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Abstract 

 

This paper presents an automated method for estimating the trunk cross sectional area of 

fruit trees. An Intel RealSense 435i was used to capture RGB images and point clouds of 

individual trunks. To segment the trunk in the image from the background, a Masked-

attention Mask Transformer model was adopted. The segmentation results were 

integrated with the 3D point cloud to estimate trunk widths in 3D. The width estimation 

was evaluated on three diverse datasets collected from a commercial apple orchard using 

human measurements as ground truth. With a mean absolute error less than 5%, the 

method is sufficiently accurate to assist orchard operations.   
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Introduction 

 

Trunk cross sectional area (TCSA) is a metric that growers and horticulturists use to 

measure tree productivity in terms of wood mass. There is a positive correlation between 

the yield of a tree and the TCSA (Lepsis and Blanke, 2006; Kumar et al., 2019), as a 

result of the positive relationship between TCSA and canopy volume. The industry uses 

TCSA to calculate the yield efficiency of trees (#fruit weight / TCSA = yield efficiency). 

TCSA can also be used to determine the number of high-quality fruit a tree can produce 

without stressing the tree and, therefore, the number of fruit to thin from a tree. TCSA is 

measured by finding the diameter of a tree at the appropriate height using calipers or a 

measuring tape and then calculating the area. Unfortunately, despite TCSA being a useful 

parameter in precision orchard management and a comparatively easy metric to gather on 

a single tree, when dealing with a large commercial orchard with thousands of trees, 

collecting the data quickly becomes untenable. An automated technique to measure the 

TCSA would greatly reduce the manual effort needed to collect per-tree data. 

Many previous efforts have been made to detect tree trunks. In many of these cases, the 

goal was to localize the robot using the trunks as landmarks, so no attempt was made to 

accurately measure the TCSA of the detected tree. Shalal et al. (2015) developed an 

algorithm that used data fusion from a camera and a laser scanner to delineate between 

tree and non-tree objects, such as supports or posts. They used the laser scanner to 

determine the width of the tree-like objects and the camera to verify (based on the color) 

whether or not the detected object had parallel edges. No information was given about 

the precision with which they were able to measure the detected trunks. Another method 

to detect trunks by Bargoti et al. (2013) used Hough Transforms on LiDAR data to detect 
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trunk locations. Their aim was to use the trunk location data to build a tree inventory of 

the orchard, so no attempt was made to measure the trunk width.  

Several efforts have used LiDAR to effectively measure tree diameter. Wang et al. (2019) 

used a terrestrial laser scanner, designed for forest inventory, in a man-made ginkgo forest 

to measure: the diameter at breast height, total height, and location of the trees. The forest 

was divided into 10m x 10m square plots for the experiment and a single scan was 

conducted for each area. The results were then compared to manual measurements; they 

were able to detect 92.75% of the trunks and had a root mean square error of 1.27cm for 

the diameter and 0.25m for the height. Bucksch et al. (2014), on the other hand, utilized 

airborne LiDAR data combined with a novel skeleton measurement methodology to 

extract the diameter at the breast height of trees in a forestry setting. While LiDAR 

produces accurate measurements, its cost may make it too expensive for orchard 

managers. 

An image-based approach was proposed by Kan et al. (2008). They utilized a calibration 

stick placed next to the tree in an image to determine the actual size of pixels in the image 

at the location of the tree. The diameters of the trunks and branches of the tree were then 

acquired by processing and analyzing the image. Their method had a mean absolute error 

of 0.67cm and a mean relative error of 1.9%. Similar to this approach, the proposed 

approach is image only; however, the use of the depth data eliminates the need for 

manually placing a calibration pattern in the image. 

This paper introduces a method that uses a state-of-the-art deep learning model to locate 

and estimate the width of tree trunks using just an RGB-D image. The model was trained 

on data collected during diverse conditions in a commercial orchard, giving it the ability 

to ignore excess foliage and robustly operate in variable lighting and orchard conditions. 

Manual measurements were gathered as a ground truth to evaluate the accuracy of the 

method. Results showed that the method is accurate within 5% of manual measurements.  

 

Methods 

 

Trunk width estimation can be difficult in the noisy outdoor environment of apple 

orchards. The appearance of trees can also vary greatly throughout the year. Additionally, 

it is challenging to separate vegetation from trunks in laser scans. In an effort to reduce 

the effects of sensor noise (and lower the cost), this approach uses a computer vision-

based approach. The process begins with an Intel (Santa Clara, CA, USA) RealSense 

D435i sensor scanning a tree trunk (Fig. 1) and returning an image with additional depth 

information. A Masked-attention Mask Transformer (Masked2Former) model (Cheng et 

al., 2022) was trained for trunk segmentation (pixel-level predictions). The segmentation 

result was then processed, in conjunction with the depth information, to generate width 

estimates along the thinnest 40% of the trunk visible in the image. The orchard used for 

this study was a Jazz block trained in a tall spindle architecture with a wire and post trellis 

system. Data was taken across several years and different lighting conditions. 



 
Figure 1. Utility vehicle with Intel Realsense D435i mounted near the rear at the desired 

height for measuring the trunk width. The camera continuously records RGB-D images 

as the vehicle traverses the orchard rows (Prosser, WA, USA). 

 

Trunk segmentation 

The latest state of the art model Masked2Former was adopted for instance trunk 

segmentation. This is a universal architecture capable of addressing panoptic, instance 

and semantic segmentation tasks. By using the masked attention, multi-scale high-

resolution features and calculating mask loss on only a few sampled points, the proposed 

method has both high performance on evaluation metrics and is computationally efficient. 

Readers are referred to Cheng et al. (2022) for more details on the algorithm. For transfer 

learning on the trunk dataset, a pre-training model on COCO (Lin et al., 2014), with 80 

“things” and 53 “stuff” categories, was adopted, keeping only one class in the 

segmentation head. The model was then fine-tuned for 200,000 iterations with a learning 

rate of 0.00025; this learning rate increased the rate of convergence compared to the 

0.0001 learning rate used in the original Mask2Former while still ensuring stable 

convergence. The data augmentation described in Cheng et al. (2022) was also adopted 

during training. 

 

Training datasets 

The Masked2Former was trained on 450 images with pixel-level annotations from three 

different data sets (150 images from each dataset): 

● Dataset 1 – February 2020: sunny, trees do not have foliage, background is mainly 

dry grass, no fruit on trees. 

● Dataset 2 – July 2021: sunny, trees have green foliage, background has green 

vegetation, green fruit on trees. 

● Dataset 3 – November 2020: sunny, trees have green foliage, background has dry 

leaves, red fruit on trees. 

Labelme (https://github.com/wkentaro/labelme) was used to annotate the datasets, where 

a polygon was drawn to outline the trunk. 

 

Medial axis and distance transform 

After obtaining the mask, the next step was to skeletonize (Zhang and Suen, 1984) the 

mask, which generates the medial axis and the distance transform along the axis (see Fig. 

2 for an example). The medial axis traces the center of the mask along the trunk, while 

the distance transform gives the minimal distance from a point on the medial axis to the 

mask boundary (the image radius). This step produces a radius estimate for each pixel 

along the medial axis (a horizontal “slice” of the image).  

 

 

Intel Realsense 
D435i 

https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2Fwkentaro%2Flabelme&data=05%7C01%7Cjoseph.davidson%40oregonstate.edu%7C72acdfd991f343fca67f08db06df7817%7Cce6d05e13c5e4d6287a84c4a2713c113%7C0%7C0%7C638111329087264425%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=YWSAEINglQqdZokm4MoYcpDasz8Edng179EL4f8RYlI%3D&reserved=0


 
Figure 2. Left: The mask produced by Masked2Former. Middle left: The mask is 

processed to produce a medial axis (blue) with a distance to the boundary (an example is 

shown in green) at every point along the axis. Middle right: The corresponding depth 

image, with the green “slice” marked. Right: The pixel slices that are below the 40th 

percentile; the width of the largest of these (shown in white) was chosen as the trunk 

width. 

 

Physical width estimation 

The next step in the pipeline is to convert, for each “slice”, the transformed distance from 

pixel coordinates to a measurement of trunk width in physical coordinates. Preliminary 

observations showed that measuring the distance between the depth coordinates of the 

left-right end points of the slice as the estimate was inaccurate due to noise in the depth 

map. Instead, the algorithm uses the camera’s intrinsic parameters to calculate a 

meters/pixel ratio that is then used to determine the physical width for all transformed 

distances. Referring to Fig. 3, d is the depth (m) to points along the medial axis, shown 

in blue, with respect to the origin of the camera O. This depth is used to triangulate the 

height of the image b - a (m). From simple geometry the height can be found by Eq. 1: 

 

        𝑏 −  𝑎 =  2 ∗ 𝑑 ∗ 𝑡𝑎𝑛 (
𝛼

2
)        (1) 

 

where 𝛼 is the camera’s vertical view angle of 42o. The meter per pixel conversion ratio 

is the image height divided by the camera’s pixel height of 480 or 720, depending on the 

camera model (i.e. (𝑏 −  𝑎) / 480 𝑜𝑟 720). For each horizontal slice, the width of the 

trunk is calculated by (# of pixels in the slice)*conversion ratio. These per-slice width 

measurements are combined in the next section to calculate a single trunk width estimate.    

 
Figure 3. An illustration of the physical width estimation, where 𝑂 is the position of the 

camera, 𝛼 is the vertical view angle, 𝑑 is the depth and line segment 𝑎 − 𝑏 represents the 

vertical height of the image. 

 

Automatic measurement selection 

In field practice, humans take the measurements somewhere between 20 and 30 cm above 

the tree’s graft union. The width varies substantially along the trunk, meaning there is 

significant human decision making in the current process. Manual inspection of where 

humans took their measurements showed that if the widths were calculated for every 

height within the predicted mask and then sorted from smallest to largest, the 

corresponding human measurements are approximately at the 40th percentile. Rather than 

choose a specific height in the image, the algorithm follows this practice and returns the 



measurement at the 40th percentile. Note that this is the 40th percentile of the measured 

widths, not the measurement at a specific height.    

 

Test datasets 

Three test datasets (Row97, Row98, and Row100) that included separate orchard rows 

and different periods of the growing season were collected (see Table 1). Human ground 

truth measurements were obtained 20 cm and 30 cm above the graft union for Row97 and 

Row98; three separate measurements were completed at 30 cm for Row100. The average 

width measurements are used as the ground truth width for the final evaluation. 

 

Table 1. Statistics of test datasets. 

Dataset Row100 Row97 Row98 

Season 

Dataset size 

Image size, pixels 

Blossom 

100 

480*640 

Growing 

79 

720*1280 

Growing 

75 

720*1280 

 

Results and Discussion 

 

Trunk segmentation 

Table 2 reports the quantitative results from instance segmentation of tree trunks using 

the standard COCO detection evaluation metrics, i.e. Average Precision (AP) over 

multiple Intersection over Union (IoU) values (https://cocodataset.org/#detection-eval). 

The results are impressively competitive considering state of the art AP on mainstream 

tasks (https://paperswithcode.com/sota/instance-segmentation-on-coco) is only around 

55.5%. Figure 4 shows some qualitative segmentation results for the three test datasets. 

Consistently aligned with the strong APs of the segmenter, it is also apparent by 

inspection that the trunk segmentation is very accurate in different lighting conditions and 

at various stages of the growing season, even when there is vegetation and grass present 

in the image. 

 

 
Figure 4. The best (top row) and worst (bottom row) segmentation results (masked in 

white) for each of the three test datasets. 

 

Table 2. Instance segmentation results of test datasets (overall). 

Method AP AP50 AP75 APm API 

Mask2Former 89.1 91.8 88.8 80.8 92.8 

https://cocodataset.org/#detection-eval
https://paperswithcode.com/sota/instance-segmentation-on-coco


Automatic measurement selection 

Figure 5 shows the slices that are below the 40th percentile for several images. Since each 

individual tree has varying shape and width along the height of the trunk, the smallest 

40% of transformed distances returned from the medial axis calculations are sometimes 

not continuous and can be located at different regions of the trunk. The physical widths 

were calculated for all pixel slices in the red set, and the maximum value of these was 

selected as the automatic estimate of trunk width.  

   

 
Figure 5. Sample automatic measurement selection results for the three test datasets. The 

white line indicates the selected slice.  

 

Automatic width estimation compared to ground truth 

Physical width estimates were compared against the human measurements for the three 

test datasets (Fig. 6). Table 3 shows the mean absolute error (MAE) and error standard 

deviation (ESD) of the algorithm’s predictions. MAE for Row100 used as the true value 

the mean of three repeated human measurements taken at 30 cm above the graft union. 

For an average tree width of 6.71 cm from all test datasets, an MAE of 0.305 (Row100) 

represents 4.6% error in the prediction.  

Discussions with growers and horticulturalists revealed that there is some variability in 

the height selected for manual measurements, depending on the individual collecting data. 

Therefore, the MAE for Row97 and Row98 incorporated the mean of human width 

measurements from 20 cm and 30 cm above the graft union as the true value. Table 3 

reports the difference between these two measurements as ‘Human diff’. The MAE of the 

automatic predictions for Row97 and Row98 were 0.294 cm and 0.295 cm, respectively, 

or approximately 4.4% error. The difference between two human measurements was 

approximately 0.15 cm, or approximately 2.2% error.           

 

 
Figure 6. Width estimation and ground truth plots for different test datasets. 

 

In the Row97 and Row98 datasets, there are 2-4 outliers. Upon careful examination, these 

outliers highlight two main sources of error: incorrect predictions and incorrect depth 

measurements. The first type of error, incorrect predictions, occurs when the segmenter 

fails to detect the target tree in the center of the image or when there are significant 



occlusions caused by leaves or overlaps between the foreground and background trunks. 

The second type of error, incorrect depth measurements, occurs when part of the trunk is 

occluded by leaves and the sensor is unable to accurately capture the depth information 

of the trunk. 

 

Table 3. Comparison with the baselines on the 3 datasets. ‘Predicted’ is the automatic 

estimate and ‘Human diff’ is the difference between human measurements at 20cm and 

30cm above the graft union. The number in the parentheses is the number of trees included 

in the evaluation. One tree in the Row100 dataset didn’t have depth information, and the 

target tree wasn’t detected in two of the Row97 images.  

 MAE (cm) ESD (cm) 

Row100 (99)   

Predicted 0.305 0.193 

Row97 (77)   

Predicted 0.294 0.212 

Human diff 0.158 0.152 

Row98 (75)   

Predicted 0.295 0.285 

Human diff 0.143 0.246 

 

Efficiency 

The input to the algorithm is RGB-D data, where RGB information is represented as PNG 

images and D is NumPy data pre-extracted from the original polygon file format (PLY) 

file. The algorithm was evaluated on a computing cluster using one Dell AMD EPYC 

compute node (Model: 2x Dell PowerEdge R7525; Processor 2x 32-core 2.6 GHz AMD; 

GPUs: 2x Nvidia A40 w/ 48 GB; Memory 256 GB RAM). Table 4 shows the runtimes of 

the algorithm for several subtasks; total execution time varied from 0.36 to 0.67 sec per 

image. Optimizing the performance of the framework for deployment on an embedded 

system in the field is the subject of future work.   

 

Table 4. The runtime (seconds) of the proposed method. 

 I/O Trunk Segmentation Width Estimation Overall 

Row100 0.013 0.265 0.085 0.363 

Row97 0.025 0.484 0.161 0.671 

Row98 0.025 0.476 0.160 0.661 

 

Conclusion 

 

This paper described a computer vision-based method for automatically estimating the 

cross sectional area of apple tree trunks in a commercial orchard. A state-of-the-art 

Masked2Former model was used to segment tree trunks in RGB images, and the depth to 

the tree was used to convert the transformed distance of the trunk mask to a physical 

measurement of the trunk width. Evaluation of the algorithm on multiple datasets showed 



that the algorithm’s predictions were within 5% of the ground truth human measurements. 

Likewise, the algorithm performed robustly across images captured in different lighting 

conditions and at varying stages of fruit production (e.g. flower blossom, green fruitlet 

period, etc.). The presented framework should be generalizable to other tree types and 

orchard systems. Future work will integrate this technique as a tool in precision orchard 

management practices.  
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