :: ((a+mb)+ma)+ma

instance Monad m + ContMonad (ConfT ans m) where
CJdrccf = \k+f(\a+\-+ka)k

7.5 The List Monad

Jones and Duponcheel [10] have shown that lists compose
with special kinds of monads called commutative monads. It
is not clear, however, if lists compose with arbitrary monads.

Since many useful monads (e.g. state, error and continuation

monads) are not commutative, we cannot define a list monad
transformer — one which adds the operation merge to any

monad,
Fortunately, every other monad transformer we have

considered in this paper takes arbitrary monads. We thus
use lists as the base monad, upon which other transformers
can be applied.

instance Monad List where

unit x = [z]
[] ‘bind’ k = [1
(z: m) ‘bind’ k = k z++ (XS ‘bind’ k)

class Monad m * ListMonad m where

merge :: [tid]+ma

dinstance ListMona List where

merge = cor+zt

“A8 Lifting Operatl ns

We have introduced monad transformers that add useful
Aoperations to a giv n monad, but have not addressed how

these operations c~n be carried through other layers of
monad transforme~s, or equivalently, how a monad trans-

former lifts existing operations within a monad.
LLifting an oper tlon f in monad m through a monad

I
transformer t resul s in an operation whose type signature
can be derived by substituting all occurrences of m in the

type off with “t m’~. For example, lifting “inEnv :: r + m a

+ m a“ through t results in an operation with type “r+. t m
a~t ma.”

Given the types of operations in monad m:

.._ (type constants)

T ““; : (type variables)
I T + r (function types)

[(r, r) (product types)
1 mt- (monad types)

[1, is the mapping ~f types across the monad transformer t

[Al , =A
(al,

(TI -+?21, : YTllt+ [721,

((?-l , 72)1, = ([i-llt, [7?.1,)
[m T1, = tm [-rlt

Moggi [15] studied the problem of lifting under a categor-
ical context. The ob~ective was to identify liftable operations
from their type sig~tures. Unfortunately many useful oper-

ations such as merge, inEnv and callcc failed to meet Moggi’s

criteria, and were le ft unsolved.

We individually consider how to lift these difficult cases.

This allows us to m ake use of their definitions (rather than

k
just the types), and ‘nd ways to lift them through all monad
transformers studiqd so far.

This is exactly where monad transformers provide us
with an opportunity to study how various programming

language features i teract. The easy-to-lift cases correspond
ito features that ar independent in nature, and the more

involved cases reqdke a deeper analysis of monad structures

+
in order to clarify t e semantics.

An unfortunate consequence of our approach is that as we
consider more mo~ad transformers, the number of possible

Iit%ngs grows quadratically. It seems, however, that there

J

are not too many different kinds of monad transformers

(although there m be many instances of the same monad
transformer such as StateT). What we introduced so far

are able to model almost all commonly known features of
sequential languag~. Even so, not all of them are strictly
necessary. The envmonment, for example, can be simulated
using a state monarJ:

instance (Monad m , StateMonad r m) ~
EnvMonad r m where

inEnv r m =U palate (\. + r) ‘bind’ \o +

m ‘bind’ \u +

&;~ (\-+ o) ‘bind’ _+

rdEnv = ~pdate id

340

Also, as is well known, error reporting can be implemented

using callcc.

8.1 Correctness Criteria

The basic requirement of lifting is that any program which

does not use the added features should behave in the same
way after a monad transformer is applied. The monad trans-

former laws introduced in Section 6 are meant to guarantee
such property for lifting a single computation. Most monad
operations, however, have more general types. To deal
with operations on arbitrary types, we extend Moggi’s corre-

sponding categorical approach, and define L, as the natural

lijlirzg of operations of type ~ along the monad transformer
t:

L. :: -7-+ [Tit

LA =id (1)

c. =id (2)

z., +q = \f +f ~’~qch that
=,cn. f (3)

~(rlm) = \(a, b) J (G, a, Lq b) (4)
L mr = lijt . (nrap z.) (5)

Constant types (such as Integer) and type variables do not

depend on any particular monad. (See cases 1 and 2.) On
the other hand, we expect a lifted function, when applied

to a value lifted from the domain of the original function,
to return the lifting of the result of applying the original

function to the unlifted value. This relationship is precisely

captured by equation 3, which corresponds to the following

commuting diagram

L.l

I

The lifting of tuples is straightforward. Finally the Efl
operator come with the monad transformer lifts computa-

tions expressed in monad types. Note that C* is mapped

to the result of the computation, which may involve other
computations.

Note that the above does not provide a Gofer definition
for an overloaded lifdng function .C. The “such that” clause

in the third e uation specifies a constraint, rather than a
$

definition of f, In practice, we first find out by hand how

to lift an operation through a certain (or a class oo monad
transformer, and then use the above equations to verify

that such a lifting is indeed natural. Generally we require

operations to be lifted naturally — although as will be seen,
certain unnatural liftings change the semantics in intewsting
ways.

8.2 Easy Cases

Err and update are handled by lij’1, whereas merge benefits
from List being the base monad.

instance (ErrMonad m, MonadT t m) ~
ErrMonad (t m) where

err = lifi . err

instance (StateMonad m, MonadT t m) =+-

StateMonad (t m) where

update = lijl . update

instance MonadT t List + ListMonad (t List) where

merge = join. lifi

8.3 Lifting Callcc

The following lifting of cdcc through EnvT discards the
current environment r’ upon invoking the captured contin-

uation k. The execution will continue in the environment r
captured when callcc was first invoked.

instance (MonadT (EravT r) m, ContMonad m) ~
ContMonad (EnvT r m) where

-- callcc :: ((a+r+rn b)+r+ma)+r+ma

cdcc ~ = \r + cdcc (\k + ~ (\a -+ \r’ -+ k a) r)

The Appendix shows that if we fllp the order of monad

transformers and apply ContT to “EnvT env W“ — in which

case no lifting of cdlcc will be necessary — the current
environment will be passed to the continuation. (We will

see how to fix this by carefully recovering the environment

when we lift inEnv in a moment.)
In general we can swap the order of some monad trans-

formers (such as between StateT and EYZVT),but doing so
to others (such as ConfT) may effect semantics. This is

consistent with Filinski’s observations [61, and, in practice,
provides us an opportunity to fine tune the resulting seman-
tics.

In lifting callcc through “StateT s“, we have a choice of

passing either the current state S1 or the captured state so.

The former is the usual semantics for cdlcc, and the latter is

useful in Tolmach and Appel’s approach to debugging [201.

instance (MonadT (StateT s) m, ContMonad m) *
ContMonad (StateTs m) where

-. Callcc :: ((a+s+m (s, b))+s+m(s, a))

+s+rn(s, a)
callcc f = \sll + Callcc (\k +

f (\a + \sl -+ k (sl, a)) so)

The above shows the usual callcc semantics, and can be

changed to the “debugging” version by instead passing (so,
a) to k

The lifting of inEnv through ErrorT can be found in the

Appendix.

8.4 Lifting InEnv

We only consider lifting inEnv through CorztT here; the
Appendix shows how to lift inEnv through other monad
transformers.

instance (MonadT (ContT am) m, EnvMonad r m) =%
EnvMonad r (ConfT ans m) where

inEnv r c = \k ~ rdEnv ‘bind’ \o +
inEnv r (c (inEnv o. k))

rdEnv = lifi rdEnv

We restore the environment before invoking the continu-

ation, sort of like popping arguments off the stack. On the
other hand, an interesting (but not natural) way to lift irzEnv
is:

341

instance (MonadT (ContT ans) m, EnvMonad r m) +
EnvMonad r (ContT ans m) where

inEnv r c = \k + inEnv r (c k)

rdEnv = lijl rdEnv

Here the environment is not restored when c invokes k,

and thus reflects the history of dynamic execution.

9 Conclusions

We have shown how a modular monadic interpreter can

be designed using two key ideas: extensMe union types
and monad transformers, and implemented using constructor
classes. A key technical problem that we had to overcome
was the lifdng of operations through monads. Our ap-
proach also helps to clarify the interactions between various
programming language features.

Thk paper realized Moggi’s idea of a modular presen-

tation of denotational semantics for complicated languages,
and is much cleaner than the traditional approach [19]. On

the practical side, our results provide new insights into

designing and implementing programming languages, in

particular, extensible languages, which allow the program-
mer to specify new features on top of existing ones.

Acknowledgements

We thank Dan Rabinf Zhong Shao, Rajiv Mirani and anony-

mous referees for helpful suggestions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Andrew W. Appel and Trevor Jim. Continuation-

passing, closure-passing style. In ACM Symposium on

Principles of Programming Languages, pages 193-302, Jan-
uary 1989.

Adrienne Bless, Paul Hudak, and Jonathan Young.

Code optimization for lazy evaluation. Lisp and Symbolic

Computation, 1(1):147-164, 1988.

Robert Cartwright and Matthias Felleisen. Extensible

denotational semantics. In Proceedings of Symposium on
Theoretiml Aspects of Computer Software, pages 244-272,

1994.

David Espinosa. Modular denotational semantics. Un-
published manuscript, December 1993.

David Espinosa. Building interpreters by transforming
stratified monads. Unpublished manuscript, ftp from

altdorf.ai.mit.edupub/dae, June 1994.

Andrzej Filinski. Representing monads. In Conferenw
Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, Portland,
Oregon, pages 446-457, New York, January 1994. ACM

Press.

Paul Hudak, Simon Peyton Jones, and Philip Wadler.
Report on the programming language Haskelh a non-
strict, purely @nctional language, version 1.2. Technical
Report YALEU/DCS/RR-777, Yale University Depart-

ment of Computer Science, March 1992. Also in ACM
SIGPLAN Notices, Vol. 27(5), May 1992.

[8]

[9]

[10]

[11]

[12]

[131

[14]

[151

[16]

[17]

[18]

[191

[20]

[21]

Mark P. Jones. Introduction to gofer 2.20. Ftp from
nebula. cs.yale.e du in the directory pub/haskell/gofer,
September 1991 .

Mark l?. Jones. h system of constructor classes: Over-
loading and i 1plicit higher-order polymorphism. In

?FPCA ’93: Con erence on Functional Programming Lan-
guages and Com@ter Architecture, Copenhagen, Denmark,

pages 52-61, New York, June 1993. ACM Press.

Mark P. Jones ~nd Luc Duponcheel. Composing mon-

ads. Research Report YALEU/DCS/RR-1004, Yale Uni-
versity Depart~ent of Computer Science, New Haven,

Connecticut, December 1993.

nRichard Kelsey and Paul Hudak. Realistic compilation
by program tra sformation. In ACM Symposium on Prin-
cip.ks of Progran/ming Languages, pages 181–192, January

1989. I

Amir Kishon, ~aul Hudak, and Charles Consel. Mon-
itoring semant~cs: A formal framework for specifying,

implementing ~nd reasoning about execution monitors.

[n Proczediruzs ~f the ACM SIGPLAN ’91 Conference on

Programmin~L&guage Design and Implementation, pages
338-352, June 191.

?

Peter Lee. Realbtic Compiler Generation. Foundations of
Computing. NdT Press, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The

Definition of Sta ndard ML. MIT Press, 1990.

i
Eugenio Mogg”. An abstract view of programming lan-
guages. Techni al Report ECS-LFCS-90-113, Laboratory
for Foundatio~s of Computer Science, University of

+
Edinburgh, Ed’ burgh, Scotland, 1990.

Peter D. Mosses. A basic abstract semantic alge-

L

bra. In Gilles Kahn, David B. MacQueen, and Gor-

don D. Plotkin, editors, Semantics of Data Types: Interna-
tional Symposiu , Sophia-Antipolis, France, pages 87-107.

Springer-Verla~, June 1984. Lecture Notes in Computer
Science 173.

JSimon Peyton Jones and Philip Wadler. Imperative
functional pro ramming. In Prowedings 20th Symposium

on Principles o) Programming Languages, pages 71-84.

)
ACM, January 993.

Guy L. Steele Jr. Building interpreters by composing

monads. In Cdnferenw Record of POPL ’94: 21st ACM

SIGPL~-SIG~CT Symposium on Principles of Program-
ming Languages, Portland, Oregon, pages 472492, New

York, January ~994. ACM Press.

Joseph Stoy. D‘notational Semantics: The Scoft-Strachey
Approach to Pro gramming Language Theoy. MIT Press,
1977.

Andrew P. Tolrhach and Andrew W. Appel. Debugging

standard ML ~thout reverse engineering. In Proceed-
ings of the 1990 ACM Conference on Lisp and Functional
Programming, Nice, France, June 1990.

Philip Wadler. The essence of functional program-
ming. In Conferena Record of the Nineteenth Annual

ACM Symposidn on Principles of Programming Languages,
Albuquerque, Ntw Mexico, pages 1-14, January 1992.

342

[22] Philip L. Wadler. Comprehending monads. In Prowed-

ings of tke 1990 ACM Conferen@ on Lisp and Functional
Programming, 1990.

[23] Mitchell Wand. A semantic prototyping system. SIG-

PLAN Notices, ACM Symposium on Compikr Construction,
19(6):213-221, 1984.

A The Ordering of ContT and EnvT

It is interesting to compare the following two cdcc functions
on monad M and N, both composed from “ContT ans” and

“EnvT m“, but in different order.

Case 1:

type Ma = ContT am (ErwT r m) a
= (a4r*mans)4r4mans

callccf = \k+-f(\u+\. +ka)k

(eta convert \r and \r’)

= \k+\r-j f(\a+\-+ \r’+kar’)kr

Case 2:

type M a = EnvT r (ContT ans m) a
= r+(a+mans)+ mans

Callcc f = \r + WCC (\k -if (\a + \r’ + k a) r)

= \r+. \k+(\k’ +f(\a+\r’+k’a)r)
(\a+\-+ka)k

= \r+\k+f (\a+\r’+\-+ka)rk

From the expansion of type M in case 1, we can see that

both result and environment are passed to the continuation.
When callcc invokes a continuation, it passes the current,

rather than the captured continuation. The mllcc function in
case 2 works in the opposite way.

B lifting CaUcc through ErrorT

instance (MonadT ErrorT m, ContMonad m) ~

ContMonad (ErrorT m) where
.- callcc :: ((a+ m (Error a))+ m (Errors))
-- + m (Error a)

Cullcc f = cdcc (\k + f (\a + k (Ok a)))

C Lifting InEnv through EnvT, StateT and ErrorT

instance (MonadT (EnvT r’) m, EnvMonad r m) e

EnvMorwd r (EnvT r’ m) where

inEnv r m = \r’ + inErzv r (m r’)

rdEnv = lifi rdEnv

instance (MonadT (StateTs) m, EnvMonad r m) ~
EnvMonad r (StafeTs m) where

inEnv r m = \s + inEnv r (m s)

rdEnv = lift rdEnv

A function of type “m a + m a“ maps “m (Error a)” to
“m (Error a)”, thus inEnv stays the same after being lifted
through ErrorT.

343

