
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Infants’ Developing Environment: Integration of 
Computer Vision and Human Annotation to 

Quantify Where Infants Go, What They Touch, and 
What They See

Danyang Han*  
Department of Psychology  
 and Behavioral Sciences 

Zhejiang University  
Hangzhou, Zhejiang, China 
danyang.han@zju.edu.cn 
(*shared first authorship) 

Ori Ossmy 
School of Psychology 

 
Birkbeck, University of London  

London, UK 
ori.ossmy@bbk.ac.uk 

Ruiting Shen 
Department of Psychology 

 
New York University  
New York, NY, US 

rs8422@nyu.edu 

Nicolas Aziere* 
School of Electrical Engineering and 

Computer Science  
Oregon State University  

Corvallis, OR, US 
azieren@oregonstate.edu 
(*shared first authorship) 

Ajay Krishna 
School of Electrical Engineering and 

Computer Science 
Oregon State University  

Corvallis, OR, US 
krishnaj@oregonstate.edu 

Sinisa Todorovic 
School of Electrical Engineering and 

Computer Science 
Oregon State University  

Corvallis, OR, US 
sinisa@oregonstate.edu 

Tieqiao Wang 
School of Electrical Engineering and 

Computer Science 
Oregon State University  

Corvallis, OR, US 
wangtie@oregonstate.edu 

 

Hanzhi Wang 
Department of Psychology 

 
New York University  
New York, NY, US 
hw3629@nyu.edu  

Karen Adolph 
Depts. of Psychology, Neuroscience, 
and Child & Adolescent Psychiatry  

New York University 
New York, NY, US 

karen.adolph@nyu.edu 

Abstract—Infants learn through interactions with the 
environment. Thus, to understand infants’ early learning 
experiences, it is critical to quantify their natural learning 
input—where infants go, what they touch, and what they see. 
Wearable sensors can record locomotor and hand movements, 
but cannot recover the context that prompted the behaviors. 
Egocentric views from head cameras and eye trackers require 
annotation to process the videos and miss much of the 
surrounding context. Third-person video captures infant 
behavior in the entire scene but may misrepresent the egocentric 
view. Moreover, third-person video requires machine or human 
annotation to make sense of the behaviors, and either method 
alone is sorely lacking. Computer-vision is not sufficiently 
reliable to quantify much of infants’ complex, variable behavior, 
and human annotation cannot reliably quantify 3D coordinates 
of behavior without laborious hand digitization. Thus, we 
pioneered a new system of behavior detection from third-person 
video that capitalizes on the integrated power of computer vision 
and human annotation to quantify infants’ locomotor, manual, 
and egocentric visual interactions with the environment. Our 
system estimates a real infant’s interaction with a physical 
environment during free play by projecting a “virtual” infant in 
a “virtual” 3D environment with known coordinates of all 
furniture, objects, and surfaces. Our methods for using human-
in-the-loop computer vision have broad applications for reliable 
quantification of locomotor, manual, and visual behaviors 
outside the purview of standard algorithms or human 
annotation alone. 

Keywords—computer vision, infant, behavior, visual, manual 
exploration, locomotion 

I. INTRODUCTION 
Many researchers propose that infants actively generate 

input for learning through interactions with the 
environment—where infants go, what they touch, and what 
they see [1-5]. Thus, accurate quantification of infants’ natural 
locomotor, manual, and visual activity is critical to understand 
their learning experiences and the nature of their self-
generated learning input. Infants are not bombarded with the 
“blooming buzzing confusion” [6] of the surrounding 
environment because much of the surrounding environment is 
not immediately available. Babies can only interact with their 
accessible environment. The accessible environment 
determines infants’ learning input, but what determines 
access? A long-standing hypothesis is that infants’ growing 
bodies and sensorimotor skills expand infants’ accessible 
environment and alter infants’ self-generated learning 
experiences, but no research systematically quantified the real 
time and developmental changes in infants’ locomotor, 
manual, and visual inputs. We aim to document how infants’ 
immediate, accessible environment “develops” alongside 
infants’ developing bodies and motor skills. Specifically, we 
seek to quantify how infants’ locomotor, manual, and visual 
interactions with the environment unfold from moment to 
moment during natural activity and how the input changes in 
amount, type, and temporal structure over development. 

To achieve this goal, our procedure and method have 
several desiderata: (1) To capture infants’ natural activities, 
babies should play in a large, fun, complex space in which 
they can move freely, rather than in a constrained space or 
while seated at a table. To compare change across 
development and infants, the play space must be constant and 
fully calibrated. We chose to quantify infants’ locomotor, 
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manual and visual experiences because these are infants’ 
primary learning inputs. (2) To record infants’ self-generated 
behaviors, they should play alone with caregivers nearby, but 
without caregiver intervention to alter infants’ behavior. Thus, 
we omitted language input and social interactions. (3) Our 
method must capture infants’ interactions with the accessible 
environment rather than recording locomotion, manual 
actions, or visual behaviors in isolation. We aim to record the 
places infants visit, the location and identity of objects and 
surfaces they touch, and the array of places, surfaces, and 
objects they look at. (4) Our method must record all three 
modalities simultaneously to reveal their temporal relations. 
(5) Finally, to record developmental changes from pre-rolling 
neonates to accomplished infant walkers, our method must be 
safe, reliable, and valid for all ages from 2-18 months.  

A. Wearable Technologies 
State-of-the-art, wearable recording technologies do not 

meet the requirements of our desired dataset. Inertial sensors 
and machine learning, for example, can estimate the quantity 
of infant postures and locomotion during natural play and the 
trajectories of infant movements. But inertial sensors cannot 
recover infant interactions with the surrounding environment 
that prompt behavior (e.g., surfaces infants touched, 
destinations they visited). 

Head cameras and head-mounted eye trackers record 
infants’ egocentric visual experiences but require machine-
learning algorithms or human annotation to identify the scenes 
and objects in the videos. Recent machine-learning algorithms 
did not achieve high accuracy in detecting faces and hands in 
egocentric videos [7, 8]. Practically, it is impossible to 
manually annotate the entire array of objects, background 
scenes, and human bodies in every video frame. Therefore, 
previous research scored down-sampled subsets of video 
frames for a few targets of interest (e.g., hands, faces, and a 
few select objects) [9-11]. Moreover, objects, scenes, and 
social partners outside infants’ field of view are not recorded, 
so critical information about the surrounding environment is 
missing, and thus selective attention to the environment is also 
missing. In addition, head-mounted cameras and eye trackers 
may constrain infants’ natural activity or alter their behavior. 
Eye trackers also pose safety concerns for infants in a prone 
posture with their faces and the device near the floor. 

B. Computer Vision and Human Annotation Based on 
Third-Person Video 
Third-person videos uniquely capture infants’ behavior 

and the subtle details of the entire scene but require machine 
or human annotation. Each method alone is severely lacking. 
Computer vision estimations of body poses frequently err in 
detection (misses and false alarms); existing algorithms are 
typically trained on adult datasets and so are less accurate for 
infant behaviors. Performance of computer-vision algorithms 
suffers from occlusion, blending effects from similar colors, 
and so on. Moreover, computer-vision detection from third-
person video typically focuses on behaviors separated from 
the environmental context—precluding analyses of places 
visited, objects explored, and egocentric visual input.  

Human annotation of infant behaviors can include the 
surrounding environment (e.g., surfaces infants walked on, 
objects they touched) but cannot reliably quantify 3D 
coordinates of locomotion and manual interactions without 
laborious hand digitization (e.g., where infants traveled) [12-
14]. Manual annotation cannot reliably estimate infants’ entire 
field of view with existing annotation tools.  

C. Current Study 
The current study pioneers new forms of infant behavior 

detection by representing the real infant’s behavior in a 
physical environment with a virtual infant in a virtual 
environment. We created a 3D virtual environment scaled 1:1 
to the physical environment with known 3D coordinates of all 
objects, furniture, and surfaces. We innovated an integrated 
system to capitalize on the respective powers of computer 
vision and human annotation to detect infant behaviors from 
2D video and project the behaviors in the corresponding 
locations of the 3D virtual environment (Fig. 1A). Thus, we 
know the location of infants’ virtual bodies in the surrounding 
environment, the objects infants’ virtual hands touch, and 
what infants’ virtual eyes see from moment to moment. Our 
current system is also an experiment of the precision of third-
person video analysis without wearable technologies to detect 
locomotor, manual, and visual behaviors.  

The critical task is the moment-by-moment detection of 
the 3D coordinates of infant body keypoints (to track infants’ 
whole-body and hand locations) and infants’ face orientation 

 
Fig. 1. (A) Top left panel: Real infant in physical playroom. Infants began each session lying supine on a gridded play mat (bottom right of frames). Caregivers 
sat on chair occupied with phone. Top right and bottom panels: “Virtual” infant in virtual playroom (caregiver not represented). Locomotor history shows 22s 
of infant head path. Manual histories show 22s of left and right wrists’ paths. Red cone represents infant’s field of view in 1 video frame. See corresponding 
video clips at databrary.org/volume/1684/slot/69933. (B) Longitudinal dataset. Each row shows one infant’s data, each symbol represents a session, and 
symbol color denotes locomotor skill in that session. Transparency denotes observation duration.  
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(to estimate infants’ eye gaze direction) in the 3D space based 
on multiple camera views. Although results from machine 
annotation alone align with standards for computer vision, 
accuracy falls short for the intended developmental study. 

To increase accuracy, we developed a sophisticated user 
interface for semi-automated error correction by human 
annotators. This interface is designed to identify and prompt 
corrections for the most uncertain results. Human annotators 
are guided to rectify selected outcomes, and these corrections 
are propagated to neighboring video frames. This approach 
ensures high accuracy while minimizing human effort. 

II. DATASET AND PROCEDURE 

A. Dataset 
We collected 115 sessions from 27 infants (9 boys, 18 

girls). We aimed to test infants monthly from 2 to 18 months, 
±1 week of infants’ monthly birthday, but infants missed 
sessions due to holidays, illness, moving, and family 
schedules. Six infants contributed 1 session and 21 infants 
contributed 2 to 11 sessions (Fig. 1B). Infants’ race and 
ethnicity were White (48.1%), Black (3.7%), Asian (14.8%), 
multiracial (33.3%); Hispanic or Latino (18.5%), non-
Hispanic or Latino (70.4%) or unknown (11.1%).  

As shown in Fig. 1B, infants displayed various postural 
and locomotor skills: pre-rolling if infants laid on their back 
for the entire session (18 sessions), rolling if they rolled from 
supine to prone (15 sessions), sitting if they sat up (6 sessions), 
crawling if they crawled 3m on hands and knees without 
stopping or falling (18 sessions), cruising if they moved 2m 
sideways holding furniture or wall for support without 
stopping or falling (27 sessions), and walking if infants took 
upright steps 3m without stopping or falling (31 sessions).  

We aimed to obtain 10 min of infant play. Although some 
pre-mobile (pre-rolling, rolling, sitting) sessions were cut 
short due to fussiness, infants’ behavior was less variable 
relative to mobile infants (crawling, cruising, walking). For 
mobile infants, we analyzed 76 full-data sessions (9.5+ min). 
For pre-mobile infants, we analyzed 28 full-data sessions and 
11 partial-data sessions (4.5 to 9.5 min). 

B. Procedure 
Infants played in a large laboratory playroom (5.97m × 

9.42m) with abundant surfaces and objects at various 
locations and heights—6 pieces of furniture, 17 movable toys, 
a wall of toys for display, and varied floor and ceiling surfaces 
(Fig. 1A). A video tour of the playroom is available at 
databrary.org/volume/1684/slot/69934. The entire playroom 
was calibrated with centimeter accuracy from floor to ceiling. 

Each session began by placing babies supine in the same 
location on a large play mat. Caregivers sat on a chair 2m 
away from infants’ starting location and were occupied on 
their phone. We asked caregivers to refrain from interacting 
with infants to ensure infants’ spontaneous, natural behavior. 
Infants wore a solid-color onesie so their body and limb 
movements were clearly visible in cameras for human 
annotators and easily detected by computer vision due to high 
color contrast with the environment. 

C. Third-person camera recording 
We recorded infants with eight fixed, synchronized 

cameras (standard non-fisheye RGB cameras with 1920 ´ 
2160 resolution for the synchronized videos with 8 views; i.e., 

960 ´ 540 for each view) on the ceiling to cover the entire 
playroom and to ensure infants were visible in at least two 
views at each moment. Four camera views were the same 
across sessions. The other four views differed for mobile and 
pre-mobile infants. Four views covered the playroom area for 
mobile infants and four focused on the baby play mat for pre-
mobile infants. Camera placement and views are available at 
databrary.org/volume/1684/slot/69936. 

III. VIRTUAL ROOM AND 2D-3D CALIBRATION 
Our current system integrates the power of computer 

vision and human annotation to track infants’ locomotor, 
manual, and visual interactions with the environment solely 
from third-person video. (1) We built a “virtual” playroom 
with 1:1 scale relative to the physical playroom with known 
3D coordinates of all objects, furniture, and surfaces. (2) We 
used computer vision to detect infants’ bodies and behaviors 
from the third-person video recordings. (3) We custom built 
an annotation tool for easy, efficient human correction assisted 
by computer vision to ensure high accuracy of body-behavior 
detection with minimal human effort. (4) We projected the 
virtual infant into the virtual playroom with their bodies and 
visual cones “colliding” or “touching” the objects and surfaces 
in the virtual playroom at every frame to reconstruct the real 
infant’s interactions with the real environment (Fig. 1A). 

A. Virtual room 
We constructed the virtual room in Autodesk Maya. 

Creating a virtual room to scale with accurate dimensions for 
floor, ceiling, walls, furniture, and objects is critical. 
Computer vision algorithms require an accurate 3D 
representation of the physical playroom to accurately map the 
virtual room with the third-person video data. We measured 
the size of the physical playroom with a laser device. We 
hand-measured the size of objects, furniture, and wall 
hangings, and the location of all room features to locate them 
in the virtual room. For ceiling features (e.g., metal frames, 
lights) not accessible to hand measurement, we used a 
Matterport 3D camera (go.matterport.com) to measure their 
size and location and validated them by known distances on 
the floor. The virtual room matched the colors, patterns, and 
lighting effects of the physical room to facilitate human 
annotation. See Fig. 1A for the image of the virtual and 
physical playroom and databrary.org/volume/1684/slot/69935 
for a video tour of the virtual playroom.  

B. Calibration between 2D videos and 3D virtual room 
We calibrated the 2D pixels in the third-person videos to 

their corresponding locations in the 3D virtual room. We 
created a grid (91.2 × 91.2 cm for each unit) on the floor using 
visually distinctive tapes and then moved a checkerboard with 
12 × 12 alternating black and white squares (7.6 × 7.6 cm for 
each square) along the grid to cover the horizontal and vertical 
spaces in the room. See video of the calibration process at 
databrary.org/volume/1684/slot/69937.  

We used Microsoft Paint to hand-select pixels on the video 
recordings that represent a specific location in the physical 
playroom and mapped the 2D pixel coordinates to the 3D 
virtual space. We used the camera calibration methods from 
the widely used OpenCV API [15]. We validated the 2D to 3D 
mapping algorithm by “back-projecting” known 3D locations 
to 2D video images. We repeated the process of generating 2D 
to 3D mapping algorithms with varying sets of 2D to 3D 
mapping relations until we achieved effective calibration—
when the reprojection error remains low for a set of new 3D 



points that were not included as input to the calibration 
algorithm. We observed errors ranging from 0.5 to 5.5 pixels 
across all 12 views due to slight lens distortion on the edge of 
the room or noise in the calibration process. Although the 
ceiling was not captured by the cameras and thus not included 
in the 2D to 3D mapping sets, the precisely constructed 3D 
space retains the relative relations between the mapped and 
unmapped space and thus the entire 3D space was calibrated.  

IV. COMPUTER VISION ESTIMATION OF INFANTS’ BODIES AND 
BEHAVIORS PRIOR TO CORRECTIONS BY HUMAN ANNOTATORS 

We leveraged recent advances in computer vision and 
Deep Learning algorithms to detect infants and their body 
pose for each video frame. We used the state-of-the-art body 
keypoint detection method DeepHighNet [16] to detect infants 
and their body pose represented as 17 keypoints (nose, left and 
right eyes, left and right ears, left and right shoulders, left and 
right elbows, left and right wrists, left and right hips, left and 
right knees, and left and right ankles). DeepHighNet was 
initially designed to work on adults, so we used InfantPose 
[17] specifically trained to work with infants’ body 
proportions. To avoid finetuning a specialized adult/infant 
detector that would involve annotating a set of additional 
bounding boxes, we used the pretrained faster-rcnn to extract 
detections that would be classified later as infant or adult.  

Both the infant and caregiver are visible in the videos. 
DeepHighNet is designed to detect all human bodies in the 
video frames, so we need to track who the detections belong 
to across time. We leveraged the inherent constraint that each 
view contains one adult (caregiver seated on a chair) and one 
infant in each frame. To keep tracking simple and accurate, 
we designed a specialized classifier to differentiate adult and 
infant, and trained it on 3000 manually annotated video 
images from our own dataset. The training set included 1400-
1600 instances of adults and infants, with an additional 200 
instances of each class in the test set. Accuracy on the test set 
was 94.3%. See databrary.org/volume/1684/slot/69933 for an 
exemplar video of infant behavior with body keypoints. 

A. Locomotor and manual interactions 
We used infants’ head to represent their whole-body 

location. We extracted the midpoint between left and right eye 
keypoints to estimate real-time head location. We extracted 
the left and right wrist keypoints to estimate infants’ hand 
location. See exemplar video of infant behavior with head and 
wrist trajectories at databrary.org/volume/1684/slot/69933. 
We compared the computer vision results to the human 
annotation on 3216 frames. The average error for head 
location was 12 +/- 38cm, with 78.5% of frames within 10 cm. 
The wrist locations were evaluated on a different manually-
corrected set of 860 instances. The average error of our 
automated wrist location estimation was 17 +/- 36 cm, with 
68.1% of frames within 10 cm. Thus, for the purpose of 
quantifying infants’ interactions with the environment, errors 
were relatively large based solely on computer vision. 

B. Visual interactions 
With the current video recording technologies, it was 

impossible to record infants’ eyeball and pupil movement 
from fixed cameras on the ceiling due to low resolution. In 
theory, we could record infants’ faces with more close-up 
camera views. However, there is a trade-off between 
recording the room from a distance to cover wider areas of the 
room and recording the room with close-up views to ensure 
high resolution. Because infants’ eye movements are typically 

aligned with their head movement [18-20], we use infants’ 
face orientation to approximate their eye gaze direction. 

Within facial analysis, 3D head pose estimation from a 
single image is pivotal and has applications across various 
domains. Existing work falls into landmark-based [21], or 
landmark-free categories [22-27]. Head pose estimation from 
multiple camera views is a relatively unexplored area in 
computer vision. Some work uses techniques prior to the Deep 
Learning era [28-30]. 3D head pose estimation methods 
primarily targeted adults, assuming smooth head motions in 
video. However, adapting these methods to infants, with their 
distinct characteristics and non-smooth movements, poses a 
significant challenge. Additionally, the common practice of 
reaching consensus among annotators to establish ground 
truth in annotation tools within computer vision is well-
established, but is largely tailored to adults. The nuanced 
requirements for infants highlight the need for specialized 
approaches—a gap our research aims to bridge. 

To estimate infants’ visual access, we first estimated 
infants’ head location as the middle point of the left and right 
eyes extracted from body keypoint estimation. Then we 
estimated infants’ face orientation. We employed the most 
advanced deep head pose estimator 6DRepNet [27] and 
represented infants’ face orientation using 3 Euler angles to 
describe all orientations—the same format as face pose 
estimation algorithms using Deep Learning. The model 
6DRepNet takes an image representing a person's face as input 
and produces 3 Euler angles representing the face orientation 
as output. We cropped the image of the infant face from the 
original videos as input for 6DRepNet. The dimensions of the 
cropped face image were adjusted proportionally to the 
dimensions of the infant's body within the view. 

6DRepNet encounters challenges in accurate head pose 
estimation, especially when infants' faces are not directed 
toward the camera. Initially, we attempted to use 6DRepNet 
as a standalone head pose estimator and aggregate predictions 
from each view by computing the average head pose in the 
room coordinate system. However, the limitations of 
monocular head pose models and the difficulty in selecting 
relevant views led to unsatisfactory results. To address this 
issue, we harnessed the advantages of our multi-view setup 
and developed our own multi-view head orientation network. 
Our model consisted of (1) bounding box feature extractions 
and (2) multi-view feature fusion. Feature extraction was done 
using our DeepHighNet network, where each bounding box 
representing an infant is passed through the network such that 
the resulting deep features containing body pose information 
is the concatenation of the set of normalized 2D keypoints 
(𝑓!,# ∈ ℝ(%&×	))) and the d-dimensional deep feature 𝑓!,% ∈ ℝ+ 
extracted before the body keypoints inference layer. We 
experimentally found that the concatenation of both features 
yielded the best results on the test set. For each view 𝑖, we 
have feature 𝑓! = [𝑓!,#, 𝑓!,%] ∈ ℝ(%&×	),+) , where 𝑓!  is a zero 
vector when view 𝑖  does not contain any bounding box 
representing the infant. The set of multi-view features 
{𝑓!}!-%. 	 is then passed to the fusion network. The fusion 
network is composed of one linear layer followed by one 
masked multi-head self-attention layer [31], where attention is 
computed only between muti-view features containing a valid 
infant detection. The output of the attention layer is then 
passed to 2 linear layers. The output of the last layer is the 
head pose in 3D. It was trained using a L2 norm loss 



minimizing the difference between the predicted and ground-
truth head poses.  

Our multi-view head pose model was trained on manually 
annotated head poses for multiple rounds. The model provides 
the initial results of the head poses, human annotators 
corrected the results, the model was retrained on the corrected 
annotations, and we repeated the process until we obtained 
satisfactory results. The annotation procedure was assisted by 
the custom-built interface to improve the efficiency and 
accuracy of head pose annotation. The human annotators were 
trained to reach consensus in annotating the head pose based 
on files with a wide variety of infant behaviors. See Section 
VI for details about the annotation process. The manually 
annotated dataset was composed of 37057 frames for training 
and 2528 for test. All the frames were selected to provide a 
robust foundation for accurate head pose detection in diverse 
scenarios. Our current multi-view model for head pose 
estimation has an error of 30.6 +/- 26.5 deg on the test set, with 
31% within 15 deg. Thus, for the purpose of quantifying 
infants’ visual access to the environment, errors were large 
based solely on computer vision. 

After detecting infants’ face orientation, we estimated 
infants’ field of view as a “cone,” with the axis as the vector 
of infants’ face orientation and the opening angle of the cone 
as a narrow field of vision (here, 30 deg, but the field of view 
is adjustable). See databrary.org/volume/1684/slot/69933 for 
an exemplar video of infant behavior with the real-time and 
accumulated history of infants’ visual cone. See Fig. 2 for the 
multiple steps in computer vision estimation.  

Occasionally infants moved to areas in the room that were 
captured by less than two cameras (13.9% of all frames). For 
frames that capture the infant from one view, the human 
annotators fill in the missing data of the head and wrist 
locations and correct the head pose provided by the model. For 
frames that did not capture the infant from any view (e.g., 
infant momentarily occluded by furniture), missing data were 
interpolated based on the nearest known past and future 
estimations. Full details on the models, networks, and 
implementation for infant body detection, face orientation 
detection, and object tracking are publicly available at 
github.com/azieren/DevEv-BackEnd.  

C. Object tracking 
We tracked the locations of the movable objects with 

computer vision to obtain real-time 3D coordinates of all 
objects in the virtual room. The movable toys were tracked in 
2D videos using a faster-rcnn detector network [32]. We 

finetuned the network on a set of toy classes representing the 
set of movable objects in the room. The ground-truth 
bounding boxes for moveable objects were annotated on 1008 
images. The 2D centroids of the toy bounding boxes were then 
projected in 3D to estimate toy location in 3D. The locations 
of a set of small movable objects not captured by the detector 
will be manually annotated. 

V. RELIABILITY OF COMPUTER VISION 
We encountered several challenges that affect the 

accuracy of state-of-the-art models—low resolution, instances 
of partial occlusion and motion blur, and occasional failure to 
record infants’ face. It is crucial to note that the models used 
in this study were originally trained on extensive public 
datasets featuring adults. To adapt to the unique characteristics 
of infants, we fine-tuned our models on a significantly smaller 
dataset specifically annotated for infants. However, despite 
these adjustments, the performance still falls short of the 
requisite accuracy level essential for subsequent data analysis 
by developmental scientists.  

In the computer vision and AI community, it is common 
to present average performance metrics that include both easy 
and challenging videos, leading to more optimistic 
evaluations. However, our developmental study requires high 
accuracy on every video, not merely on average. This 
underscores a key gap in collaboration between computer 
vision and developmental scientists, where the former focus 
on statistical averages, and the latter value individual 
performance on each video. Bridging this conceptual gap is 
essential for effective interdisciplinary collaboration.  

Although statistical analyses could potentially remove 
some noise in the computer vision results, such methods 
typically require large datasets of samples governed by the 
same distribution which cannot be satisfied in our case 
because infants differ in age and behaviors. Thus, corrections 
by human annotators are currently necessary to compensate 
for errors in computer vision. 

VI. MANUAL CORRECTION ASSISTED BY COMPUTER VISION 
 To increase the accuracy of the results, it is essential to 

leverage human annotation for correcting and quality-assuring 
computer vision outputs. However, manual correction of 3D 
information from multiple 2D camera views for every frame 
is not feasible for humans without assistance. Human coders 
are not capable of identifying the (x,y,z) coordinates in a 3D 
environment with their naked eyes. Moreover, the sheer 
volume of images that need correction makes it a mission 

 
Fig. 2. Computer vision pipeline for multi-view head pose estimation. The adult and infant body keypoints are recognized and tracked across frames for each 
view (Left). Our multi-view head pose prediction model first extracts features from infant bounding boxes from each view and passes them to the Multi-View 
Fusion network for predicting the head pose in 3D (Center). The infants’ head, wrists, and face orientation are projected into the 3D room (Right). 
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impossible—each 10-min session has 18,000 frames to correct 
at 30 frames per second.  

We developed a tool that integrates the powers of human 
annotation and computer vision and compensates for the 
drawbacks of relying solely on each alone. The annotation tool 
time-locks the third-person video frames with the 
corresponding computer vision estimation of the virtual infant 
in the virtual room. We created a suite of functions in the 
annotation tool to allow for easy examination and correction 
of the computer vision results with simple mouse clicks and 
keyboard presses. The annotation tool propagates manually 
corrected results to neighboring frames which significantly 
reduced the number of needed corrections. 

Numerous general-purpose image and video labeling 
software solutions exist, such as the widely adopted LabelMe 
[33] and VIA [34]. Recognizing the costliness of manual 
annotation, techniques have emerged to semi-automate the 
labeling process. For instance, SeTa [35] employs a Cascaded 
Regressor for eye tracking, training on a small dataset to label 
a larger one. Similarly, [36] emphasizes minimal human 
intervention for high accuracy in all circumstances. In our 
approach, inspired by [35], we select a subset of head poses 
for correction, leveraging both refinement of the model and 
temporal smoothness in video to propagate corrections to 
nearby frames. In domains with high inter-expert variability, 
like healthcare, collaborative approaches to increase 
consensus have proven beneficial [37]. 

A. Easy, effective user-interface 
Our annotation tool allows users to examine and adjust the 

3D projection of estimation results in the virtual room to the 
correct location based on the 2D video. The tool shows the 2D 
videos and virtual room side by side. For every video frame, 
the tool shows the corresponding 3D projection of the 
estimation results in the virtual room. Coders can watch all 8 
views to examine the infant from all angles and get a holistic 
judgment of the baby’s location and face orientation, or can 
zoom in to one or two views for close-up examination. 
Annotators can use keyboard and mouse to navigate the 
virtual room by rotating 360 degrees, scaling, and zooming in 
and out to examine the 3D location of a point or a vector in 
the virtual room.  

Annotators have two options to set the 3D location of a 
point (for head and wrists) or a vector (for face orientation) in 
the virtual room. (1) Annotators can select pixels in the 2D 
video images that represent a point (e.g., infant’s left wrist) in 
two or more camera views and the annotation tool creates 
corresponding 3D points or vectors (by specifying the start 
and end points) in the virtual room based on calibration. (2) 
Annotators can click any location on objects in the virtual 
room to set new end points for vectors. They can also use 
mouse scrolls for fine adjustments of the 3D location of points. 
To aid in estimating infants’ face orientation, annotators can 
show a sphere with guidelines around the baby’s head to 
provide benchmarks for angle estimation.  

After the annotator sets the location of a point or a vector, 
the annotation tool can visualize the points and vectors back 
on the 2D videos to verify accuracy. We pre-specified 12 
perspectives of the virtual room that were rotated and zoomed 
in to provide the same views of the room as the 12 video 
cameras. Coders can use a button click to set the virtual room 
to any of the 12 views to compare the result in the virtual room 

and the 2D videos. For a video clip of using the manual 
annotation tool, see databrary.org/volume/1684/slot/69938.  

B. Human correction assisted by computer vision 
Computer vision estimations achieved high accuracy for 

head locations relative to wrist locations and face orientation. 
The errors typically occurred because a background object 
was erroneously classified as the infant that resulted in 
excessive movement of the head location between consecutive 
frames. To minimize manual correction, the annotation tool 
proposed a set of frames for review based on trajectory 
smoothness assessment. Annotators examined each identified 
frame and correct erroneous estimations. Because computer 
vision achieved relatively low accuracy for wrist locations and 
face orientation, we adopted a different strategy: The 
annotation tool proposed 1 frame every second for manual 
review and the annotator corrected results as needed.  

After correction, the annotation tool propagated the 
corrected results to 15 neighboring frames before and after the 
corrected frame. Moreover, the tool ensured that frames were 
sparsely distributed to maximize the power for post-correction 
propagation. Finally, annotators visually examined results 
over the entire session with the estimation projected on the 2D 
video and corrected any remaining errors. Note, the 
propagation function may remove fast manual movements 
(e.g., banging). 

See databrary.org/volume/1684/slot/69939 for two 
exemplar infant sessions from one mobile infant and one pre-
mobile infant and the estimation of infants’ locomotor, 
manual, and visual behavior based on computer vision and 
human correction. We showed both the accumulated amount 
of infant behavior and the process of how the behaviors unfold 
across the session. With parents’ permission, we will openly 
share raw videos and processed data from other sessions with 
authorized researchers on Databrary.com. 

C. Reliability of manual correction 
To assess the quality of corrections and the effectiveness 

of the interface, we engaged multiple annotators to correct the 
same set of frames from the same videos. Two humans 
independently annotated 300 frames from 5 sessions (3 from 
mobile infants and 2 from pre-mobile infants) and reached 
high agreement with M = 3.03 cm (SD = 0.94) difference in 
infants’ head locations, M = 5.32 cm (SD = 2.23) difference in 
infants’ wrist locations, and M = 13.69 deg (SD = 1.34) 
difference in infants’ face orientation, with 45.3% having less 
than 10 deg of difference and 6.3% having more than 30 deg 
of difference.  

VII. COLLISION FUNCTION: VIRTUAL INFANT INTERACTING 
WITH VIRTUAL ENVIRONMENT 

Finally, we can examine real infants’ interactions with the 
physical environment by estimating the virtual infants’ 
interactions with the virtual environment. For locomotor 
interactions, we create a sphere representing the infant head 
with the center as the real-time head location and the diameter 
as the infant head size. By projecting the sphere to the floor 
and computing the relative distance between infants’ head and 
the rest of the virtual room, we can examine the unique areas 
infants visit, surfaces travelled, objects or caregiver near the 
start and stop of locomotor bouts, and so on. For manual 
interactions, we create a half-sphere with the center as the 
wrist and the radius as the infant hand size, with the direction 
extending from elbows to wrists to represent infants’ hands. 



We use a collision function to assess what infants’ virtual 
hands collide with in the virtual room—defined as the overlap 
of the 3D coordinates—to represent the objects and surfaces 
that infants touch. Likewise, for visual interactions, we assess 
what the visual cone collides with in the virtual room to 
represent the entire array of objects and surfaces within 
infants’ field of view.  

VIII. CONCLUSION 
 Our work offers methodological breakthroughs with a 

new system that integrates the power of computer vision and 
human annotation to estimate infants’ locomotor, manual, and 
visual interactions with the environment moment-by-moment 
solely based on third-person videos. The creation of an 
accurate virtual 3D environment allows us to quantify infants’ 
behaviors in relation to the environment. We provide a set of 
procedures and an annotation tool that allow for infant 
behavior detection without interfering with infants’ natural 
activity or the need for expensive equipment. Our method can 
be used in other studies that aim to obtain locomotor, manual, 
and visual behaviors in infant, child, and adult natural, 
unconstrained activities. 
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