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Abstract—Functional locomotion requires perception of 
affordances—the fit between body and environment that makes 
particular actions possible. To cope with changing affordances 
while walking over varied terrain, walkers must modify their 
steps as they approach and navigate each ground surface. Newly 
walking infants have the physical wherewithal to modify their 
gait by slowing down and taking shorter steps, but they do not 
do so systematically or prospectively. To test how gait 
modifications develop, we video recorded new and experienced 
infant walkers as they approached and crossed slopes and 
bridges. The long-term aim is to measure whether, when, and 
how infants modify their gait (relative to slope degree and 
bridge width, the location of the obstacle in space, and typical 
gait on flat, wide surfaces). Useful data require high precision in 
classifying steps and identifying the 3D location of infants’ feet 
at each moment (despite the idiosyncrasies of infant movements 
and frequent occlusion and motion blur)—requirements beyond 
the capabilities of human annotation or computer vision alone. 
Thus, we built an integrated human-machine system to identify 
each step and its XYZ coordinates as infants approached and 
crossed the obstacles. We capitalized on the ability of human 
annotators to classify infants’ movements into steps and of 
computer vision to identify the 3D coordinates of the feet in each 
video frame. We demonstrate the feasibility of this integrated, 
human-machine system to investigate the development of 
prospective infant gait modifications. 
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I. INTRODUCTION  
Walking over irregular terrain requires perception of 

affordances (e.g., whether a slope is too steep for walking) [1], 
[2]. However, in most situations where walking is possible, 
gait  modifications  are required. People must tailor walking 
patterns to features of the environment (e.g., decrease step 
length and speed to brake forward momentum on steep 
slopes). Moreover, gait modifications provide insight into the 
continual interactions between perception and action because 
functional locomotion in a real-world environment requires 
visually-guided control of walking [3]. Exploratory looking 
and touching generate perceptual information to guide 
upcoming action, and feedback from the last step guides 

planning for the next step. Thus, plans are continually updated 
and are reflected in gait modifications. 

How do prospective gait modifications develop? From 
their first walking steps, infants’ gait is not uniform. Babies 
can take slower or faster, shorter or longer, and wider or 
narrower steps. The range of possible gait modifications 
increases with walking experience, but even novice walkers 
can slow down and shorten their steps. Thus, by the time 
infants have sufficient skill to walk across a room, they are 
physically able to modify their gait. But can infants modify 
gait systematically to suit variations in terrain? Prior work 
suggests the ability to modify gait develops with walking 
experience. New walkers do not modify their gait 
prospectively to cope with slopes, bridges, and so on [4]. But 
after several months of experience, infants take smaller, 
slower steps to walk down steep slopes [5], across narrow 
bridges [6], [7] and over small obstacles [8]; they carefully 
lower themselves to step down a high drop- off [9]; and 
turn sideways to squeeze through narrow apertures [10].  

However, the recording technologies used in prior work 
limited researchers’ ability to determine whether, when, and 
how infants modify their gait with high resolution. Motion 
tracking markers and electromyography (EMG) require 
infants to wear recording devices and thus limit the number of 
test trials and constrain testing to a small area [4], [8]. Video-
based measures are less intrusive, so infants can produce more 
trials in larger areas on more varied ground surfaces. But prior 
video measures relied on human annotation with relatively 
low resolution such as the total number of steps or time per 
trial [11]. Higher resolution measures are needed to 
understand planning and implementation of gait modifications 
within and across trials—where in the trial infants modify 
their gait, step trajectories, and so on. 

Here we present a new solution by integrating computer 
vision and human annotation. Humans can easily identify each 
step, but cannot accurately identify the location of the foot in 
the air or on the ground. The opposite is true of computer 
vision: Identifying foot location is relatively trivial, but step 
classification is inaccurate. Our solution is a human-in-the-
loop integration for accurate, high-resolution gait measures. 
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II. RELATED WORK 
Gait modifications can be understood only relative to 

typical gait patterns on flat, open ground. A century of work 
details development of infant walking over straight paths on 
flat, open ground [12]-[15]. However, infants’ typical 
walking patterns provide no insight into their ability to modify 
their gait to cope with changes in the environment [16]. 

A. Measuring Infant Walking on Flat, Open Ground 
 To record gait, infants typically have to wear something 

(magnetic markers, inertial sensors, etc.) or walk over 
something (instrumented mat, force plate, etc.). But infants 
are not compliant participants, and often remove devices 
attached to their body. When encouraged to walk a specific 
path, babies veer off-course. The practical demands of typical 
recording methods (trailing wires, limited calibration space, 
floor sensors in particular locations, etc.) and the need to 
record a series of gait cycles leads most researchers to study 
gait as infants step on a treadmill or walk over flat, uniform 
ground. Perhaps the most robust finding from the standard 
“straight-path” test is that elapsed time since walk onset 
predicts infants’ gait maturity . Younger, less experienced 
walkers display shorter, wider, slower, more variable steps 
compared to infants with more months of walking experience. 

B. Challenges in Measuring Gait Modifications 
Technical constraints make it difficult to test infants in 

situations that require them to modify their gait (e.g., 
instrumenting a sloping walkway is difficult). Moreover, 
measuring gait modifications requires greater precision than 
measuring gait. Overall gait patterns are still recognizable 
despite a missing step, but gait modifications are not robust to 
missing steps [12], [16]. Computer vision can obviate the need 
for wearable recording devices or limitations in terrain. But it 
cannot solve the problem of accurate step classification alone. 

C. Computer Vision for Gait Analysis 
Gait analysis is a prominent focus in the computer vision 

community [17], [18]: gait recognition [19] to identify 
individuals by their walking patterns, and gait analysis to 
detect abnormal gait patterns for intervention or rehabilitation 
[20]. Such research typically involves coarse predictions, with 
only one classification per video. Notably, such work features 
videos with a limited number of well-separated adult walkers.  

Our work is distinct because it addresses the unique 
challenges posed by infant walkers. The most critical design 
features of existing computer vision systems expect motions 
to be temporally smooth. But infants’ footwork includes non-
smooth, jittery movements. Moreover, compared to adults, 
infants’ feet are small, creating low pixel resolution and large 
motion blur and frequent occlusion by nearby experimenters 
or infants’ changes in posture. Thus, no existing work 
produces fine-grained, location-specific gait analysis. 

III. CONSIDERATIONS IN EXPERIMENTAL DESIGN 
We tested infants walking on adjustable slopes and 

bridges. Here we focus on the relevant considerations of the 
study design in relation to the human-machine interface. 

A. Selecting the Participants 
To test effects of age and walking experience on gait 

modifications, we tested younger, less experienced infants 
(12-14 months, £ 6 weeks of walking experience) and older, 
more   experienced  infants  (17-19  months,  ³  21  weeks  of  

 
Fig. 1. Adjustable slope and bridge. (A) Slope apparatus (86 cm wide ́  276 
cm long): Flat starting and landing platforms (86 cm wide ´ 92 cm long) 
flank a sloping middle section (0-90° in 1° increments). (B) Bridge apparatus 
(76 cm wide ´ 288 cm long): Wide starting and landing platforms (76 cm 
wide ´ 106 cm long) flank a 76-cm long gap spanned by bridges of varying 
widths (1-76 cm in 1-cm increments) that can be quickly inserted and 
removed. Experimenter follows alongside infants to ensure their safety. 
Caregivers at the far end of the landing platform encourage infants to walk. 

walking). Caregivers reported infants’ walk onset age (first 
day they saw infants walk 3m independently without stopping 
or falling). We expected older, more experienced infants to 
modify their gait to cope with steeper slopes and narrower 
bridges, whereas younger, less experienced infants would not.  

B. Selecting the Terrain 
We selected slopes and bridges (Fig. 1) because they are 

novel and challenging, can be adjusted incrementally, entail 
a series of steps over the surface, and involve similar penalties 
for error. Most critical, on both apparatuses, infants must 
modify their gait prospectively to prevent falling. The surfaces 
of each apparatus were striped (5 cm apart) to calibrate the 
physical space for computer vision. See 
databrary.org/volume/1685/slot/69987?asset=474902 for an 
exemplar video. 

C. Collecting a Range of Trials 
Sessions lasted ~90 minutes. Infants walked barefoot 

wearing a colorful onesie so movements were unimpeded and 
limbs clearly visible on video. The experimenter wore a long-
sleeved shirt of a contrasting color to make the infant’s body 
more distinct. Half of the infants started with the slope and 
half with the bridge. Trials began with infants standing on the 
starting platform. Caregivers at the far side of the landing 
platform encouraged infants to cross, while the experimenter 
followed alongside infants to ensure their safety (Fig. 1). 

Infants completed 4 baseline trials on flat, wide ground on 
the first apparatus (0° slope or 60-cm wide bridge). Then they 
were presented with a more difficult increment (8° slope or 
52-cm wide bridge). We used an adaptive staircase procedure, 
increasing or decreasing the difficulty of each trial based on 
the outcome of the previous trial. Baseline trials were 
interspersed as needed to renew infants’ motivation to walk 
and to ensure that gait modifications on challenging increments 
were not due to fatigue. The procedure was repeated with the 
other apparatus. Thus, infants were presented with slopes 0° 
to 50° (∼30-50 total trials) and bridges 4 cm to 60 cm wide 
(∼30-50 total trials). 

D. Collecting “Gold-Standard” Data 
Infants walked over a pressure-sensitive mat on the floor 

(Protokinetics, 1.2 m wide ´ 4.9 m long, protokinetics.com, 
120 Hz, 4 sensors/in2) to provide a gold-standard comparison 
for computer vision location estimates. The experimenter 
placed infants at one end of the mat and caregivers at the other 
end encouraged infants to walk toward them as quickly as 
possible. If infants careened off the mat, stopped, or fell, we 
repeated the trial, aiming for at least 3 good trials.  

http://databrary.org/volume/1685/slot/69987?asset=474902


E. Recording in High-Resolution From Multiple Angles 
To produce reliable estimates of foot location, the feet 

must be visible in at least three camera views (30 fps), so each 
task (slope, bridges, gait mat) had four overhead camera views 
exported in high-resolution (1920´1080 pixels). The four 
views were also synced into one video frame.  

IV. COMPUTER VISION 
Our computer vision system aimed to estimate 3D foot 

locations in each frame. 

A. Video Pre-Processing 
Our goal was to accurately segment small objects—the 

baby’s feet. Thus, the detector model was run on the four high-
resolution views, but two synchronization challenges arose. 
First, although the four individual views began recording 
simultaneously, a potential 0.4-s offset may exist between 
views, posing a substantial disparity for quickly moving 
objects like infant feet. Therefore, despite identical 
timestamps, the four high-resolution views must be 
synchronized. So, the experimenter flashed the room lights 
during each recording, and we identified the first frame of 
darkness in each high-resolution view as follows: 

 !1, $%	 ∑(! < 	*+_-ℎ/0*
0, $%	 ∑(! ≥ 	*+_-ℎ/0* (1) 

where ∑F"  represents the summation of all RGB values 
within the current frame (! , and dm_thres denotes a 
predefined threshold for “dark moment” determination. 

Second, time stamps for each trial were human-annotated 
on the low-resolution mixed views. Thus, after creating the 
high-resolution mixed video, it was synchronized with the 
low-resolution mixed video to identify the corresponding 
video segments of interest. Video synchronization was 
achieved using a distinctive frame from the moving baby. 
After a unique frame, denoted as Fh, was pinpointed within 
the high-resolution view, we determined the optimal matching 
with the following optimization: 

 arg  min
","∈[&,']

;<(!) − (>*<;+ (2) 

where T represents the total number of frames, (!)	denotes the 
i-th frame within the low-resolution video, and (>,  signifies 
the resized high-resolution frame. 

B. Camera Calibration 
Camera calibration [21] determines the parameters that 

articulate the relations between the 3D world and the 2D 
image—imperative for the 3D reconstruction of foot 
locations. In the 3D space, the walkway surface serves as the 
x-y plane. To calibrate the slope, we varied the slant and used 
the stripes on the slope for camera calibration. To calibrate the 
bridge, we affixed two checkerboards onto 3´3ft rigid boards, 
each comprising 12´12 units.  We placed one checkerboard 
on the walkway and the other perpendicular to the walkway, 
moving them forward systematically to cover the 3D space. 
Thus, we guaranteed that the stripes or checkerboards covered the 
entire space for potential foot locations, as even a minor error 
could result in a substantial misestimation of a tiny foot.  

C. Human Pose Estimation 
We considered using pose estimation to estimate infants’ 

foot location such that the entire body could provide 
contextual information [22]. But it was unsuitable. Ensuring 
the baby’s safety on slopes and bridges—where infants often 
fall—takes precedence. Thus, the experimenter must stand 
with an arm on each side of the infant. Consequently, the two 
bodies overlapped in the image, leading to significant 
occlusions.  We tested the most recent models for occlusion-
aware 3-D pose estimation models, but they did not 
consistently distinguish experimenter from infant, and are not 
designed or trained to handle such challenging scenarios. 
Thus, state-of-the-art human pose estimation models did not 
return precise foot keypoints. Improving human pose 
estimation to fine-tune existing models by compiling a 
suitable training dataset with manual annotations of infant 
body keypoints from our videos would be prohibitively costly.  

D. Foot Detection 
Thus, we used an alternative approach based on object 

detection to deliver precise foot keypoint locations. Although  
state-of-the-art object detection models underperform on small 
objects (here, infants’ feet) [23], they allow for more 
convenient fine-tuning than human pose estimation. The 
manual annotations for fine-tuning an object detector consist 
of outlining ground-truth bounding boxes or polygons around 
objects (infants’ feet), which can be done more quickly and 
accurately than annotating the body keypoints.  

To identify and detect infants’ right and left feet in a video 
frame, we used the state-of-the-art Mask2Former model [23]  
with weights pre-trained on the public COCO dataset of 
images [24]. Following the standard transfer-learning practice 
for fine-tuning a pre-trained model [25] we fine-tuned the 
entire model with a modified classification head (adapted to 
our dataset) to predict foot instances under low resolution, 
motion blur, and partial occlusion. The model was fine-tuned 
in 20,000 iterations with a batch size of 2 and learning rate of 5e-5, 
on 1089 random frames across the slope, bridge, and gait mat 
videos from 13 randomly-selected infants, manually labeled 
with LabelMe [26]. However, after fine-tuning, our 
Mask2Former still frequently confused the two feet in the 
image, due to their similar appearance under low resolution 
and motion blur. We improved identification of left and right 
feet by extending Mask2Former with an additional module to 
reason about foot trajectories. However, in cases when infants 
step backward or rotate or raise their feet up and down in 
place, this module fails to improve foot classification. Note 
that our model is only trained on detecting bare feet; using the 
model to detect shod feet would require additional training. 

E. 3D Foot Estimation 
After detecting the right and left feet in each camera view, 

we mapped the estimated image locations to the 3D world 
coordinates. The center of a predicted bounding box serves as 
the foot location in the image. Given our comprehensive 
calibration of the entire 3D space of possible feet locations, 
any errors in estimating the 3D coordinates of the feet can 
originate only from mistakes in our 2D object detection. The 
3D foot location estimation first considers pairs of detections 
with the same label (e.g., right foot detection pairs) identified 
in every pair of camera views, and for each detection pair 
estimates the corresponding 3D location of the foot using the 
standard stereo geometry [21]. It then removes outlier 
detection pairs whose 3D reconstructions significantly differ 



from those of the other detection pairs, and finally estimates 
the 3D location of the foot using the least squares algorithm 
[27] from the remaining inlier pairs of detections. 

V. HUMAN ANNOTATION TOOL AND WORKFLOW 
Even the most advanced deep-learning models may fail 

when handling edge cases underrepresented in the training 
data. Thus, to ensure the accuracy of the data, human 
annotators must classify steps and correct foot detections. 

A. User Interface 
Our tool is publicly available (github.com/tqosu/Infant-

Gait-Modifications). The user interface (Fig. 2) consists of 
three windows: a control panel, video player, and top-down 
visualization of the steps and foot locations. The control panel 
allows users to select participants and trials, control video 
playback forward and backward at various speeds, navigate 
videos frame-by-frame, alter foot labels, toggle the display of 
detected foot boxes, delete foot boxes, insert steps, and so on. 
Users can activate these functions with button clicks, sliders, 
and keyboard shortcuts. Users can select what camera views 
to display in the video player, and the video player includes 
frame and timing information. The top-down visualization 
allows users to see the locations of user-inserted steps in the 
top panel and the locations of the feet in every frame in the 
bottom panel. 

B. Annotating Steps in the User Interface 
Human annotators identify each step event. Of note, we 

originally tested a workflow where the interface provided 
suggestions for steps using a hierarchical clustering algorithm 
to group foot locations (clusters surpassing a predefined 
threshold of 4 were retained as a step cluster, with a step 
suggested at the earliest frame within the cluster and the 
averaged location of all values in the cluster). However, the 
suggestions required human review and considerable 
correction, as the algorithm frequently added or missed steps, 
or inserted steps at incorrect times (correcting one 90-min 
session took ~ 4-5 hrs). Thus, humans independently insert 
each step event (annotating one session takes < 2 hrs).  

Humans add a step (labeled left or right) in the first frame 
where the foot fully landed in all 4 views after a displacement 
of ~1 inch or more (despite the resynchronization with the 
light flash, camera views are not perfectly synchronized at 
every moment).  

 

 
Fig. 2. User interface. (A) Control panel for user navigation. (B) Video 
player. Figure displays all camera views but any views can be selected. Feet 
shown surrounded by detection boxes. (C) Top-down visualization. Top 
panel shows user-inserted steps. Bottom panel shows foot locations in all 
frames. Vertical red line indicates the step currently displayed in the video. 

 
Fig. 3. Example footprints from (A) novice infant walkers and (B) 
experienced infant walkers. Blue circles denote steps with the left foot and 
red circles denote steps with the right foot. (A) On easy trials, novice walkers 
take wide, short, irregularly spaced steps. On hard trials, footprints end 
midway on the obstacle because infants did not modify their steps and fell. 
(B) On easy trials, experienced walkers take narrow, long, regularly spaced 
steps. On hard trials, footprints cluster while approaching and crossing the 
obstacle, showing gait modifications on steep slopes and narrow bridges. 

 Of note, on steep slopes and narrow bridges, infants’ steps 
occasionally do not have a clear swing phase (e.g., sliding, 
shuffling steps) and/or clear landing (e.g., slow landing of 
heel, scrunched foot that does not flatten, toes lifted after foot 
landing), making step identification challenging. Nonetheless, 
Fig. 3 and the exemplar video demonstrate the feasibility of 
the system for annotating steps and comparing gait 
modifications across infants, apparatuses, and trials 
(databrary.org/volume/1685/slot/69987?asset=474902). 

C. Correcting Foot Detections in the User Interface 
 As the video plays, infants’ feet are outlined with foot 
detection boxes (blue for the left foot, red for the right). After 
identifying frames for each step, human annotators verify that 
the feet were accurately detected and labeled so the resulting 
locations are correct. Thus, human annotators swap detection 
boxes if the algorithm incorrectly labeled the feet or delete 
detection boxes if the relevant foot was not identified. If a 
correction is made, the software automatically re-estimates 
foot locations, updating the detection boxes in the videos and 
the location of the foot in the top-down visualizations. 

D. Outlier Removal for Remaining Foot Detections 
After steps are identified and foot detection boxes 

adjusted, we use the verified data as constraints to identify 
outliers for foot detection boxes in all remaining frames, as the 
foot detection boxes must be correct in every frame to 
calculate the trajectory of the foot between steps and to 
determine the maximum height of each step. Within each 
segment defined by two steps of the same foot, the stepping 
foot moves through the air (or slides along the ground) and the 
other foot remains stationary. For the moving foot, we predict 
a trajectory based on boundary annotations. If the distance is 
less than a threshold of 25 pixels (considering the potential 
movement of a baby's foot between two consecutive frames), 
we retain the detection and update the trajectory; otherwise, 
we discard it. For the stationary foot, we preserve the foot 
estimation if the Intersection-over-Union (IOU) score 
between the prediction and the ground truth at the segment 
boundary is greater than 0.6. 

A. Control Panel

B. Video Player C. Top-Down Visualization
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VI. RESULTS 
Here we evaluate the reliability of human annotation to 

accurately identify steps and evaluate the ability of computer 
vision to accurately locate and label infant feet.  

A. Reliability of Human Annotation of Steps 
Two humans annotated steps for one exemplar novice and 

one exemplar experienced walkers’ videos, selected quasi-
randomly to ensure infants’ behavior was representative. As 
shown in columns two and three of Table I, the coders 
detected similar number of steps across apparatuses and 
infants, with a total difference of 4 steps across both videos. 
(The computer vision algorithm we chose to ignore suggested 
134 additional steps compared to human annotators.)   

To determine where human annotators differed, we 
created a 4-frame window around each annotator’s step events 
(2 frames prior to the step event and 2 frames after) and 
checked that the windows overlapped. We used a relatively 
conservative window of +/- 2 frames to ensure high temporal 
precision (a larger window could encompass more than one 
step if two steps happened in quick succession). If the 
windows did not overlap, we counted those detections as 
disagreements. Thus, disagreements could result if coders 
detected step events at different times (outside of the 4-frame 
window, thus resulting in 2 disagreements for the same event) 
or if one coder did not count a step that the other coder 
counted. As shown in the right column of Table I, 
disagreements were low, M = 3.1% overall. Disagreements 
were higher for the bridge than the slope, and higher for the 
experienced baby than the novice baby, likely due to the 
difficulty of identifying very small, short, low-to-the-ground 
steps on narrow bridges. Additionally, 38 of the 49 
disagreements for the experienced baby on the bridge were 
timing disagreements (resulting in 2 disagreements for the 
same event), which can occur due to imperfections in video 
syncing or to difficulty identifying steps with a limited swing 
phase and/or muddled landing—not detection disagreements. 
Thus, human step annotation is highly reliable. 

B. Evaluation of 3D Location Using Gait Mat Data 
 To evaluate the accuracy of 3D location estimates, we 
compared our computer vision estimates to ground-truth data 
from the instrumented gait mat for one novice and one 
experienced infant (Sec. Ⅲ-D). Table II provides the precision 
and recall between the predicted and ground truth centroids at 
two different thresholds. Our foot detection results reported in 
Table II are significantly better than performance of the latest 
instance-segmentation  models  on  small-size  objects  in  the 

TABLE I.  RELIABILITY OF HUMAN ANNOTATION OF STEPS 

 Human 1 
Step # 

Human 2 
Step # Disagreements 

Novice: Slope 
(21 trials) 271 270 1 

(0.3%) 
Novice: Bridge 

(49 trials) 598 600 8 
(1.3%) 

Experienced: Slope 
(33 trials) 452 453 3 

(0.6%) 
Experienced: Bridge 

(38 trials) 692 686 49 
(7.1%) 

Total 
(141 trials) 2013 2009 62 

(3.1%) 
*Disagreements occurred if Human 1 identified a step that Human 2 did not 
or vice versa. Thus, if Human 1 and Human 2 both identified a step, but did 
so outside of the 4-frame window, 2 disagreements resulted. Percentages in 
parentheses are estimated by dividing the number of disagreements by the 
total number of steps identified by Human 1. 

TABLE II.  3D LOCATION EVALUATION 

Threshold Precision Recall 
1.5” 97.4 99.0 
1.0” 84.3 91.2 

TABLE III.  EVALUATION OF FOOT FETECTION (PHASE 1 MODEL) 

 Swap Delete #  
Steps 

1-2 
Outliers 

3-4 
Outliers  

#  
Frames 

Novice: Slope  
(3 infants, 79 trials) 

261 
24% 

73 
7% 

1081 
 

4085 
29% 

416 
3% 

13,894 

Novice: Bridge  
(3 infants, 118 trials) 

82 
5% 

118 
7% 

1634 3117 
14% 

353 
2% 

21,607 

Experienced: Slope 
(3 infants, 125 trials) 

374 
23% 

162 
10% 

1593 5222 
33% 

738 
5% 

15,793 

Experienced: Bridge 
(3 infants, 111 trials) 

116 
6% 

231 
11% 

2040 19,199 
52% 

2094 
6% 

37,241 

Total (433 trials) 833 
13% 

584 
9% 

6348 31,623 
36% 

3601 
4% 

88,535 

*Table III summarizes foot detection data from 6 infants (3 novice, 3 
experienced), processed with Phase 1 of the model. The “Swap” and “Delete” 
columns provide counts of the number of foot detection boxes where the 
human annotator had to swap the left and right labels or delete the detection 
boxes entirely, out of all the frames where steps were added (and across all 4 
camera views). The “1-2 Outliers” and “3-4 Outliers” columns provide counts 
of the number of frames where 1-2 or 3-4 outliers were removed from the 
full-trajectory data, using the step-level data as constraints (see Sec. VD). 
Italicized numbers are % of steps (swaps, deletions) or frames (outliers). 

TABLE IV.  EVALUATION OF FOOT DETECTION (PHASE 2 MODEL) 

 Swap Delete #  
Steps 

1-2 
Outliers 

3-4 
Outliers  

#  
Frames 

Novice: Slope  
(81 trials) 

257 
19% 

62 
5% 

1367 
 

6326 
33% 

1065 
6% 

19,268 

Novice: Bridge 
 (101 trials) 

132 
7% 

5 
<1% 

1949 19,420 
49% 

2195 
6% 

39,409 

Experienced: Slope 
(107 trials) 

374 
28% 

45 
3% 

1337 5466 
39% 

416 
3% 

14,040 

Experienced: Bridge 
(103 trials) 

85 
6% 

7 
<1% 

1538 16,114 
76% 

511 
2% 

21,220 

Total (392 trials) 848 
14% 

119 
2% 

6191 47,326 
50% 

4187 
4% 

93,937 

*Table IV summarizes foot detection data from 6 additional infants (3 novice, 
3 experienced), processed with Phase 2 of the model (trained on “Delete” 
examples from Phase 1). Columns are the same as Table III. 

 
benchmark public datasets. For example, the latest, best AP50 
results (Average Precision at IOU threshold of 50, equivalent 
to Precision at the threshold of 1'' in Table II) are 30.3 [28] and 
30.7 [29] for small objects in the SOD4SB dataset [30] and 
the SODA-D dataset [31], respectively. 

C. Evaluation of Foot Detection 
To evaluate the accuracy of foot detection, we first used 

the 1089 manually labeled frames (Sec. IV-D) to evaluate 
Mask2Former's ability to correctly detect the foot in 2D. 
Average Precision (AP) was 93.7 at the IOU threshold of 50% 
and 76.9 at the IOU threshold of 75%, suggesting that the 
algorithm performed reasonably well at drawing bounding 
boxes around infants’ feet, especially given the challenges 
introduced by occlusion, motion blur, and small object sizes.  

Next, we counted the number of times humans had to swap 
detection boxes (where the algorithm misassigned left-right 
labels) or delete detection boxes entirely (where the algorithm 
misidentified objects as “feet”) for frames where they added 
steps. Table III provides counts for swaps and deletions from 
6 infants (3 novice, 3 experienced) from Phase 1 of the 
algorithm, and Table IV provides counts for  swaps and 
deletions from 6 additional infants (3 novice, 3 experienced) 
from Phase 2 of the algorithm. Phase 2 was trained on “delete” 



examples from Phase 1. Across both phases, swapping 
functions were more common than deletions, suggesting that 
the algorithm usually identifies both feet, but occasionally 
confuses the left-right labeling (Sec. IV-D). Moreover, the 
number of deletions decreased from Phase 1 to 2, indicating 
improvement of the algorithm with additional training data, 
and highlighting the iterative nature of our approach. We 
expect the algorithm to continue to improve with more 
training data. If users wish to improve the number of swaps, 
the algorithm could be trained on swapping data. 

The outlier columns of Tables III and IV show the number 
of frames with 1-2 or 3-4 outliers, identified and removed as 
in Sec. V-D. Note, we prioritize high accuracy to detect 
outliers, so the algorithm eliminates outliers of temporal 
inconsistency or low confidence in cases with severe 
occlusion or high motion blur. Removing 1-2 outliers 
improves the accuracy of the identified location of the foot and 
saves considerable human effort of manually swapping or 
deleting outliers from the full trial (humans only manually 
correct box detections for frames where steps were inserted). 
Removing 3-4 outliers similarly saves human effort, but 
deletes the foot detection from that frame, as the foot must be 
detected in at least 2 views to estimate location.  Nonetheless, 
only ~4% of frames were removed due to outliers; trajectory 
data can be inferred by assuming smooth temporal motion 
between steps, or users can manually correct detection boxes 
for trials with high numbers of deleted frames. Compared to 
human correction, our approach significantly reduces the need 
for human intervention while maintaining high detection 
precision and recall in every frame.  

VII. CONCLUSION 
We demonstrated the feasibility of an integrated human-

machine system to evaluate infant walking on varied terrain, 
where humans annotate step events and computer vision 
identifies the location of infants’ feet in every frame. This 
system expands opportunities to study unconstrained infant 
walking, providing a user-friendly, accurate annotation tool 
and a streamlined pathway for future research endeavors. As 
long as the system is used in a calibrated space and the feet are 
clear in videos, the system could be used in many settings and 
for many tasks (including walking along curved and winding 
paths). Ongoing work uses these tools to investigate the 
development of infant gait modifications. 
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