Timestamp Query Transformer for Temporal Action Segmentation

Tieqiao Wang

Sinisa Todorovic

Oregon State University
{wangtie, sinisa}@Qoregonstate.edu

https://github.com/tgosu/TQT

Abstract

This work addresses action segmentation in videos under
sparse timestamp supervision, where only a single frame
per action segment—referred to as a timestamp—is labeled
during training. We propose the Timestamp Query Trans-
former (TQT) that treats timestamps as learnable class
query tokens. While existing approaches rely on iterative,
multi-step generation of framewise pseudo-labels, TQT di-
rectly predicts temporal segmentation masks by leverag-
ing query-feature cross-attention. This design enables fully
end-to-end learning and maximizes the utility of sparse la-
bels from the entire training dataset, rather than relying
on only a few local timestamps within each training video
as in prior work. Experiments on the GTEA, 50Salads,
and Breakfast datasets demonstrate that TQT outperforms
SOTA methods by up to 5.8% in accuracy and 7.7% in
F1@50. The model and code will be released.

1. Introduction

Action segmentation is a cornerstone of video understand-
ing, with broad applications in video surveillance, robotics,
and automation [11]. Existing fully supervised approaches
typically require large training datasets with dense frame-
level annotations, which are often prohibitively expensive
to obtain [1-3, 16, 27, 31, 40, 41]. As a more scalable al-
ternative, a substantial body of work has explored weakly
supervised methods. However, these approaches often suf-
fer from a significant performance gap compared to their
fully supervised counterparts [5, 10, 13, 19-23, 30, 34, 36,
38, 39, 42]. Recently, this gap has been narrowed by more
cost-effective methods that leverage sparse timestamp su-
pervision, illustrated in Fig. 1, where only a single, ran-
domly selected frame per action segment—referred to as
a timestamp—is labeled during training [4, 12, 17, 26, 32,
44]. These methods typically adopt a three-step training
strategy: (i) pretraining on the annotated timestamps, (ii)
generating pseudo-labels for unlabeled frames while en-
forcing temporal smoothness, and (iii) training a fully su-
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Figure 1. Timestamp setting: For each action instance, a single
random frame is selected and annotated. The example above, from
the Breakfast dataset, illustrates video annotations where different
colors represent distinct action classes. Dashed vertical lines indi-
cate the locations of the selected frames (displayed at the bottom).

pervised model using the generated pseudo-labels. Steps
(ii) and (iii) are typically repeated for refinement.

Existing timestamp-supervised approaches face several
limitations. First, they generate framewise pseudo-labels
via frame clustering based on local feature similarities,
lacking global information from all annotated timestamps
across the dataset. This often leads to suboptimal ac-
tion boundary detection. Second, their frame clustering
is usually heuristic-based, which hinders end-to-end train-
ing. Third, they employ computationally inefficient training
strategies—such as iterative pseudo-label refinement [26],
teacher-student framework [44], or mask modeling [28].

Leveraging the aforementioned three-step training
framework of prior work, we aim to improve the second step
of generating pseudo-labels. We alleviate the need for mul-
tiple rounds of framewise pseudo-label refinement during
training and avoid heuristic action boundary detection based
on local feature similarities. To this end, we propose the
Timestamp Query Transformer (TQT) that treats annotated
timestamps as learnable, class-aware query tokens (or sim-
ply queries). TQT leverages query-feature cross-attention
to directly predict temporal segmentation masks. Because
these queries encode feature prototypes of action classes
across the entire training dataset, the resulting query-feature
similarities capture rich semantic context across the dataset.
Importantly, TQT bypasses heuristic frame clustering used
in prior work, enabling fully end-to-end learning.
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Our design draws inspiration from object segmenta-
tion transformers, like Mask2Former [9], which use learn-
able query tokens to decode instance masks. However,
Mask2Former and similar models are specialized for 2D
spatial segmentation, and adapting them to the temporal do-
main of action segmentation under sparse timestamp super-
vision poses nontrivial challenges that remain unexplored.

Our contributions are threefold: (1) To the best of
our knowledge, our approach is the first to replace itera-
tive heuristic pipelines with end-to-end query-token learn-
ing for timestamp-supervised action segmentation; (2) A
novel design of query tokens in a transformer where anno-
tated timestamps serve as anchors for learnable class proto-
types, capturing dataset-wide class-aware action representa-
tions; and (3) State-of-the-art (SOTA) results on benchmark
datasets (GTEA, 50Salads, and Breakfast), surpassing prior
methods by up to 5.8% in accuracy and 7.7% in F1@50.

2. Related Work

This section reviews closely related work.

Fully supervised approaches to action segmentation
rely on dense, frame-wise annotations to train models for
predicting action labels across video frames [4, 14, 24, 33,
43]. Early approaches relied on dilated temporal convolu-
tional networks (e.g., MS-TCN [14]) to capture local de-
pendencies but suffered from over-segmentation errors. Re-
cent transformer-based models (e.g., ASFormer[43], FACT
[31]) improved long-range modeling but require exhaus-
tive frame-wise annotations. Our approach differs funda-
mentally in its problem setting, as we operate under times-
tamp supervision, requiring only a single annotated frame
per action segment. Fully supervised methods assume ac-
cess to dense annotations, which are costly and impractical
for large-scale video datasets. Thus, a direct comparison
with these methods is not applicable, as we target a more
annotation-efficient setting.

Timestamp-supervised action segmentation mini-
mizes annotation costs by requiring only one labeled frame
per action segment [4, 12, 17, 26, 32, 44]. Most methods
employ a two-phase pipeline: model initialization followed
by iterative pseudo-label refinement. For example, Li et al.
[26] and UVAST [4] generate pseudo-labels via local fea-
ture clustering (e.g., k-medoids), which is sensitive to fea-
ture quality and overlooks global context. EM-TSS [32]
models label uncertainty using expectation-maximization,
while Zhao and Song [44] uses a teacher-student frame-
work. Both approaches require multiple refinement itera-
tions, risking error accumulation and high computational
costs. Liu et al. [28] mitigates label bias with masked times-
tamp prediction but retains a complex multi-step pipeline.
These methods primarily rely on local or video-specific fea-
tures, limiting their ability to capture dataset-wide patterns.
In contrast, TQT treats timestamps as optimizable anchors

for direct action segmentation, significantly closing the per-
formance gap with fully supervised methods.
Query-based segmentation methods, which use learn-
able tokens to anchor object or action representations, are
most related to our approach. In images, approaches like
DETR [6] introduce object queries for end-to-end detec-
tion, while MaskFormer [8] and Mask2Former [9] extend
this paradigm to segmentation by decoding regions or ob-
jects via learnable queries. For unsupervised object dis-
covery, Slot Attention [29] demonstrates that a fixed set of
learnable slots can decompose scenes without labels. In the
video domain, UVAST [4] adapts queries for timestamp-
supervised action segmentation but still relies on clustering
rather than direct query-based boundary prediction. Fully
supervised methods, like FACT [31] and BAFormer [40],
depend on dense frame-level annotations to model tempo-
ral dependencies or boundaries with queries. In contrast,
our approach is the first to leverage learnable, class-aware
queries directly anchored at sparse timestamps for weakly
supervised action segmentation, enabling efficient, end-to-
end segmentation without iterative clustering or dense an-
notation requirements, and demonstrating the effectiveness
of query-based models in annotation-limited video tasks.

3. Timestamp Query Transformer (TQT)

This section, first, formalizes the problem of timestamp-
supervised action segmentation, and then specifies the TQT
architecture and its training objective.

3.1. Problem Formulation

Following prior work [4, 12, 17, 26, 32, 44], for a video se-
quence of T'RGB frames I = [Iy,...,I;,...,Ir|, where
I, € RITXWX3 e extract I3D features x € R%*7T using
a frozen backbone network, as described in [14]. The goal
of action segmentation is to assign an action label y; € ) to
each frame ¢, where ) is a predefined set of action classes.
In timestamp-based supervision, a training video with NV ac-
tion segments, where N < T, is annotated with [N ground-
truth labels y = [y, ..., yt,] at frames t = [t1,...,tN],
with each timestamp ¢,, randomly selected from the nth ac-
tion segment.

3.2. TQT Network Architecture

As shown in Fig. 2, TQT comprises three main modules:
a backbone network, a frame decoder, and our proposed
Timestamp Action Decoder. During training, all three mod-
ules are used in steps (i) and (ii)—pretraining on the sparse
timestamps and generating pseudo-labels for all frames—
while only the backbone and frame decoder are employed
in step (iii), which involves full supervision using the gen-
erated pseudo-labels. At inference time on test videos, only
the backbone and frame decoder are used for evaluation.
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Figure 2. TQT comprises a backbone network, a frame decoder, and Timestamp Action Decoder (TAD). Annotated timestamps guide
learning of class embeddings, which serve as action query tokens in TAD to generate pseudo-labels for unlabeled frames. This enables the
subsequent fully supervised training on both timestamp and pseudo labels. In the fully supervised training stage, TAD is excluded, and
only the frame decoder is updated. At inference time on test videos, only the backbone and frame decoder are used for evaluation.

3.2.1. Backbone and Frame Decoder

TQT is agnostic to the choice of backbone network and
frame decoder, making it easily adaptable to a wide range
of existing architectures. As illustrated in Fig. 2, we use a
frozen I3D backbone [7] to extract spatiotemporal features
x € R%*T following the protocol in [14]. These features
are passed to a frame decoder, producing refined per-frame
representations z = [z, ..., Zzr|, which serve as keys and
values in cross-attention of the subsequent module of TQT,
called Timestamp Action Decoder. While TQT is compat-
ible with any state-of-the-art frame decoder, in this work
we evaluate two alternatives: a convolution-based frame de-
coder [26] and a transformer-based frame decoder [28].

3.2.2. Timestamp Action Decoder

As shown in Fig. 2, Timestamp Action Decoder (TAD)
consists of a single transformer layer with cross- and self-
attention. In training, TAD learns class-specific feature pro-
totypes, C = [c1,...,¢jy|] € RVl where | is the to-
tal number of action classes. These feature prototypes serve
as class query tokens (or queries) in the cross-attention of
TAD. The class queries C attend to frame features z, which
serve as keys and values in cross-attention, resulting in the
updated query embeddings

C’ = ActionDecoder(C, z). (1)

3.2.3. TQT Training for Pseudo-Label Generation

Before generating pseudo-labels for every frame, we train
the frame decoder and TAD jointly in an end-to-end manner
on the NV annoted timestamps. Specifically, we first com-
pute class scores for all frames as

p=2z'C e RT*IVI )

and then supervise these predictions using the cross-
entropy loss along with two additional regularization terms:
smoothness loss and confidence loss. The total loss is a
weighted sum of these three losses, with hyperparameters
chosen as in [26]. Below, we detail each loss term.

The cross-entropy loss, L., is applied only at the N an-
notated timestamps as

N
1

where p(t,,y:, ) denotes the predicted score for the
ground-truth class y;, of the timestamp frame ¢,,.

The smoothness loss, Ls, encourages temporal consis-
tency in the predicted class distributions along the video se-
quence as

1
b= Ty > min ((log p(t,y) —logp(t — 1,9))*,) ,
ty

“)
where « is a positive threshold.
The confidence loss [26] promotes higher confidence for
frames near the timestamps as

tn+1
Leont = Z > G (5)
n=1t=t,_1

where tg = land ty41 =T, and

—logp(t—1,u,)),if t=t,
—logp(t,ys,)),if t<t,
(0)

5 max (0, log p(¢, ¥z,
bt max (0,logp(t—1, vz, )

3.2.4. Generating Pseudo-labels for Every Frame

Although the class scores p can be directly used to gen-
erate framewise pseudo-labels by assigning each frame ¢
its highest-scoring class, §; = arg max,cy p(¢,y), the re-
sulting predictions may lack temporal smoothness and vi-
olate the key assumption that each interval [t,,t,1] be-
tween consecutive timestamps contains at most two action
classes. Instead, Timestamp Action Decoder (TAD) as-
sociates annotated timestamps with learnable, class-aware
query tokens to generate pseudo-labels for unannotated
frames through the following steps.



First, as shown in Fig. 2, TAD initializes the N times-
tamp query tokens Q € R?*¥ by copying the correspond-
ing refined class prototypes C’, given by (1). Each times-
tamp query representing a timestamp t,, is assigned the re-
fined class query token corresponding to the timestamp’s
ground-truth class v, .

Second, for each interval 7,, = [t,, t,+1] between two
consecutive timestamps, TAD computes framewise class
scores for two possible action classes present in 7, as

f'rn = Z-,T,LQ{n,n+1} € R|T7L|X2v (7)

where z,, are all frame features in the interval 7,, and
Q{n,n+1y are the two timestamp query tokens correspond-
ingtot, and t,41.

Since there can be only one action boundary in 7, the
boundary t* € 7, is efficiently detected by maximizing the
following linear function:

*
t* =arg Igéax b(&),

n

13 tnt1
b(§) = Z logf;, (t,yt,) + Z log f-,, (t7ytn+1)
t—tn t=¢+1

®)
After estimating ¢*, all frames ¢ € [t,,t*] are assigned
ground-truth label y; , and frames ¢ € [t* + 1,¢,41] are
assigned ground-truth label y;,, . ,. This enables the subse-
quent dense supervision using both the generated pseudo-

labels and sparse timestamp annotations.

3.3. The More General SkipTag Setting

TQT can be readily extended to the more general SkipTag
setting [32], where the annotated timestamps may not cover
all action instances in the video. We refer to this exten-
sion as TQT-SkipTag. In this case, we identify and insert
missing timestamps—referred to as pseudo-timestamps—
into the annotated set, thereby enabling the subsequent ac-
tion boundary detection and pseudo-label generation as de-
scribed in Sec. 3.2.4.

Pseudo-timestamps are identified from among unanno-
tated frames by analyzing their class scores p € R7*IYI,
given by (2), as follows. First, we compute the mean p
and standard deviation o of the temporal lengths |7,,| =
|tn,—tn41| of all intervals between consecutive timestamps
across the dataset. Long intervals whose temporal length
exceeds |7,| > u + o are selected as candidates for insert-
ing pseudo-timestamps, while shorter intervals are assumed
to be sufficiently covered by the existing annotations.

Second, within each selected long interval 7,,, a pseudo-
timestamp and its class are identified as

(t,9;) = arg _max _p(t,y), ©)

teETy, yey

and inserted only if both of the following two conditions are
satisfied, ensuring reliable detection of a distinct new action

instance within 7,,: (i) ; differs from the timestamp classes,
U # Yt,, and §; # Yy, and (ii) all frames within a local
temporal segment around  also share §j; as their highest-
scoring class, supporting the presence of a missed action
instance in annotations within 7,,.

Once the pseudo-timestamp  is inserted, the original
long interval [t,,, ¢, 1] is split into two subintervals: [t,,, ]
and [t,t,41]. This splitting procedure is applied recur-
sively until the length of resulting subintervals no longer
exceeds one standard deviation above the mean interval
length, (p + o).

After augmenting the original timestamp set with
pseudo-timestamps, we identify action boundaries, as in (8),
which generates pseudo-labels for every frame. This is fol-
lowed by the fully supervised training step of the frame de-
coder using both the pseudo and the ground-truth labels.

4. Experiments

Datasets. For evaluation, we use the following benchmark
datasets: GTEA [15], 50Salads [37] and Breakfast [18].
The GTEA dataset has 28 videos showing 7 different ac-
tivities and 11 action classes including background. The
50Salads dataset consists of 50 long videos of 19 different
manipulative gestures for making a salad. The Breakfast
dataset consists of 1,712 videos of people making breakfast
with 10 cooking activities and 48 action classes. We use the
same annotations as in Li et al. [26] for a fair comparison.

Metrics. Following [14], we evaluate: mean-over-frames
(MoF), segment-wise edit score (Edit), and F1-scores with
IoU thresholds of 0.10, 0.25 and 0.50 (F1@10,25,50).

Baselines. We compare with recent SOTA: Li et al.[26],
GCN [17], Zhao et al. [44], Souri et al. [35], EM-TSS[32],
UVAST [4], Du et al. [12] and D-TSTAS [28]. For quali-
tative comparisons, we follow D-TSTAS [28] and use Li et
al. [26] as the baseline, as more recent methods—including
Du et al. [12] and D-TSTAS [28]—do not provide publicly
available code or model weights.

Implementation Details. For a fair comparison, we inte-
grate TQT with the transformer frame decoder from AS-
Former [43], as used in D-TSTAS [28]. We train the
model for approximately 130 epochs, starting with class
query learning followed by fully supervised training using
pseudo-labels. The initial iteration comprises 60 epochs of
class query learning and 50 epochs of pseudo-label train-
ing. Subsequent iterations consist of 10-20 epochs for both
class query learning and pseudo-label refinement. The full
set of training hyperparameters for each dataset is provided
in our public GitHub' repository. The optimal number of
iterations is 1 for GTEA and Breakfast, and 2 for 50Salads.

et ps://github.com/tgosu/TQT
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Figure 3. Qualitative comparison of label generation by TQT and the clustering-based baseline [26] on GTEA, 50Salads, and Breakfast
datasets (top to bottom). Annotated timestamps are marked with dashed lines in the first row (GT). TQT consistently produces high-
quality pseudo-labels, demonstrating robustness to the location of annotations. In contrast, the clustering-based baseline [26] often fails to

accurately detect boundaries when they are relatively far away from the annotated timestamps, as highlighted by the red arrows.

4.1. Ablation Studies

Pseudo-Label Generation. Fig. 3 shows that TQT gener-
ates high-quality initial pseudo-labels, enabling us to bypass
the prior work’s multiple refinement rounds and teacher-
student training, and instead proceed directly to fully super-
vised training with the pseudo-labels. As shown in Tab. 1,
TQT achieves SOTA performance using only the initial
pseudo-labels, in contrast to previous methods such as Li et

al. [26] and D-TSTAS [28], which require 20 and 6 rounds
of pseudo-label refinement, respectively.

Timestamp Action Decoder. In Tab. 2, we vary the number
of layers in the Timestamp Action Decoder (TAD) from 0 to
3 and evaluate their effect on TQT performance. The results
indicate that TQT without TAD (i.e., zero layers) achieves
the lowest performance, while a single layer in TAD offers
the best balance between accuracy and model complexity.

Frame Decoder. Timestamp-supervised methods com-
monly employ Temporal Convolutional Networks (TCN)

Dataset | Refinement F1@{10,25,50} Edit  Acc
GTEA 0 80.6 884 776 888 753
1 918 898 789 908 77.1 Datase | Method | F1@{10,2550}  Edit Acc
0 87.1 847 76.1 812 835 Frame Decoder: TCN
50Salads 1 855 829 745 79.6 835 GTEA D-TSTAS [28] | 84.0 79.0 604 79.5 678
2 863 847 773 80.5 84.6 TQT 809 757 59.0 771 749
Breakfast 0 772 71.6 568 763 71.8 50salads D-TSTAS [28] | 720 69.0 58.6 64.6 75.6
1 780 728 584 771 728 TQT 80.6 78.1 684 724 80.7
Breakfast D-TSTAS [28] - - - - -
Table 1. TQT performance after pseudo-labels training, where 0 TQT 66.2 609 48.0 68.6 67.7
represents training with initial pseudo-labels without refinement. Frame Decoder: Transformer
GTEA D-TSTAS [28] | 91.5 90.1 762 88.5 757
_ TQT 91.8 898 789 908 77.1
#layers | F1@{102550}  Edit Acc D-TSTAS 28] | 842 821 715 776 800
0 854 832 751 79.1 831 S0salads TQT 863 847 773 805 846
1 871 847 76.1 812 835 D-TSTAS [28] | 767 693 507 758 65.7
2 863 843 754 799 837 Breakfast TQT 780 728 584 711 728
3 86.8 847 76.6 79.8 835
Table 3. TQT performance when using the TCN-based or

Table 2. TQT performance on 50Salads as a function of the num-

ber of layers in the Timestamp Action Decoder.

Transformer-based frame decoder: TQT uses the same backbone
and frame decoder as in D-TSTAS [28].



Dataset | p f., b | Fl@{10,2550]  Edit Acc Method [ Fi@{102550}  Edit Acc
v 797 766 621 758 667 Dataset: GTEA
GTEA | v 882 862 754 890 75.0 Lictal. (CVPR'21)[26] | 765 730 556 687 638
vV / V8.6 84 776 888 753 EM-TSS (ECCV’22) [32] | - - - - -
4 79 723 61 708 98 D-TSTAS (CVPR23) [28] | 90.1 88.8 733 87.0 715
SOsalads | v/ v/ 839 814 727 764 822 TQt — ?0'5108 183'1 748 8.2 732
v /7 V|81 847 761 812 5 ataset: Jvsalads
7 32 5 z = 53 ; 32 5 33 o Lietal (CVPR21)[26] | 742 710 592 683 743
Breaktast | S : : : : : EM-TSS (ECCV°22) [32] | 784 760 63.5 71.1 77.1
reakfast 765 709 568 755 728 D-TSTAS (CVPR'23) [28] | 840 81.6 704 77.4 79.4
v v V|72 716 568 763 718 TQT 872 858 772 801 838

Table 4. TQT performance for three alternative ways of generat-
ing pseudo-labels: (p) — direct “p-based”; (f;,) — direct “f-, -
based”’; and (b) — “boundary-based” as described in Sec. 3.2.4.

Method ‘ F1@{10,25,50} Edit Acc
Dataset: GTEA

Lietal. (CVPR’21) [26] 724 662 436 714 593
EM-TSS (ECCV’22) [32] - - -
D-TSTAS (CVPR’23) [28] | 90.1 843 605 872 629
TQT 89.1 86.0 675 879 703

Dataset: 50Salads
Lietal. (CVPR’21)[26] 60.8 48.5 231 606 523
EM-TSS(ECCV’22) [32] 629 50.5 250 639 520
D-TSTAS (CVPR’23) [28] | 77.7 625 31.8 743 578
TQT 799 699 40.0 748 63.5

Dataset: Breakfast
Lietal. (CVPR’21) [26] 655 522 280 704 512
EM-TSS (ECCV’22) [32] | 57.3 469 250 61.7 485
D-TSTAS (CVPR’23) [28] | 67.6 543 31.0 694 524
TQT 745 64.0 38.6 751 64.6

Table 5. Evaluation in the Start annotation setting. Comparison
with SOTA methods on standard benchmarks under alternative
timestamp supervision settings, where each action instance is an-
notated by a single frame at the action start, enabling evaluation
of the model’s ability to learn meaningful action representations
from noisy, boundary features.

as frame decoders. We evaluate TQT using two alternative
frame decoders: a Transformer-based decoder (our default
configuration) and a TCN-based decoder with the same ar-
chitecture as in D-TSTAS [28]. As shown in Tab. 3, TQT
outperforms D-TSTAS with either decoder.

Alternative Ways of Pseudo-label Generation. Tab. 4
evaluates three alternative ways of generating pseudo-

labels: “p-based” — by directly assigning each frame
t its highest-scoring class ¢ = argmaxycy p(t,y);
“f. -based” — by considering each interval 7, =

[tn,tn+1] along the video sequence and assigning each
frame ¢t € 7, one of two possible classes ¢y, =
argmaXye(y, .y, .}, (t,y); and “boundary-based” us-
ing the boundary detection as described in Sec. 3.2.4. As
shown in Tab. 4, “f. -based” yields a 2.4% improvement in
accuracy over “p-based”, while “boundary-based” achieves

Dataset: Breakfast
Lietal. (CVPR’21) [26] 70.8 63.5 454 T1.1 653
EM-TSS (ECCV’22) [32] - - - - -
D-TSTAS (CVPR’23) [28] | 76.4 68.5 51.5 75.1 65.7
TQT 777 1718 56.6 77.6 72.6

Table 6. Evaluation in the Center annotation setting. Compari-
son with SOTA methods on standard benchmarks under alterna-
tive timestamp supervision settings, where each action instance is
annotated by a single frame at the action center, reducing the diver-
sity of observed action features. This setup challenges the model’s
robustness and generalizability, particularly for out-of-distribution
cases where frames are far from the center.

Dataset: Breakfast (K = 6)
Method F1@{10,25,50} Edit  Acc
TQT 699 624 455 71.0 627
TQT, 69.3 634 498 70.6 673
TQT-SkipTag | 74.8 69.0 53.3 744 69.3

Table 7. Ablation study under the SkipTag setting on the Breakfast
dataset. TQT estimates a single boundary between adjacent anno-
tations, while TQT}, directly assigns each frame the class with the
highest predicted probability.

an additional performance gain of 1.3%.

4.2. Alternative Timestamp Settings

We compare TQT with SOTA timestamp-supervised meth-
ods in three alternative timestamp settings: Start, Center
and SkipTag.

The Start and Center settings place annotated timestamps
at the beginning and midpoint of each action instance, re-
spectively. These settings are widely regarded as more chal-
lenging than randomly sampling timestamps within action
segments, since the start or center frame may not be rep-
resentative of the full action class. Tab. 5 and 6 show that
TQT outperforms SOTA methods in the Start and Center
settings. On Breakfast, TQT improves accuracy by 12.2%
and F1@25 by 9.7% over prior methods. For center-based
annotations on the 50Salads dataset, TQT yields a 4.4% in-
crease in accuracy and a 6.8% improvement in F1@50.
SkipTag Setting. The SkipTag setting introduces additional
challenges by allowing annotations to miss some action in-
stances, thereby simulating a realistic scenario when the an-
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Figure 4. Visualization of pseudo-labels generated by TQT-
SkipTag and TQT on Breakfast in the SkipTag setting, where each
training video is annotated with only six randomly selected frames
(marked with dashed lines), thereby missing to annotate several
action instances. GT denotes ground truth action segments.

Method [ Fl@{102550}  Edit Acc

Dataset: GTEA (K = 32)

Supervised Only [32] - 642 434 658 63.1
Lietal. (CVPR’21) [26] - 694 500 689 66.0
EM-TSS (ECCV’22) [32] - 76.7 579 735 69.8

TQT 89.0 868 73.6 88.7 73.0
Dataset: 50Salads (K = 19)

Supervised Only [32] - 492 38.1 463 704
Lietal. (CVPR’21) [26] - 543 40.1 546 70.7
EM-TSS (ECCV’22) [32] - 68.1 549 643 744

TQT 833 808 712 76.6 803
Dataset: Breakfast (K = 6)

Supervised Only [32] - 27.0 188 364 59.8
Lietal. (CVPR’21) [26] - - - - 61.7
EM-TSS (ECCV’22) [32] - 573 452 599 64.1

TQT 748 690 533 744 693

Table 8. Comparison of TQT-SkipTag with SOTA methods on
standard benchmarks in the SkipTag setting [32], where the per-
video annotation budget is enforced by randomly sampling K
frames in each training video.

notation budget per video is limited. As shown in Tab. 7,
our TQT — designed for the standard setting where all ac-
tion instances are annotated with timestamps — is compet-
itive compared to SOTA methods tailored for the SkipTag
setting, but fails to always outperform them. In contrast,
our extension TQT-SkipTag, described in Sec. 3.3, yields
significantly improved pseudo-label generation and overall

segmentation performance.

Fig. 4 illustrates pseudo-label generation by TQT and
TQT-SkipTag on three sample training videos from Break-
fast, highlighting the advantages of our approach. Although
TQT is not designed for the SkipTag setting, its class-aware
timestamp queries enable it to produce reasonable action
segmentations. Its extension, TQT-SkipTag, further im-
proves upon this by generating significantly more accurate
pseudo-labels. For example, TQT-SkipTag is able to re-
cover more than one missing action instance (see the top
of example in Fig. 4).

Tab. 8 compares TQT-SkipTag with SOTA timestamp-
supervised methods designed for the SkipTag setting. TQT-
SkipTag achieves over 10% improvements in both F1 and
Edit scores across multiple datasets despite the additional
challenges posed by sparse and uneven annotations.

4.3. Comparison with the State of the Art

Tab. 9 compares TQT with SOTA methods in the standard
timestamp annotation setting, where each action instance
is annotated with a single, randomly selected frame. As
shown in Tab. 9, TQT outperforms transformer-based SOTA
methods, such as UVAST and D-TSTAS, across multiple
datasets. On the Breakfast dataset, TQT achieves a 5.8% in-
crease in accuracy and a 7.7% improvement in F1 @50 com-
pared to previous SOTA methods. Similarly, on the smaller
GTEA dataset, TQT demonstrates robust performance, with
gains attributed to its ability to leverage diverse training ex-
amples for generalizable feature learning. Fig. 5 compares
action segmentation results on test videos between TQT and
the clustering-based baseline [26]. While TQT occasionally
struggles with precise action boundary localization, it con-
sistently delivers superior segmentation quality. This im-
provement is due to the higher-quality pseudo-labels pro-
duced by its query-based framework (Fig. 3).

From a computational perspective, TQT remains ef-
ficient by removing heuristic per-segment prototype es-
timation and reducing refinement stages, while using a
lightweight decoder with far fewer queries than frames.
This yields negligible overhead on the backbone and keeps
training and inference costs comparable to prior SOTAs.

5. Conclusion

We introduced Timestamp Query Transformer (TQT), a
novel approach to timestamp-supervised action segmenta-
tion that assigns learnable, class-aware query tokens to an-
notated timestamps. This design enables end-to-end train-
ing and direct feed-forward inference, eliminating the need
for iterative pseudo-label refinement or heuristic frame clus-
tering used in prior work. By leveraging query—feature sim-
ilarity, TQT facilitates effective knowledge transfer from
sparse timestamp annotations across the entire dataset,
rather than restricting analysis to local intervals between
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Figure 5. Qualitative comparison of final predictions on the GTEA, 50Salads, and Breakfast datasets (top to bottom) by TQT—trained
using pseudo-labels generated from timestamp queries—and the clustering-based baseline [26]. Each action category is depicted with a

distinct color.

Supervision Method GTEA 50Salads Breakfast
F1@{10,25,50} Edit  Acc F1@{10,25,50} Edit  Acc F1@{10,25,50} Edit Acc
MS-TCN [14] 875 854 746 814 792|763 740 645 679 80.7 | 526 481 379 617 663
MS-TCN++ [25] 88.8 857 760 835 80.1 |807 785 701 743 837 | 641 586 459 665 67.6
ASFormer (BMCV’21) [43] | 90.1 88.8 79.2 846 79.7 | 85.1 834 760 79.6 856 | 760 70.6 574 750 735
Fully UVAST (ECCV’22) [4] 927 913 81.0 921 80.2| 8.1 876 817 839 874|769 715 580 771 69.7
DiffAct (ICCV’23) [27] 92,5 915 847 896 822|901 892 837 850 889|803 759 646 784 764
LTContext (ICCV’23) [3] - - - - - 89.4 877 8.0 832 877|776 726 60.1 77.0 742
FACT (CVPR’24) [31] 93.5 92.1 84.1 914 86.1 - - - - - 814 765 662 797 762
Semi ICC (5%) (AAAT’22) [34] 779 716 546 714 682|529 490 366 456 613|602 535 355 566 653
ICC (10%) (AAAT'22) [34] | 83.7 819 66.6 764 733 | 637 649 492 569 686 | 646 590 422 619 688
Active TSAL (ECCV’24) [38] 59.9 487 273 570 47.6 | 551 49.1 329 450 578 | 62.8 58.1 435 586 635
Lietal. (CVPR’21) [26] 789 730 554 723 664|739 709 60.1 668 756 | 70.5 636 474 699 064.1
GCN (IROS’22) [17] 815 775 608 756 66.1 | 751 723 61.0 676 751 | 679 61.0 453 670 614
Zhao et al. (ICME’22) [44] | 84.3 81.7 648 79.8 744 | 785 755 634 718 777 | 73.1 665 494 726 644
Souri et al. (BMCV’22) [35] - - - - - 770 742 622 698 793 | 715 643 473 709 629
Timestamp EM-TSS (ECCV’22) [32] - 82.7 665 823 705 - 759 647 71.6 779 - 63.7 498 672 67.0
UVAST (ECCV’22) [4] 80.7 83.7 660 893 705|830 796 655 772 770|713 633 483 741 60.7
Du et al. 1JCAT’23) [12] 837 798 654 772 70.1 | 773 747 637 70.1 786 | 712 646 489 71.6 657
D-TSTAS (CVPR’23) [28] | 91.5 90.1 762 885 757|842 821 715 776 800 | 767 693 507 758 657
TQT 918 898 789 908 77.1 | 86.3 847 773 805 846 | 780 728 584 771 728

Table 9. Comparison with state-of-the-art (SOTA) methods on standard benchmarks under different learning settings, including full super-
vision, semi-supervision, active learning, and timestamp supervision with a single random annotation per action instance.

consecutive timestamps as in previous methods. Exten-
sive experiments on three benchmark datasets show that
TQT not only narrows the gap with fully supervised meth-
ods but also sets new state-of-the-art results under times-
tamp supervision. Ablation studies of TQT’s two main
components—the frame decoder and the Timestamp Action
Decoder (TAD)—along with evaluations of three principled
strategies for framewise pseudo-label generation in train-
ing, validate our design choices. We also propose an exten-
sion, TQT-SkipTag, to address the more annotation-efficient
SkipTag setting, demonstrating the generalizability of TQT

across diverse annotation regimes. These findings highlight
the promise of query-based representations for scalable and
annotation-efficient video understanding.
Acknowledgement: This work has been supported by
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References

[1] Nicolas Aziere and Sinisa Todorovic. Multistage temporal
convolution transformer for action segmentation. Image and
Vision Computing, 128:104567, 2022. 1

[2] Nicolas Aziere and Sinisa Todorovic. Markov game video



(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

augmentation for action segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 13505-13514, 2023.

Emad Bahrami, Gianpiero Francesca, and Juergen Gall. How
much temporal long-term context is needed for action seg-
mentation? In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10351-10361, 2023.
1,8

Nadine Behrmann, S Alireza Golestaneh, Zico Kolter, Juer-
gen Gall, and Mehdi Noroozi. Unified fully and timestamp
supervised temporal action segmentation via sequence to se-
quence translation. In European conference on computer vi-
sion, pages 52—68. Springer, 2022. 1,2,4, 8

Elena Bueno-Benito, Biel Tura Vecino, and Mariella Dim-
iccoli. Leveraging triplet loss for unsupervised action seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4922—
4930, 2023. 1

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213-229. Springer, 2020. 2
Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,
2017. 3

Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. Advances in neural information processing systems,
34:17864-17875, 2021. 2

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 1290-1299, 2022. 2

Guodong Ding and Angela Yao. Leveraging action affinity
and continuity for semi-supervised temporal action segmen-
tation. In European Conference on Computer Vision, pages
17-32. Springer, 2022. 1

Guodong Ding, Fadime Sener, and Angela Yao. Tempo-
ral action segmentation: An analysis of modern techniques.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 46(2):1011-1030, 2023. 1

Dazhao Du, Enhan Li, Lingyu Si, Fanjiang Xu, and Fuchun
Sun. Timestamp-supervised action segmentation in the per-
spective of clustering. arXiv preprint arXiv:2212.11694,
2022. 1,2,4,8

Zexing Du, Xue Wang, Guoqing Zhou, and Qing Wang. Fast
and unsupervised action boundary detection for action seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3323—
3332, 2022. 1

Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage tem-
poral convolutional network for action segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3575-3584,2019. 2, 3,4, 8
Alireza Fathi, Xiaofeng Ren, and James M Rehg. Learning
to recognize objects in egocentric activities. In CVPR 2011,
pages 3281-3288. IEEE, 2011. 4

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

Borui Jiang, Yang Jin, Zhentao Tan, and Yadong Mu. Video
action segmentation via contextually refined temporal key-
points. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 13836-13845, 2023. 1
Hamza Khan, Sanjay Haresh, Awais Ahmed, Shakeeb Sid-
diqui, Andrey Konin, M Zeeshan Zia, and Quoc-Huy Tran.
Timestamp-supervised action segmentation with graph con-
volutional networks. In 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages
10619-10626. IEEE, 2022. 1, 2,4, 8

Hilde Kuehne, Ali Arslan, and Thomas Serre. The language
of actions: Recovering the syntax and semantics of goal-
directed human activities. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
780-787,2014. 4

Sateesh Kumar, Sanjay Haresh, Awais Ahmed, Andrey
Konin, M Zeeshan Zia, and Quoc-Huy Tran. Unsupervised
action segmentation by joint representation learning and on-
line clustering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20174—
20185, 2022. 1

Jun Li and Sinisa Todorovic. Set-constrained viterbi for
set-supervised action segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10820-10829, 2020.

Jun Li and Sinisa Todorovic. Action shuffle alternating learn-
ing for unsupervised action segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12628-12636, 2021.

Jun Li and Sinisa Todorovic. Anchor-constrained viterbi
for set-supervised action segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9806-9815, 2021.

Jun Li, Peng Lei, and Sinisa Todorovic. Weakly supervised
energy-based learning for action segmentation. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 6243-6251, 2019. 1

Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang
Feng, Jie Zhou, and Jiwen Lu. Bridge-prompt: Towards or-
dinal action understanding in instructional videos. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19880-19889, 2022. 2
Shi-Jie Li, Yazan AbuFarha, Yun Liu, Ming-Ming Cheng,
and Juergen Gall. Ms-tcn++: Multi-stage temporal convolu-
tional network for action segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 1-1,
2020. 8

Zhe Li, Yazan Abu Farha, and Jurgen Gall. Temporal action
segmentation from timestamp supervision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8365-8374,2021. 1,2,3,4,5,6,7, 8
Daochang Liu, Qiyue Li, Anh-Dung Dinh, Tingting Jiang,
Mubarak Shah, and Chang Xu. Diffusion action segmenta-
tion. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 10139-10149, 2023. 1, 8
Kaiyuan Liu, Yunheng Li, Shenglan Liu, Chenwei Tan, and
Zihang Shao. Reducing the label bias for timestamp su-
pervised temporal action segmentation. In Proceedings of



[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

(41]

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6503-6513, 2023. 1,2, 3,4, 5,6, 8
Francesco Locatello, Dirk Weissenborn, Thomas Un-
terthiner, Aravindh Mahendran, Georg Heigold, Jakob
Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-
centric learning with slot attention. Advances in neural in-
formation processing systems, 33:11525-11538, 2020. 2
Zijia Lu and Ehsan Elhamifar. Set-supervised action learn-
ing in procedural task videos via pairwise order consistency.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 19903—-19913, 2022.
1

Zijia Lu and Ehsan Elhamifar. Fact: Frame-action cross-
attention temporal modeling for efficient action segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 18175-18185,
2024. 1,2, 8

Rahul Rahaman, Dipika Singhania, Alexandre Thiery, and
Angela Yao. A generalized & robust framework for times-
tamp supervision in temporal action segmentation. arXiv
preprint arXiv:2207.10137,2022. 1,2,4,6,7, 8

Dipika Singhania, Rahul Rahaman, and Angela Yao. Coarse
to fine multi-resolution temporal convolutional network.
arXiv preprint arXiv:2105.10859, 2021. 2

Dipika Singhania, Rahul Rahaman, and Angela Yao. Iter-
ative contrast-classify for semi-supervised temporal action
segmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 2262-2270, 2022. 1, 8

Yaser Souri, Yazan Abu Farha, Emad Bahrami, Gian-
piero Francesca, and Juergen Gall. Robust action seg-
mentation from timestamp supervision. arXiv preprint
arXiv:2210.06501,2022. 4, 8

Federico Spurio, Emad Bahrami, Gianpiero Francesca, and
Juergen Gall. Hierarchical vector quantization for unsuper-
vised action segmentation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 6996-7005, 2025. 1
Sebastian Stein and Stephen J McKenna. Combining em-
bedded accelerometers with computer vision for recognizing
food preparation activities. In Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquitous
computing, pages 729-738, 2013. 4

Yuhao Su and Ehsan Elhamifar. Two-stage active learning
for efficient temporal action segmentation. In European Con-
ference on Computer Vision, pages 161-183. Springer, 2024.
1,8

Quoc-Huy Tran, Ahmed Mehmood, Muhammad Ahmed,
Muhammad Naufil, Anas Zafar, Andrey Konin, and Zeeshan
Zia. Permutation-aware activity segmentation via unsuper-
vised frame-to-segment alignment. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 6426-6436, 2024. 1

Peiyao Wang, Yuewei Lin, Erik Blasch, Haibin Ling, et al.
Efficient temporal action segmentation via boundary-aware
query voting. Advances in Neural Information Processing
Systems, 37:37765-37790, 2024. 1,2

Tieqiao Wang and Sinisa Todorovic. End-to-end action seg-
mentation transformer. arXiv preprint arXiv:2503.06316,
2025. 1

[42]

[43]

(44]

Ming Xu and Stephen Gould. Temporally consistent unbal-
anced optimal transport for unsupervised action segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14618-14627,
2024. 1

Fangqgiu Yi, Hongyu Wen, and Tingting Jiang.  As-
former: Transformer for action segmentation. arXiv preprint
arXiv:2110.08568, 2021. 2,4, 8

Yang Zhao and Yan Song. Turning to a teacher for timestamp
supervised temporal action segmentation. In 2022 IEEE In-
ternational Conference on Multimedia and Expo (ICME),
pages 01-06. IEEE, 2022. 1,2, 4, 8



	Introduction
	Related Work
	Timestamp Query Transformer (TQT)
	Problem Formulation
	TQT Network Architecture
	Backbone and Frame Decoder
	Timestamp Action Decoder
	TQT Training for Pseudo-Label Generation
	Generating Pseudo-labels for Every Frame 

	The More General SkipTag Setting 

	Experiments
	Ablation Studies
	Alternative Timestamp Settings
	Comparison with the State of the Art

	Conclusion

