MOSFET Amplifier Circuits
In this section of the course, we will look at three MOSFET amplifiers, with a focus on the following two circuits:

- **Common-Source Amplifier:**
 - High voltage gain
 - An amplifier

- **Source-Follower Amplifier:**
 - Near unity gain
 - A buffer
MOSFET Amplifier Biasing
MOSFET Amplifier Biasing

- To function as an amplifier, a MOSFET must be biased in the *saturation region*
- DC operating point set by the *bias network*
 - Resistors and power supply voltages
 - Sets the transistor’s *DC terminal voltages and currents* – its DC bias
- How a transistor is *biased* determines:
 - Small-signal characteristics
 - Small-signal model parameters
 - How it will behave as an amplifier
Voltage Transfer Characteristic

- MOSFET amplifier biased in the middle of its saturation region
- Slope of the large-signal transfer characteristic gives the amplifier gain
 - Negative slope – gain is inverting
 - Small input signals yield larger output signals
 - Slope is nearly linear in this region
MOSFET Biasing – Four-Resistor Bias Circuit

- We can use a similar four-resistor bias network for MOSFET amplifiers

- Commonly-used for both *common-source* amplifiers and *source-followers*
 - Single power supply or bipolar supply

- Stable biasing over device parameter variations
 - Insensitive to variations in V_t, k'_n, $\frac{W}{L}$
Analysis of the Four-Resistor Bias Circuit

- Since $I_G = 0$, gate voltage is simply set by the voltage divider

\[V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} \]

- Drain current is given by

\[I_D = \frac{1}{2} k'_n \left(\frac{W}{L} \right) V_{OV}^2 = \frac{1}{2} k'_n \left(\frac{W}{L} \right) (V_{GS} - V_t)^2 \]

\[I_D = \frac{1}{2} k'_n \left(\frac{W}{L} \right) (V_G - V_S - V_t)^2 = \frac{1}{2} k'_n \left(\frac{W}{L} \right) (V_G - I_D R_S - V_t)^2 \]

- After some rearranging, we arrive at a quadratic equation, which we can solve for I_D:

\[R_S^2 I_D^2 - \left[2 R_S (V_G - V_t) + \frac{1}{2 k'_n \left(\frac{W}{L} \right)} \right] I_D + (V_G - V_t)^2 = 0 \]
Four-Resistor Bias Circuit – Example

- Determine terminal voltages and drain current for the following circuit
- Gate voltage:
 \[V_G = 12 \, V \cdot \frac{30 \, k\Omega}{50 \, k\Omega + 30 \, k\Omega} = 4.5 \, V \]

- Drain current:
 \[I_D = \frac{1}{2} k'_n \left(\frac{W}{L} \right) (V_G - V_S - V_t)^2 \]
 \[I_D = 1 \frac{mA}{V^2} \left(4.5 \, V - I_D \cdot 8 \, k\Omega - 700 \, mV \right)^2 \]
 \[I_D = 1 \frac{mA}{V^2} \left(-8 \, k\Omega \cdot I_D + 3.8 \, V \right)^2 \]

\[
\frac{1}{V^2} \left(64e6 \cdot I_D^2 - 60.8e3 \cdot I_D + 14.44 \right) - I_D = 0
\]
\[
64e6 \cdot I_D^2 - 61.8e3 \cdot I_D + 14.44 = 0
\]
Four-Resistor Bias Circuit – Example

\[64e6 \cdot I_D^2 - 61.8e3 \cdot I_D + 14.44 = 0\]

- Solving the quadratic equation for \(I_D \) gives
 \[I_D = 569 \ \mu A \text{ or } I_D = 396 \ \mu A\]

- For \(I_D = 569 \ \mu A \)
 \[V_S = I_D R_S = 569 \ \mu A \cdot 8 \ k\Omega = 4.55 \ V\]
 \[V_{GS} = -50 \ mV < V_t\]
 - The transistor would be cut-off, so this is not a valid solution

- DC operating point:
 \[I_D = 396 \ \mu A\]
 \[V_S = 396 \ \mu A \cdot 8 \ k\Omega = 3.17 \ V\]
 \[V_{GS} = 1.33 \ V\]
 \[V_{OV} = 630 \ mV\]
 \[V_D = V_{DD} - I_D R_D = 8.04 \ V\]
To design a bias network to provide a desired drain current:

- Select R_D and R_S to each drop approximately one third of the supply voltage
 - That will leave approximately one third of the supply voltage across V_{DS}
- Calculate the required V_{OV}, V_{GS}, and V_G
- Select the voltage divider resistors at the gate to provide the required gate voltage
Bias Circuit Design - Example

- Design the bias network to provide $I_D = 800 \, \mu A$
- Calculate R_D and R_S to each drop $V_{DD}/3$

$$R_D = R_S = \frac{V_{DD}/3}{I_D} = \frac{5 \, V}{800 \, \mu A} = 6.25 \, k\Omega$$

- The required overdrive voltage is

$$V_{OV} = \sqrt{\frac{2I_D}{k'_n \left(\frac{W}{L} \right)}} = \sqrt{\frac{1.6 \, mA}{1 \, \frac{mA}{V^2}}} = 1.26 \, V$$

- The gate-source voltage

$$V_{GS} = V_{OV} + V_t = 1.26 \, V + 800 \, mV$$

$$V_{GS} = 2.06 \, V$$
Determine the required gate voltage

\[V_G = V_S + V_{GS} = I_D R_S + V_{GS} \]

\[V_G = 800 \mu A \cdot 6.25 \, k\Omega + 2.06 \, V \]

\[V_G = 7.06 \, V \]

Finally, select \(R_{G1} \) and \(R_{G2} \) to provide the required \(V_G \)

\[R_{G1} = 100 \, k\Omega \]

\[R_{G2} = 89 \, k\Omega \]
Common-Source Amplifier
Common-Source Amplifier

- Common-source amplifier
- All capacitors are **AC-coupling/DC blocking capacitors**
 - Open at DC
 - Shorts at signal frequencies
 - Isolate transistor bias from source/load
- Called *common*-source, because source is connected to common – i.e., ground or a power supply
 - C_S is a small-signal short to ground
 - Source is at small-signal ground

\[
V_t = 1.6 \, V \quad k'_n \left(\frac{W}{L}\right) = 170 \left(\frac{mA}{V^2}\right)
\]
Common-Source Amplifier

- Analyze the amplifier to find:
 - DC operating point
 - Small-signal voltage gain

- DC operating point:
 - The gate voltage is given by

\[V_G = V_{DD} \frac{R_{G2}}{R_{G1} + R_{G2}} \]

\[V_G = 12 \text{ V} \frac{115 \text{ k}\Omega}{100 \text{ k}\Omega + 115 \text{ k}\Omega} \]

\[V_G = 6.4 \text{ V} \]
C-S Amplifier – Large-Signal Analysis

- Drain current is given by
 \[I_D = \frac{1}{2} k'_n \left(\frac{W}{L} \right) V_{OV}^2 = \frac{1}{2} k'_n \left(\frac{W}{L} \right) (V_G - I_D R_S - V_t)^2 \]

- As we have seen, solving for \(I_D \) results in the following quadratic
 \[
 R_S^2 I_D^2 - \left[2R_S(V_G - V_t) + \frac{1}{2} k'_n \left(\frac{W}{L} \right) \right] I_D + (V_G - V_t)^2 = 0
 \]

 \[6.4e3 \cdot I_D^2 - 779.8 \cdot I_D + 23.0 = 0 \]

- This has two solutions
 \[I_D = 72 \ mA \quad \text{or} \quad I_D = 51 \ mA \]

- The first solution would put the transistor in cutoff, so \(I_D = 51 \ mA \)
Use the drain current to determine terminal voltages

\[V_D = V_{DD} - I_D R_D \]

\[V_D = 12 V - 51 mA \cdot 80 \Omega = 7.95 V \]

\[V_S = I_D R_S = 51 mA \cdot 80 \Omega \]

\[V_S = 4.05 V \]

The complete DC operating point:

\[V_G = 6.42 V \quad I_D = 51 mA \]

\[V_{GS} = 2.37 V \quad V_D = 7.95 V \]

\[V_{OV} = 0.77 V \quad V_S = 4.05 V \]
C-S Amplifier – Small-Signal Analysis

- The DC operating point allows us to determine the transconductance for the transistor’s small-signal model

\[g_m = k'_n \left(\frac{W}{L} \right) V_{OV} = 170 \frac{mA}{V^2} \cdot 0.77 V = 131 \, mS \]

- Next, create the **small-signal equivalent circuit** for the amplifier and perform a **small-signal analysis**:

 1. Replace all AC coupling capacitors with shorts
 - Large enough to look like shorts at signal frequencies
 2. Connect all DC supply voltages to ground
 - From a small-signal perspective these are all constant voltages
 - Small-signal ground
 3. Replace the transistor with its small-signal model
C-S Amplifier – Small-Signal Analysis

- Small-signal equivalent circuit
 - Use to determine small-signal voltage gain

- Source is connected to small signal ground through C_S
- R_{G1} and R_{G2} appear in parallel at the gate

$$R_i = R_{G1} || R_{G2} = 53.5 \text{ k}\Omega$$

- R_D and R_L are in parallel at the output

$$R_o = R_D || R_L = 74 \text{ } \Omega$$

- Input voltage, $v_i(t)$, is the gate-source voltage, v_{gs}
C-S Amplifier – Small-Signal Analysis

- **Determine the small-signal voltage gain:**
 \[A_v = \frac{v_o}{v_i} \]
 \[(1) \]

- **The input is applied across the G-S junction, so**
 \[v_i = v_{gs} \]
 \[(2) \]

- **The output is the drain current applied across the output resistance**
 \[v_o = -i_d R_o = -g_m v_{gs} R_o \]
 \[(3) \]
Substituting (3) and (2) into (1) gives the gain:

$$A_v = \frac{v_o}{v_i} = -\frac{g_m v_{gs} R_o}{v_{gs}} = -g_m R_o$$

This is the gain for any common-source amplifier

$$A_v = -g_m R_o$$

The negative sign indicates that the amplifier has inverting gain.
For this circuit, the gain (from v_i to v_o) is

$$A_v = \frac{v_o}{v_i} = -131 \text{ mS} \cdot 74 \text{ }\Omega = -9.7$$

For the gain from v_s to v_o, account for attenuation due to source loading

$$A_v = \frac{v_o}{v_s} = \frac{v_i}{v_s} \cdot \frac{v_o}{v_i} = \frac{R_i}{R_s + R_i} \cdot (-g_mR_o)$$

Here,

$$A_v = \frac{v_o}{v_s} = \frac{53.5 \text{ k}\Omega}{500 \text{ }\Omega + 53.5 \text{ k}\Omega} \cdot (-9.7) = -9.6$$
The output for a 200 mV_{pp}, 100 kHz input:
C-S Amplifier – Dynamic Range

- **Dynamic range**
 - Range of input or output signal for which the transistor remains in the **saturation region**
 - The amplifier’s **linear range**

- For saturation bias:
 - D-S voltage must remain greater than the overdrive voltage
 \[
 v_{DS} > V_{OV}
 \]
 - G-S voltage must remain greater than the threshold voltage
 \[
 v_{GS} > V_t
 \]
Gate resistance is infinite, so amplifier input resistance is

\[R_i = R_{G1} || R_{G2} \]

Output resistance is the drain resistance:

\[R_o = R_D \]

Or, if accounting for channel-length modulation:

\[R_o = R_D || r_o \]
C-S Amplifier – Gain

\[A_v = -g_m R_o \]

- C-S gain is **determined by** \(g_m \) **and** \(R_o \)
 - Select \(R_o \) (\(R_D \)) and set \(g_m \) for desired gain
 - Transconductance is proportional to the square root of bias current

\[g_m = \sqrt{k'_n \left(\frac{W}{L} \right) I_D} \]

- Therefore, **gain is proportional to the square root of bias current**
Source Degeneration
The C-S amplifier we have looked at so far had its source grounded (small-signal ground)

- Due to bypass capacitor, C_S, around R_S

What if we remove C_S?
- Or add another source resistor not bypassed by C_S

Source degeneration
Now, R_S is included in the small signal equivalent circuit
- Source is no longer connected to small-signal ground

Analysis will be simplified if we use the T-model
- Usually the case whenever we have source resistance
- R_S will be in series with resistance in the model
The output is still given by

$$v_o = -i_d R_o = -g_m v_{gs} R_o$$

But, now, v_{gs} is the portion of v_i that appears across the $1/g_m$ resistance

$$v_{gs} = v_i \frac{1/g_m}{1/g_m + R_s}$$

$$v_{gs} = v_i \frac{1}{1 + g_m R_s}$$

The output is

$$v_o = v_i \left(-g_m R_o \frac{1}{1 + g_m R_s}\right)$$
Source Degeneration – Gain

- Rearranging the expression for the output gives the gain

\[A_v = -\frac{g_m R_o}{1 + g_m R_S} \]

- **Source degeneration reduces the gain by a factor of** \((1 + g_m R_S)\)

- If \(R_S \gg 1/g_m\), then \(g_m R_S \gg 1\), and

\[A_v = -\frac{R_o}{R_S} \]
Source Degeneration – Transconductance

\[A_v = -\frac{g_m R_o}{1 + g_m R_S} \]

- We can rewrite the gain as
 \[A_v = -G_m R_o \]

- \(G_m \) is the **effective transconductance of the amplifier**
 \[G_m = \frac{g_m}{1 + g_m R_S} \]

- **Source degeneration reduces the transconductance by a factor of** \((1 + g_m R_S) \)
 - This is why we see a reduction in gain by the same factor
Source Follower
Source-Follower

- **Source-follower amplifier**
 - Input applied to the gate
 - Output at the source
 - Source *follows* the gate
- Also called a **common-drain** amplifier (CD)
 - Drain is connected to small-signal ground
Replace the MOSFET with small-signal model

- Source resistance, so use T-model
- Short coupling caps
- DC voltages connect to ground
- Simplify parallel resistances
Determine the gain from v_i to v_o

$$A_v = \frac{v_o}{v_i}$$

Applying voltage division gives the output

$$v_o = v_i \frac{R_S||R_L}{(R_S||R_L + \frac{1}{g_m})}$$

Rearrange to get the gain

$$A_v = \frac{R_S||R_L}{(R_S||R_L + \frac{1}{g_m})}$$

- Clearly, $A_v < 1$
- But, for $R_S||R_L \gg 1/g_m$, $A_v \approx 1$
Gate resistance is infinite, so amplifier input resistance is

\[R_i = R_{G1} \parallel R_{G2} \]

The output resistance is the source resistance in parallel with \(1/g_m \):

\[R_o = R_S \parallel \frac{1}{g_m} \]
Common-Gate Amplifier
The third MOSFET amplifier configuration we will look at is the *common-gate amplifier*:

- Input applied to the source
- Output taken from the drain
- Gate is connected to small-signal ground
- The least common of the three amplifiers
Common-Gate Amplifier – Gain

- There is source resistance, so use the T-model for small-signal analysis.

- The output is given by
 \[v_o = -i_d R_D || R_L \]
 \[v_o = -g_m v_{gs} R_D || R_L \]
 \[v_o = g_m v_i R_D || R_L \]

- Common-gate voltage gain is
 \[A_v = g_m R_D || R_L \]
- R_i is the parallel combination of the resistance connected to the source and the resistance looking into the source

$$R_i = R_S \| \frac{1}{g_m}$$

- If $1/g_m \ll R_S$, then

$$R_i \approx \frac{1}{g_m}$$
Common-Gate – Output Resistance

- If we neglect the transistor’s output resistance, r_O, the common-gate output resistance is

 $$R_O = R_D$$

- Entirely determined by the drain resistor
Common-Gate Amplifier

- Low input resistance
 \[R_i \approx \frac{1}{g_m} \]
 - For \(R_{os} \gg \frac{1}{g_m} \), there will be significant attenuation from \(v_s \) to \(v_i \)
 \[v_i \ll v_s \]
 - The overall gain from \(v_s \) to \(v_o \) may be small

- Like the common-base amplifier, useful in specific applications:
 - Low source resistance
 - E.g., amplifiers driven by cables
 - \(R_i \) matched to \(Z_0 \) (e.g. 50 Ω or 75 Ω) to avoid reflections
 - Current buffers
 - E.g., in \textit{cascode} amplifiers
MOSFETs as Switches
MOSFETs as Switches

- MOSFETs used as **switches** operate alternately in the **triode** (closed) and **cutoff** (open) regions
- Equivalent circuit models:

Triode Region (ON):
- \(V_{GS} > V_t \)
 - \(V_{GS} = V_{DD} \)
- Switch is on
- \(I_D \geq 0 \)
- \(V_{DS} = I_D r_{DS} < V_{OV} \)

Cutoff Region (OFF):
- \(V_{GS} < V_t \)
 - \(V_{GS} = 0 \)
- Switch is off
- \(I_D = 0 \)
- \(V_{DS} = V_{DD} \)
Using a MOSFET as a Switch - Example

- Turn resistance heater on and off using a microcontroller
- Heater may require amperes of current
- Microcontroller output may be limited to tens of mA

- Control a MOSFET switch with the microcontroller output
 - Low-current control signal from the microcontroller
 - Gate draws no DC current
 - MOSFET switches the large current required by the heater

\[
k_n' \frac{W}{L} = 1.2 \frac{A}{V^2}
\]

\[
V_t = 2 \, V
\]
Using a MOSFET as a Switch - Example

- When the μ-controller’s output is low (0 V)
 - $V_{GS} = 0 \text{ V}$
 - Transistor is in the cutoff region
 - Switch is off
 - No current flows
 - The heater is off
Using a MOSFET as a Switch - Example

- When the μ-controller’s output is high (3.3 V)
 - $V_{GS} = 3.3 \, V$, $V_{OV} = 1.3 \, V$
 - Transistor is in triode
 - Switch and heater are on

- Drain current in triode is:
 $$I_D = k'_n \frac{W}{L} \left[V_{OV} - \frac{1}{2} V_{DS} \right] V_{DS}$$

 $$I_D = k'_n \frac{W}{L} \left[V_{OV} - \frac{1}{2} (48 \, V - I_D R_h) \right] (48 \, V - I_D R_h)$$

- Can solve the above quadratic, or, assuming V_{DS} is small, approximate switch on-resistance as:
 $$r_{DS} \approx \frac{1}{k'_n \frac{W}{L} V_{OV}} = \frac{1}{1.2 \frac{A}{V^2} \cdot 1.3 \, V} = 641 \, m\Omega$$
Using a MOSFET as a Switch - Example

- Voltage division gives approximate drain voltage

\[V_D = 48 \, V \cdot \frac{r_{DS}}{R_h + r_{DS}} = 48 \, V \cdot \frac{641 \, m\Omega}{45 \, \Omega + 641 \, m\Omega} \]

\[V_D = 674 \, mV \]

- Drain current is approximately

\[I_D = \frac{48 \, V}{R_h + r_{DS}} = \frac{48 \, V}{45 \, \Omega + 641 \, m\Omega} \]

\[I_D = 1.05 \, A \]

- Heater power is

\[P_h = I_D^2 R_h = (1.05 \, A)^2 \cdot 45 \, \Omega \]

\[P_h = 49.75 \, W \]